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Phonon transmission across interfaces and the Kapitza resistance
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The transmission of phonons across an interface between a classical solid and liquid
helium is calculated. Several simple models of the helium system are considered. Calculations
for a solid with a clean arid perfect surface give a transmission coe5cient for low-energy pho-
nons. (~ & 20 IO, which is very small (typically ~0.1), and which decreases with decreasing en-
ergy. At energies above 30 K the transmission is predicted to have a larger value which is slow-
ly varying with energy, and to be inversely proportional to the acoustical impedance of the solid.
Possible mechanisms which increase the transmission for damaged or dirty surfaces are briefly
61scussed.

I. INTRODUCTION

hen heat flows from a solid into superfluid heli-
um, a temperature jump occurs across the interface.
This effect was erst observed by Kapitza' in 1941.
Phenomenologically, the temperature jump can be
considered to arise from a thermal boundary resis-
tance (Kapitza resistance). It is now believed that a
thermal boundary resistance occurs at all interfaces
between dissimilar materials. The boundary resis-
tance arises because not all thermal phonons incident
on the interface are transmitted across into the other
medium. Thus, to obtain a quantitative understand-
ing of the Kapitza resistance, it is necessary to study
the transmission and reflection of phonons at inter-
faces.

An important contribution to the theory of the Ka-
pitza resistance was made by Khalatnikov. 2 He calcu-
lated the transmission coeScient of phonons across
the boundary between a solid and liquid helium by
applying the laws of classical acoustics. For a phonon
at normal incidence to the interface the transmission
coeScient is

&S—He 4ZSZHe~(ZS + +He) ~

where Z& and ZH, are the acoustical impedances
de6ned by

Zs =pscs,

ZHc, pHecHe ~

where pq and pH, are the densities in the solid and
liquid, and c~ and cH, are the velocities of sound.
For a typical solid pq is 10 to 30 times larger than pH,
and the velocity of sound c~ is also larger than cH, by
a similar factor. Hence, the acoustical impedance of

liquid helium is smaller by 100 to 1000 times than
the impedance of most solids and so the transmission.
coefficient comes out to be of the order of 0.01.

At the present time the experimental situation re-
garding the transmission coeScients is not completely
clear. Most experiments ' have yielded transmis-
sion coefticients much larger than the values predict-
ed by the acoustical-mismatch theory, except for pho-
nons of very low energy. Typical results4 are shown
very qualitatively in Fig. 1. For phonons of energy
less than 1 K the transmission coefficient is close to
the acoustical-mismatch value, ' In the energy range
1—5 K there is a rapid increase in transmission.
Above 10 K and up to the highest energy so far in-
vestigated' (around 40 K) the transmission is roughly
constant, and is typically in the range 0.1-0.5. It is
known that this anomalously large transmission of
phonons also occurs across interfaces between a clas-
sical solid (e.g. , silicon) and a quantum solid" '
('He, He, Hq, or D2) or liquid 'He. However, for
interfaces between the two "classical" soiids (e.g. , in-
dium and sapphire") the acoustical-mismatch theory
is in reasonable agreement with the experimental
results. The difhculty thus appears to be present only
when quantum e6'ects are important.

Very recently Weber et al. 22 have studied the
transmission of phonons of energy 14 K across inter-
faces between lithium fluoride or sodium fluoride and
liquid helium. They found that when the alkali
halide surface was cleaved at low temperature and
surface contamination was avoided, the anomalous
transmission was greatly reduced. For the same sur-
faces subsequent exposure to the atmosphere or
"cleaning" with organic solvents increased the
transmission to values comparable to those found in
the earlier experiments. So far there is no informa-
tion available about the energy dependence of the
transmission coeKcient for these very clean surfaces.
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~here e is the unit polarization vector of the phonon,
0 is the phonon frequency, and the amplitude of os-
cillation u~ is independent of position on the surface.
We will treat the oscillation of the surface as a time-
dependent perturbation acting on the helium system.
This perturbation is a potential whose value at a point
r is

5H(r, t) = Us H, (r —D) —Us u, (r), (5)

0
0 10

where Us H, (r) is the potential at r due to the Van
der Waals forces between helium atoms and the solid
surface when the surface is not displaced. To lowest
order in us, Eq. (5) becomes

FIG. 1. Qualitative form of typical results for the phonon

transmission coefticient as a function of energy. The vertical

scale is linear and a typical value of the transmission

coefficient at 10 K is in the range 0.1—0.5.

There have been many different calculations of the
phonon transmission coeScient. Generally, these
calculations have been concerned with an explanation

' of the anomalously large transmission observed in
most of the experiments mentioned above. Some of
these ideas have been worked out in quantitative de-
tail, while others have been supported by "hand-
waving" arguments only. In this paper we investigate
the transmission on the basis of calculations which,
although crude, are nevertheless quantitative and
based on first principles. Most of the analysis we
present applies to transmission of phonons across an
interface between a perfect solid with a clean surface
and liquid helium. Thus, the theory is most applica-
ble to experiments of the type performed by Weber
et al. In Sec. JI we discuss the assumptions that
the theory relies on. The actual calculations of the
transmission for various models of the helium system
are described in Sec. III. In Sec. IV we discuss the
sum rules derived here that the transmission
coeNcient obeys. These have important implications .

for the transmission coeScient, particularly at low

energy.

II. ASSUMPTIONS

Our basic approach in this paper is as follows: The
incident phonon is assumed to have a wave vector
normal to the interface and to come from the solid
side. For a phonon of energy much less than kOD
(OD is the Debye temperature of the solid) the pho-
non wavelength in the solid is much larger than the
interatomic spacing. Thus, as a 6rst approximation
the helium sees the surface of the solid as oscillating
almost rigidly. Hence, the displacement 0 of all
points on the surface of the solid may be taken to be

~H(r, r) = —use VUg u, cos(Qt) . (6)

SH(r, r) = —us8 V Us ,Hcso( Q)r

—$u, e; ~ '7U, ,Hco(sQr+@;), (8)

I

where u& and e; are the amplitude and unit polariza-
tion vector of the ith absorbed atom, $1 is a phase
shift, and UI H, is the potential between the ith atom
and the helium. Thus we can set

%e call this contribution to the coupling between the
solid and the helium "displacement coupling", since it
comes from the rigid displacement of the solid sur-
face. In a higher approximation one should also take
into account the fact that an incident phonon causes
relative displacements of the atoms near the surface
of the solid. We call this contribution "strain" cou-
pling, because it arises from the oscillating strain in
the solid surface. One expects that the strain pertur-
bation will be smaller than the displacement perturba-
tion by a factor which is roughly the ratio of the rela-
tive displacements of neighboring atoms to the abso-
lute displacement. ' This ratio is just

ds/Zs,

where d~ is the interatomic spacing in the solid and
A.~ is the phonon wavelength in the solid. Although
the distinction between displacement and strain cou-
pling may appear rather academic, it turns out that it
has important consequences (see Sec. IV).

The strain perturbation will not necessarily be small
compared to the displacement perturbation if the sur-
face of the solid is covered by adsorbed gas. For a
gas which is physisorbed on the surface, the bonds
between the gas atoms and the solid are much weak-
er than the bonds that hold a typical solid together.
Thus, when the surface of the solid oscillates, the ad-
sorbed gas atoms will not perfectly follow the motion
of the solid surface. In this case the perturbation
that acts on the helium can be written in the form

D = use cos(Qr), (4) SH(r, r) =5H,;„(r,r)+5H„„(r,r),
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where-

SHo;„(r,t) = —use V Us' H, cos(Qt),
t

V US H, =V US H, + XV U/ H, ,
i

and

SH„,(r, t) = X [use cos(Qt)
l

—uieicos(At+@i)] ~ VUi H,

(10)

(12)

s —2~o (13)

where up is the amplitude of the wave corresponding
to the incident phonon. Now assume that the helium
is initially in some state I i&. The probability per unit
time of a transition to the state I j& due to the
inhuence of the perturbation is

2 vpQp, I&I' VU. ..IJ&l'

x [S(E,+ ttQ E,) +S(E,—l—tQ —E,)] . (14)

Therefore, the rate at which energy is transmitted to
the. helium is

SHQ' p is thus the perturbation due to a rigid oscilla-
tion of the solid plus the adsorbed atoms. This gives
a displacement coupling with a new effective potential
Us H, . SH,„describes the extra effects that occur
because the adsorbed atoms do not move with the
same amplitude, direction, or phase as the solid. For
the moment we consider just a clean surface and so
neglect the strain coupling.

If we assume that the transmission coeScient of
the phonon across the interface is much. less than un-

ity, and that the surface is clean, we will have

where I0& denotes the ground state of the helium.
Before considering models for the helium system, it
is interesting to note some alternative forms of Eq.
(17). Consider a situation in which the helium sys-

tem is bounded only by the solid-helium interface
and by a free surface (Fig. 2). This limits the discus-

sion to helium. in the absence of applied pressure. In
such a case the only external potential acting on the
helium is the interaction with the solid surface, i.e.,
the same potential whose gradient occurs in Eq. (17).
Because of this special property one can derive the
following equivalent forms for the matrix element in

Eq. (17):

&0le V Us Hclj-& =(t'/to(Et —Eo) &0le 'Plj)

(Nm/ g)(&j. Eo) —&0le 'Rl j&

(19)

where m is the mass of one helium atom, P is the
operator for the total momentum of the helium, R is

the center-of-mass of the helium system, and N is

the number of helium atoms. Equations (18) and

(19) hold regardless of the form of the interaction
between the helium atoms, and can be derived in a
straightforward way by considering commutators of
the total helium Hamiltonian with the operators P
and R. Note that P and R commute with all parts of
the helium Hamiltonian except the part that
represents the potential due to the solid. %e can
now use Eqs. (18) and (19) to obtain the following

equivalent forms for the transmission coeScient:

(e) = Xl&0le Plj)I2S(Eo+e —Et)
pscsA A ~

(20)

Q= $(E —E)P e ' /Xe
iJ l

(15)

where T is the temperature. In what follows we will

consider only T =0 K, and will come back to discuss
the effect of a finite temperature later.

The energy flux incident on the surface is

Helium

Free
surface

Qinc 2 psuo Q es~2 2

~here A is the area of the surface. Thus, the
transmission coeKcient for a phonon of energy e
(=tQ) is-

(16)

Solid

~(e) —= Q/Q;,

„Xl&0I' VU. ..li&l s(E,+.-E,),
pscs 6

(17)

]a
Incident
phonon

FIG. 2. Helium system bounded by the solid and by a

free surface.
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X &ole plj&&/le ~ Klo&

x 5(Ep+ p EJ)— (2l)

XI (ole ~ Rlj&l g(Ep+ -EJ) .
pscs~ &3

(22)

These relations are interesting because the poten-
tial e '7 Us H, that couples the solid to the helium
no longer appears explicitly in the matrix elements.
However, the potential does appear implicitly on the
right-hand side of Eqs. (20)—(22) because Us H, is

involved in the determination of the helium eigen-
functions. These equations lead immediately to the
following sum rules'.

coefBcient was independent of pressure for liquid'

helium up to the freezing pressure of 25 bars. In ad-
dition, when the pressure was further increased so
that the helium solidified, no change in transmission
occurred to within the experimental accuracy of +5%.
These results are consistent with the view that the
helium atoms which are important in determining the
energy transfer are those very close to the solid sur-
face. Because of the Van der %aals attraction of the
helium to the solid, these atoms are effectively in a
region of very high pressure, even when the bulk
helium above them is not under pressure. Thus, any
additional pressure of a few tens of bars produces
very little change in the states of the atoms near to
the surface, and hence, negligible change in transmis-
sion.

III. CALCULATION OF THE TRANSMISSION

Jp u(s) t ds = &ol(e p)'lo&,
pscs~

( ) zd 2rrNm
40 pscs~ &

(24)

Let the interaction between one solid atom and one
helium atom at distance r be approximated by the
Lennard- Jones potential

and &S-H,[(a/r)" —2(a/r) ] . (29)

—&ole Rlo&']. (25)

The depth of the well is ~s H„and the minimum of
the potential occurs for r equal to a. If the solid
atoms have a density n, and fill the region z & 0, the
potential for large positive z is

One can also derive positive-moment sum rules from
Eq. (17). The lowest three are

Us He(r) = msHs—en, a /3z (30)

Sabisky and Anderson write the long-range part of
Us H, in the form

a(s) de=

and

(0 le ++Us —H e lo&
pscs~

a(e)ed&= (ol(e %US-He)'10& ~
0 pscs~

(26)

(27)

He
d3

US—He(+& 4S-Be
z- .

(3i)

where dH, is the mean spacing of atoms in liquid heli-
um (3.58 A) and $s H, is a constant. The relation
between $s H, and cs H ls thus

2~@
J a,(p)s de= (Olv(e '7Us H,)

pscsAel
34'S—He dHe

S-He 6mnsa
(32)

'7(e V'U, „,)lo& . (28)

These formulas only apply if the coupling is of the
displacement type.

At this stage the problem reduces to the calculation
of the wave functions of the states of the helium sys-
tem. Experiments' show that the transmission of
phonons into a film is essentially the same as
transmission into bulk helium, provided the film is at
least three atomic layers thick. Thus, it is only neces-
sary to calculate the wave functions for thin helium
layers. ' This assumption is also supported by experi-
mental studies of transmission into bulk helium
under pressure. It was found' that the transmission

Measurements by Sabisky and Anderson, and calcu-
lations by them based on the theory of Lifshitz give
values for Qs H, which are typically in the range
15—40 K. If we take a to be the same as the range of
the helium-helium interaction (2.869 A) ps He coltles
out to be between $s H, and 2$s H, depending on
the value of n, .

A. Longitudinal phonons

The potential near to the surface of the solid is a
very complicated function of position and will depend
on the orientation of the surface and on the crystal
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structure. In addition, many Kapitza experiments
probably have involved crystals which are rough on
the atomic scale. Our simplest model of the potential
ignores these subtleties and takes the solid atoms as
distributed continuously with uniform density in the
region z & 0. For this "continuum model" the poten-
tial for z &0 is

100-

S-He
X

X)

....-..... x,
I

I
i':. I.

~ y ~

3
~ 9 t 3'

34$—HedHe I 8 I 0
Us-He(&& =

Q3 45 Z 3 Z
(33)

z
LUI-0
Q.

The minimum of this potential is at z =5 '~ a and
the depth of the minimum is

-100-

e 'I 3

T(5) &s-H.
' =—2 g g94 s-He

Q
(34)

2 .4 6 8

DISTANCE FROM SURFACE {Aj

10

This potential is shown in Fig. 3 for @s H, -30 K. .
Since the potential is independent of x and y, this
model is inadequate to consider the transmission of
transverse phonons.

For a single helium atom moving in the potential
(33) the eigenfunctions and eigenvalues are

elk r)( (z)

and

h k2
E(ki) = +o, ,

2 /pl
(36)

where k is a vector parallel to the surface and Xi and
~i satisfy

FIG. 3. "Continuum model" potential as.a function of dis-

tance from the solid. The strength parameter @~ H, equals
30 K. Also shown are the wave functions of the three
lowest-energy eigenfunctions X&. The vertical scale for the

Xi is arbitrary.

at high density. Thus, in order for a model which
completely neglects interactions between helium
atoms to be reasonable, the total number of atoms in
the helium system must be chosen to be equal to
N~A. In this case the model is a crude representation
of a surface covered by a monolayer. The transmis-
sion coefficient for longitudinal phonons at normal
incidence then becomes

+ Us H, (z).X, =«XI
2m Qz

(37)
4m Ngt ~Us-He

a(o) = X I &xol
'

IXI& I'g(ao+s —«)
PSCSK i NO 8Z

Thus, Xi is an eigenfunction for motion normal to
the surface. For a rigid oscillation of the surface,
transitions can only occur between states of the same
k. Hence, the spectrum of values of ~i determines
the energies of those phonons that can be absorbed
by the helium atom. In Fig. 3 we show some of the
Xi functions corresponding to low energies. Table I
sho~s how the energies of the low-lying states vary
when the strength of the potential is changed. The
simplest model (model l) for the helium is obtained
by completely neglecting interactions between helium
atoms. The ground state of the helium is then the
state in which all particles have zero momentum
parallel to the surface and are in the lowest-energy z
state Xp. This model has the unphysical property that
all atoms are in states next to the surface. For real
helium, on the other hand, one expects that the
number of atoms per unit area of the surface will
have some definite value Ng. Ãg will be determined
by a balance between the Van der Waals attraction of
the solid which pulls atoms into the surface, and the
repulsive force between helium atoms at close dis-
tances. This effect of the repulsive force is augment-
ed by the increase in the zero-point energy of helium

\

TABLE I. Energy eigenvalues ei for motion normal to
the surace as a function of the strength @~ H, of the Van
der Waals potential. These results are based on the poten-
tial (33).

Eigenvalue

20
Potential strength @g H,

30 40

fp

2

—31.4
—8.0
—1.4
—0.1

—53.5
-18.5
—5.1
—1.0

-76.6
—31.3
—10.9
—3.1

We have evaluated this expression for several values
of the strength of the Van der Waals force. For a
given value of $s H„ek(o) has a discrete spectrum at
low frequencies (corresponding to transitions between
bound states) and a continuous spectrum when a+ oo

is positive. Figure 4 shows u for ps H, equal to 20,
30, and 40 K. These results are plotted as a se-
quence of points at 5, 15, and 25 K, etc. , which
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FIG. 5. "Planar model" potential as a function of distance
from the solid. The strength parameter $z H, equals 30 K.
Also shown are the wave functions of the three lowest-

energy eigenfunctions X;. The vertical scale for the X, is ar-
bitrary.

PHONON ENERGY
'

( K)

FIG. 4. Transmission coeScient as a function of energy;

(a), (b), and (c) show results for the continuum potential
(model 1) with $& H, equal to 20, 30, and 40 K, respective-

ly. The results for model 2, for which $~ H, has a range of
values, is shown in (d).

represent the average value of 0, over a "box" 10 K
wide around the point. The graphs are obtained by
joining the points by straight lines. The eigenfunc-
tions that correspond to the continuous spectrum
were "quantized" by requiring that each Xl be zero at
30 A from the surface. The use of a truly continuous
spectrum would have only a small effect on the
results. As representative values we have taken
pg =3gcm, cq =4 x 10 cmsec ', and N~ =a in
these calculations.

The structure in the results for a is somewhat un-
physical, since, as mentioned above, the actual poten-
tial very near the solid surface will vary considerably
with position along the surface. To simulate the
effect of this variation we have also calculated 0. as
the average transmission for a surface with a range of
values of $s H, . Figure 4 includes the results ob-
tained when it is assumed that the surface is equally
divided into areas which have ps H, values of 20, 30,
and 40 K (model 2). The dip in transmission at 55 K
would be removed if a continuous distribution of po-
tential strengths were taken, and should be con-
sidered an artifact of the model.

The calculated transmission for energy 30 K or
greater is much larger than the acoustical-miSmatch
value. Between 30 and 60 K the average of a is
about 0.2.

This model probably tends to underestimate the
binding energy of the helium to the solid. For exam

pie, $s H, is believed'6 to be 20.6 K for LiF. The
use of the potential (33) with this value of $s H,
leads to a ground-state energy of —32 K. However,
measurements by Houston and Frankl give the
value —65 K for a (100) surface. A inodel that leads
to larger binding energies but has the same asymptot-
ic value of the potential for large z is the following.
Divide the solid up into planes parallel to the surface.
Let the spacing between successive planes be d~. As-
surne that in each plane the solid atoms are uniform-
ly distributed. The last plane of atoms lies in the
plane z =0. The potential for z )0 (i.e., outside the
solid) is then

»

dHeds ~ 1 a
US —He 34'S—He 4a p Q z+p cia

'1Q

»4
a

z+p ds
(39)

For $s H, =30 K and ds =2.6 4 this gives the poten-
tial and wave functions shown in Fig. 5. The ener-
gies of the lowest three states are —121, —56, and
—22 K. For $s H, =20.6 K the ground-state energy
is —77 K'which is reasonably close to the —65 K
found for LiF by Houston and Frankl. In Fig. 6 we
show the results of the calculation of the phonon
transmission n(~) when the potential (39) is used.
This calculation assumes that equal areas of surface
have @s H, equal to 20, 25, 30, 35, and 40 K (model
3). Compared to model 2 there is a shift of the
transmission to higher energies as expected from the
above discussion of the depths of bound states.

These models have been presented as noninteract-
ing models for the helium system. Another way to

- view them is as cell models. Consider a model in
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FIG. 6. Transmission coefticient as a function of energy

for model 3.

which the surface of the solid is divided into square
cells, each of side I such that

N, /2=1 . (40)

y., = S(x —x.)S(y —y.)x,(z), (41)

where XI satisfies Eq. (37). Calculation of the
transmission for this model gives exactly the same
transmission coefficient as for the model 2 or 3 when
the appropriate potential for the motion in the z
direction is used.

At low energy the transmission drops to zero be-
cause the phonons have insufficient energy to excite
a helium atom to the first excited state. To consider
the transmission in this range we must take account
of the helium atoms in the second and subsequent
layers. A crude model is based on the cell picture.
Let each cell now contain n helium atoms, each of
which can move only in the z direction. As men-
tioned before, it is necessary to put in some interac-
tion between these. atoms or the system will have the
unphysical feature that all the atoms will be in the
single-particle ground state. The simplest interaction
(model 4) is to take an infinite-strength 8-function
repulsion between helium atoms. Then the wave
functions are obtained as follows. Choose n different
single-particle eigenfunctions Xl, XJ, . . . . For values
of the coordinates z~ z2, . . . of the n particles such
that

z] z2 z3 ~-. etc.

the normalized wave function is the determinant

Each cell contains one helium atom whose position in
the x-y plane is constrained to be at the center of the
cell. The wave function of the helium atom in the
cell a with center at (x,y ) is then

X/(zi) X/(zz) XI(z3) ' ' '

(n!) ' ' XJ(zi) XJ(zz)

xk(zi) ~

(42)

8. Transverse phonons

To consider the absorption of a transverse phonon
we must use a potential Uq H, which has some
dependence on the coordinates x and y that lie in the
plane of the surface. However, it is tedious to solve
the Schrodinger equation in three dimensions, even
for only one helium atom. In addition, the approxi-
mation for the helium-helium interaction used in
model 4 gives a simple solution only in one dimen-
sion. Accordingly, we consider the following highly
simplified model. In general, the solid potential will

be some complicated function Us H, (x,y, z) of x, y,
and z. However, if the potential is strong, a helium
atom will spend nearly all its time near where the po-

For other regions of space the wave function is either
still given by Eq. (42), or diff'ers from Eq. (42) just
by an overall sign change. This sign change is made
so that the wave function satisfies the requirements
of Bose symmetry. The matrix elements for this
wave function are also- easy to calculate in terms of
single-particle matrix elements, The transmission
calculated for this model is shown in Fig. 7. The
same form for the solid potential was used as in
model 3. These results show several interesting
features. The addition of the extra atoms per cell
makes the transmission a more smoothly varying
function of energy. The transmission at low energy
is enhanced. Another very interesting feature is that
for three atoms per cell the transmission is fairly in-
sensitive to the strength @s H, of the substrate poten-
tial. This can be understood by the following argu-
ment, which is a highly simplified view of the prob-.
lem but probably includes much of the essential phy-
sics. The atoms near the solid surface are in a
strongly attractive potential and can only be excited
to their first excited states by a very high-energy pho-
non. The atoms further away from the surface have
lower excitation energies. When the surface of the
solid oscillates at a frequency 0, the atoms very near
the surface will follow the motion of the surface adia-
batically, because AQ is much less than the energy
required to excite them. However, the disturbance
will eventually reach a distance away from the surface
such that the excitation energy is around O'O. It is at
this distance that the absorption takes place. When
the strength of the solid potential is varied, the dis-
tance from the surface at which a phonon of a given
energy can be absorbed will change. However, the
actual magnitude of the absorption does not appear to
be greatly affected.
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FIG. 9. Transmission coefficient as a function of energy

for model 5 (solid line) and model 6 (dashed line). The
large peak around 55 K would be smeared out if a more

smoothly varying distribution of potential strengths were

taken.

of @s H, as in model 2. Thus, equal numbers of
strips had Qs H, equal to 20, 30, and 40 K, and
therefore values of @t of 40, 60, and 80 K, respec-
tively. The transmission as a function of energy is
shown as the solid line in Fig. 9. These calculations
assume pq =3 gcm and cs =3 X 10 cmsec '. The
transmission has a large peak around 55 K, but this
would be smeared out if a more smoothly varying
distribution of potential strengths were taken, and
hence, should be considered to be an artifact of the
model "

The transmission in this model is zero for phonons
of energy below the band gap for the lowest value of
@t in the distribution. This band gap is 36 K. To get
any transmission at lower energy one must consider
more complicated models. It is clear that a second
layer of helium atoms will be much more weakly

bound to the solid surface, and will be able to absorb
lower energy phonons. To treat this absorption, one
can argue that for low-energy phonons the first layer

of helium will oscillate rigidly with the solid surface
(i.e., the whole layer will move with the same ampli-

tude and phase as the solid surface). The potential

U,«(x,y, z) felt by the second helium layer will be the
sum of the interactions:with the solid and with the
first helium layer, and since the first layer moves ri-

gidly with the solid, the perturbation that acts on the
second layer when the solid vibrates is just

use VUeff ~

Thus, to calculate the absorption of low-energy pho-
nons by the second layer, one has to estimate the po-
tential U,«and then repeat the calculation that was

done for the first layer, this time using this new po-
tential. This calculation will only be correct below
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FIG. 10. Contribution to the transmission coefficient
from a second layer. The solid, dashed, and dotted lines

correspond to qb2 equal to 10, 20, and 30 K, respectively.

some cutoff energy e, at which the first layer of heli-
um ceases to move rigidly. We have rather arbitrarily
taken e, as 0.8 times the band gap. It is dificult to
make a good estimate of U,«. The strength $8, H,
of the Lennard-Jones potential of interaction between
two helium atoms is 10 K. Thus, a repetition of the
argument used for the first layer would give for the x
dependence of U,« the result

U,«(x) -Qzcos(2«x/a) + const, (46)

with $z about 2/8, H, . However, this argument ig-
nores the potential due to the solid which tries to pull
the second layer towards the first layer. This effect
probably should increase $z. On the other hand, the
effect of zero-point motion in the z direction of the
second-layer atoms tends to move their mean posi-
tion away from the solid. This should lead to a de-
crease in $2.

The contribution to the transmission from the
second-layer absorption is shown in Fig. 10 for @2

equal to 10, 20, and 30 K. These calculations do not
include any cutoff energy e, at the high-energy end.
The transmission for a two-layer helium model
(model 6) is shown as the dashed line in Fig. 9. The
first layer in this model has the same distribution of
values of $~ as model 5. The second layer has @2

equal to 20 K. Below e, only the second layer contri-
butes to the transmission, and above ~, only the first
layer contributes.

The addition of a second layer substantially in-
creases the transmission in he energy range 20—30
K, and in this energy range the magnitude of the
transmission is of the same- order of magnitude as the
typical experimental values. At lower energies, how-
ever, the transmission drops off very rapidly, and is
zero below 19 K. This is therefore inconsistent with
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the majority of the experimental results which indi-
cate a large transmission down to about a 5-K energy.
One might try to get an increased transmission at low

energy by adding further helium layers, It is hard to
see how to calculate the effect of more helium by any
simple extension of the present method. Another
way in which one might hope to get an enhanced
transmission at low energy is through the use of a
nonperiodic potential instead of a cosine. This would
then get rid of the band gap, and would make possi-
ble the adsorption of low-energy phonons even by a
single layer of helium. There is certainly no reason
to believe that the actual potential is periodic (except
in the case of a very ideal perfect surface), and so
this approach appears attractive. However, we have
investigated the transmissio'n for several nonperiodic
potentials and have found that the trarismission at
low energy is not significantly enhanced. In fact, one
can show fairly rigorously (see Sec. IV) that the ex-
perimentally observed anomalous transmission at low

energy cannot be explained by the addition of anoth-
er helium layer or by tinkering with the potential.

IV. APPLICATION OF SUM RULES

In this section we want to consider the following
question: Can a more sophisticated model for the
helium system giVe a transmission coeScient which
agrees with the results found in most experiments?
By "most experiments" we mean those experiments in
which a large anomalous transmission is observed,
i.e., all experiments except the recent measurements
of Weber et al. In most experiments a large
transmission (e.g. , 0.1-0.5) is observed at all ener-
gies above about 5 K. In our ca'lculations as
developed so far, however, the transmission is large
only above about 25 K. Thus, we would like to know
whether or not a more sophisticated model for the
helium can extend the range of large transmission
down to 5 K. There are several obvious deficiencies
of our models that one could try to correct. Thus,
for example, one could try to include the true
helium-helium interaction instead of the 8-function
repulsion. Another weakness of the models is that
they are all one dimensional. Thus, two helium
atoms are never able to pass each other and there can
be no "backflow" effects that are known to be impor-
tant in determining the properties of rotons. Yet
another defect is the absence of more complicated
motions of the helium atoms, such as tunneling
between two positions of nearly equal energy. Tun-
neling is a particularly attractive possibility because it
leads naturally to low-energy states, and it appears
that a phonon should couple well to these states.

However, we can show that although these physical.
effects &nay in fact occur within the helium system
they cannot lead to a large anomalous transmission at

I

This gives

and

aexp(e) e de ~ 1.17 K

a,„p(e) 2ds~0.086 K '
dp (49)

1

aexp(a) e de ~ 0 0082 K
~J p

(50)

Since these are lower bounds on the left-hand sides,
the right-hand sides of the sum rules must be larger
than these values. The right-hand side is most easily
estimated for the ~ 2 sum rule, since this just in-
volves the total number of helium atoms. For a
three-layer film a reasonable estimate of the number
of atoms per unit area is

=2.3 x10N 3 (51)

where dH, is the mein spacing of atoms in bulk heli-
um. For germanium p~=5.34gcm ' and
cq=2.77 x10'cmsec '. Thus, the theoretical
transmission coeIIlcient a,h(e) must satisfy

a (e)e 'de= =0.0085 K ' . (52)

We have assumed in this calculation that the heli-
um atoms in the gas can be ignored in the estimate
of N/A. There are several pieces of evidence that
support this view. For example, Guo and Maris9
have measured the transmission from silicon into
thin films of helium at temperatures of 1.85 and 3.35
K. For films of the same thickness the transmission
at the two temperatures was the same. However, the
gas densities at the two temperatures differed by
several orders of magnitude. This strongly suggests
that the transmission is determined by the properties

low energies. This result follows very directly from
the sum rules that were derived in Sec. II. Consider
the negative-moment sum rules (23)—(25). The in-
terpretation of these sum rules is clearly more com-
plex when there is bulk helium on the surface since
the number N of helium atoms is effectively infinite.
But for a helium film of finite thickness the applica-
tion of the sum rules is straightforward. The Kinder
and Dietsche experiments' have shown that the
transmission coefficient a,„,(~) is approximately 0.6
for slow transverse phonons in the energy range
6—42 K going from germanium into a three-layer
helium film. A lower bound on the left-hand side of
the sum rules can therefore be obtained if we make
the approximation

0, a~6K,
a,„p(e) = 0.6, 6 ( e «42 K (47)

0, 42&&
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of the film, and is unaft'ected by the amount of gas
present. One can understand this by a rough esti-
mate of the kinetics of the process. In Kinder and
Dietsche' experiments' the temperature was 1.0 K,
and a three-layer film was produced by a pressure of
49 m Torr. Thus the gas density was n~ =5 x 10'
cm '. Now suppose that when a phonon is incident
on the surface, the time that it takes for the absorp-
tion of energy to occur is 7. The number of gas
atoms that make contact with unit area of the film
during ~ is of the order of nG~v~, ~here vG is the
mean speed of an atom in the gas. If we take
vo =104cm sec ', and r =10 " sec (the period of os-
cillation of a 5-K phonon) we have

nG7 vg —5 x 10 cm

This is much less than the number of atoms per unit
area in the film.

Di6'erent models for the helium system will lead to
different results for a,h(e), but must always satisfy
Eq. (52), provided that the number of helium atoms
is always the same. Thus, since Eqs. (49) and (52)
are in conflict, it is impossible to obtain agreement
with experiment for n(e) for all energies, regardless

of the precise model assumed for the helium This .result
implies that to explain the transmission that is ob-
served at low energies, it is necessary to reconsider
the assumptions that led to the sum rule (24). This
will be considered in more detail later in this section.
The important point that comes out of the sum rule
is that we cannot blame the lack of agreement of ex-
periment and theory at low energies on the inadequa-
cies of the models we have used for the helium.

This difhculty is revealed most clearly in the ~ 2

sum rule we have considered in detail. This is be-
cause the right-hand side has a definite value, in-
dependent of any assumptions about the helium
states. One can see signs of the same problem in the
~ ' sum rule, although now one has to make some
assumptions about the helium. This rule is

J ( ) —$d 7I m
0!th

x [(0[(e R)'(0) -(0(e R[0)'],

(53)

where R is the position of the center-of-mass. Let us
try and construct a model of the helium that will lead
to a large value of the right-hand side so that the ex-
periments will not violate the sum rule. Assume that
each of the helium atoms in one layer is fluctuating
between two positions a distance 1; apart, and that
there is no correlation between the fluctuations of the
different atoms. We consider the direction of the
vector between these positions to lie in the plane of
the surface, but to be randomly oriented in the plane.

Thus, this model corresponds to tunneling of helium
atoms between some sites lying in a plane parallel to
the surface. We consider a transverse phonon with e
parallel to the x direction. Then the sum rule gives

where N~ is the number of atoms in the layer. If we
choose N~ to be a, i.e., 1.21 x 10' cm, the result
1s

a,„(e)e de =9,2 x 10-s(2 K (ss)
0

where f is in A. Thus, in order that the sum rule not
be violated ( must be greater than 9.5 A.. This is an
unreasonably large distance for every helium atom in
a plane to be tunneling.

e now reconsider the assumptions that led to the
sum rules. It was assumed that the transmission
coefticient was small, so that for a phonon at normal
incidence on a clean surface the amplitude of oscilla-
tion of the surface was twice the amplitude of the in-
cident phonon. Any reasonable correction to allow
for the finite transmission coeScient of the phonon
will reduce the amplitude of the surface oscillation,
and hence, will give a lower transmission. This only
makes the sum-rule violation worse. A second as-
sumption was that we could calculate the phonon
transmission into helium at zero temperature. To
derive sum rules for nonzero temperatures one has
to go back to Eq. (15) for the rate at which energy is
transmitted into the helium and repeat the calcula-
tions. It turns out that the sum rule (52) should still
hold in this case, and so a finite temperature should
not eliminate the sum-rule violation.

Another important assumption is implicit in the
way we have set up the problem. The phonon in-
cident on the interface has been treated classically,
and constitutes a classical driving force of frequency
0 which acts on the helium. Thus, when the helium
is initially in its ground state the only sort of transi-
tion that is possible is one in which the helium ab-
sorbs energy tQ. In a more general theory the solid
should be treated quantum mechanically. If this is
done, the resulting expression for the probability of
absorption of energy AO by the helium is the same as
the one we have obtained by considering the solid
classically. However, it is also possible for the heli-
um to absorb only a certain part of the energy of the
incident phonon, and for a phonon of lower energy
tQ' to return into the solid. We have': estimated the
magnitude of this type of process and find that it is
smaller' than the simple absorption process considered
here by at least one order of magnitude. Higher-
order processes in which several low-energy phonons
are produced in the solid are also possible. However,
processes of this type tend to give a very small con-
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tribution to the energy transfer. For each extra pho-
non involved, extra powers of p~ and c~ enter into
the denominator of the expression for the rate of en-
ergy transfer. pq and cg are large quantities on the
scale of the corresponding parameters for the helium
system.

As far as we can see the weakest points in the
derivation of the sum rules are the assumptions that
the surface of the solid is clean, and that the surface
moves rigidly. We consider the eft'ect of these as-
sumptions in the following situations.

1. Clean arid perfect surface

By a clean and perfect surface we mean a surface
which is free of adsorbed gas or dirt, and on which
the atoms have an ordered crystalline arrangement.
When a long wavelength phonon is incident on such
a surface the surface will certainly move rigidly as a
Grst approximation. However, there will also be a
small oscillatory strain at the surface. An oscillatory
strain (or more generally any motion of different
solid atoms relative to each other) has the possibility
of being an important mechanism for energy transfer
to the helium for the following reason. A rigid mo-
tion of the surface of the solid means that the helium
is being "shaken. " For a low-frequency oscillation,
the helium follows the motion of the surface nearly
adiabatically, and absorbs very little energy. It, is for
this reason that the matrix elements of the "displace-
ment perturbation" are very small at low frequency
[see Eqs. (18) and (19)). However, relative motion
of dift'erent surface atoms of the solid induces a more
complicated oscillatory distortion of the helium which
is more likely to lead to energy transfer.

The simplest sort of strain to consider is an oscilla-
tory density change, i.e.,

Sp/p = qpcos(Qt +$) (56)

50 ~„(r,t) = 'ripe H (r) cos(Qt + @)

where Uq it,(r) is the potential exerted by the solid
on a helium atom at point r. This assumes that the
Van der Waals forces are additive (this is not gen-
erally true), and therefore that the total. potential is
proportional to the density. Equation (57) only holds
near the surface, i.e., roughly within a distance f of
the surface. The contribution to the transmission
coefficient from the per'turbation (57) is

We assume that the magnitude gp and the phase P of
the strain are constant at all points within some dis-
tance g of the surface. Then, if ( is considerably
bigger than the range parameter a in the Van der
Waals potential the perturbation that acts on the heli-
um is just

pgcguo eA I

x 8(Ep+ p —E() (58)

This leads to the sum rule

o.„,~ 'd~= 0 Ug H, r 0 . 61
pscs

The experiments of Kinder and Dietsche show that
for transverse phonons in germanium the left-hand
side has a value greater than 1.17 [see (48)]. Most
of the phonons in this experiment were incident on a
(110) surface at near normal incidence, so the largest
value one can possibly expect for b is 1. We have es-
timated the expectation value of U~ H, f'rom the vari-
ous models considered in Sec, III. The results vary
from model to model, but the general conclusion is
that the probable value of the right-hand side is
around 0.02. It is most unlikely that it can be greater
than 0.1. Thus, the sum rule is still violated by the
experimental results. Note again that the use of the
sum rule electively preempts an explanation in terms
of pecularities of the states of the helium atoms,
since, for example, the expectation value of U~ H, is
not greatly aft'ected if it is assumed that tunneling of
the helium atoms takes place.

2. Clean but damaged surface
I

For a damaged surface some new possibilities arise.
The oscillating strain due to the incident phonon may
cause some atoms of the solid to undergo relatively
large displacements. These large displacements could

The magnitude of the strain at the surface is hard to
estimate. The simplest assumption is to consider that
the helium constitutes a very light loading of the sur-
face, and so the normal component. of the stress ten-
sor must vanish at the surface. With this assumption
the oscillating density change at the surface is zero
for longitudinal and transverse waves at normal in-
cidence on a surface of an elastically isotropic crystal.
The density change is also zero at a surface of an an-
isotropic crystal provided the surface is a high sym-
metry plane. For phonons which are not at normal
incidence, or which are incident on surfaces which
are not symmetry planes, the density change will be
given by Eq. (56) with

'Rp=»pQ/cs

where b is a numerical constant of order unity. Then
we have

mb2~
Xf&i(U, „,(r)[O&f'

pgcg3A 0
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lead to a much larger perturbation acting on the heli-
um than the simple perturbation caused -by the densi-
ty change discussed above. It is very hard to give a
serious estimate of this effect without detailed
knowledge of the typical state of a damaged surface.
The sort of displacement we are thinking of might ar-
ise from tunneling of a solid atom from one position
to another. Another possibility is the motion of
dislocations lying near the surface or intersecting the
surface. We have not attempted to estimate the
number of atoms moving in this way, and this
number must in fact depend in a sensitive way on the
details of the surface.

Dirty surfaces

The diScult question is —how dirty are the surfaces
that have been used in most of the Kapitza resistance
and phonon reflection experiments? Very little is
known about the surface in most of the experiments.
Generally, the surfaces have been polished in some
way (chemically or mechanically) and have then been
washed in a solvent (e.g. , acetone, alcohol, or water).
These surfaces will certainly not be clean in the
atomic sense.

For a surface covered by a single layer of small
molecules (oxygen, for example), one might antici-
pate a situation rather similar to a damaged surface,
especially if the layer is chemisorbed. One expects
that the majority of the adsorbed molecules would
move almost rigidly with the solid, and so one can
consider th'em as simply changing the effective poten-
tial seen by the helium system. However, there is
the possibility that some of the molecules could un-
dergo larger oscillations (e.g. , of the tunneling type)
and that these could couple energy to the helium.

Probably most of the surfaces" do have a
significant coverage of larger molecules. These ori-
ginate in the "cleaning" process or in subsequent han-
dling. These molecules will seriously affect the sum
rules and the results for the transmission coefficient

'

in at least two ways. Let us first consider the dirt
(Fig. 11) as a layer of elastic material of thickness L,
density pD and sound velocity cD. When a phonon of
frequency 0 is incident from the solid side of the
dirt, the dirt will move rigidly in phase with the solid
surface only if the phonon wavelength in the dirt is
very long compared to the dirt thickness. Otherwise
the oscillation is more complicated and the sum rules
do not hold, The simplest way to treat this problem
is to assume that the transmission into the helium is
still fairly small, so that the stress at the surface of
the dirt in contact with the helium is zero. Then it is
straightforward to show that if the amplitude of the
incoming phonon is uo, the oscillation of the surface
of the dirt has an amplitude

I

up ='2uo[1 —(1 —ZD/Zs) sin (0L/cD) j ~2, (62)

where ZD = pDcD and Z~ = p~c~ are the acoustical im-
pedances of the dirt and of the solid. If the dirt con-
sists of organic molecules, a reasonable value of pD is
a 1 gcm ', and cD might be 10' cm/sec ' for
transverse waves and 2 x 10 cm/sec ' for longitudi-
nal.

The dirt increases the oscillatory displacement seen
by the helium for all phonon frequencies, since it is
always true that

QD ~~ 2Qp (63)

A large increase in amplitude occurs if the dirt is
thick enough so that L is compareable to n cD/20
For a 5-K energy phonon this requires L -24 A for
transverse waves and 48 A for longitudinal waves.
These would be rather thick layers of dirt, but are not
inconceivable. Since ZD is considerably less than
Zs, Mp as given by Eq. (62) has large oscillations.
However, one expects that for actual dirty surfaces
the thickness varies considerably from place to place
and so it makes sense to average (in the rms sense)
uD over a range of thicknesses (or equivalently a
range of phonon frequency). The result of this
averaging is

(uD) = (2uo) Zs/ZD (64)

Thus, the mean-squared amplitude of the surface of
the dirt is increased by a factor Zs/Zo relative to the
mean-squared amplitude of the corresponding clean
surface of the solid. This factor- might typically be of
the order of 10. This enhancement, of course, only
holds for phonons for which mcD/20 is comparable
to, or larger than, the average dirt thickness. As a
specific example consider the measurements of
Kinder and Dietsche7 on germanium which we dis-
cussed earlier in the contest of the sum rules. For
transverse waves they found a transmission
coefficient of 0.6 in, the energy range 6—42 K. In
order for the enhancement effect to work down to 6
K, the dirt layer must have a thickness of at least 20
A. Germanium has Z&=1.48 x10 gcm sec ',

I

Solid Dirt Helium

phonon

amplitude uo

amplitude uD

FIG. 11. Solid surface covered by a layer of dirt of thick-
ness. L.
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whereas for transverse waves a reasonable value of
Z~ is 10 gem sec . Thus, the 8 -sum rule Eq.
(52) now becomes

( ) 2d 2mNm 0.126 K ' (6S)

Note that the value for the sum rule is independent
of the acoustical impedance of the solid, and only
depends on the acoustical impedance of the dirt. The
experimental results of Kinder and Dietsche are not
inconsistent with this sum rule. Their data in the
range from 6-42 K gave a contribution of the left-
hand-side integral of 0.086 K ', which is less than
the sum-rule prediction for the integral over the com-
plete energy range. In fact, one can make the
stronger argument that the data are in reasonable
agreement with the sum-ru1e predictions. Below 6 K
other data6 (admittedly not measurements on ger-
manium) indicate that a(e) begins todrop off rapidly,
and so the sum-rule contribution in the energy range
0—6 K should not be large (certainly no larger than
the contribution from 6—42 K). Even if n remains
constant at 0.6 above 42 K the contribution to the in-
tegral above 42 K is very small because of the 6
factor. Thus a reasonable "experimental" estimate of
the left-hand side of the sum rule is 0.1—0.2 K '.
This is in rough agreement with our estimate of the

. right-hand side.
A second way in which the sum rules may be

modified is the following. If the surface is covered
with large molecules, it may be wrong to think of the
dirt and the helium systems as having a Qefinite
boundary. By this we mean that the dirt molecules
may not be closely packed, and therefore the helium
may penetrate between them. This should increase
the number of helium atoms to which energy could
be transferred, and raise the transmission coef5cient.
One expects that dirt with helium inside it would
constitute a highly absorbing layer for phonons.
Transmission of energy from the solid to the liquid
helium cauld be considered as a two-step process. A
phonon from the solid enters the dirt layer, and ex-
cites a helium atom inside the layer. This helium
atom then returns to its ground state and produces
another phonon (or phonons). This phonon may
then either be transmitted into the liquid helium or
may return to the solid. A similar ph~nomenological
picturt! has been put forward by Cheeke and Et-
tinger. "An important difference is that their absorb-
ing layer was the first layer of helium which they con-
sidered as a solid layer, ~hereas our hyer is the sur-
face dirt plus helium that it contains.

transmission of phonon energy across interfaces
between. solids and liquid helium. For perfect clean
surfaces the calculated phonon transmission
coefficient at low energies (a (20 K) is small (typi-
cally less than 0.1) and decreases with decreasing en-
ergy. At higher energies (e )30 K) the transmission
coef5cient -varies more slowly with energy. The
transmission at high energy is found to be fairly in-
sensitive to the strength of the Van der Waals poten-
tial binding the helium to the solid. The principal
dependence of the transmission at high energy
(30—60.K) on the properties of the solid can be
described roughly by the law

a~const/pscs . (66)

The value of the constant is roughtly 3 && 10' or
4 &10~ cgs units.

The transmission coeScient satisfies several sum
rules. These sum rules show that, given certain rea-
sonable assumptions, the transmission at low ener-
gies for ideal surfaces must be small regardless of the
physical nature of the states of the helium atoms
near the surface.

The only measurements that have so far been
made on very perfect surfaces are those of Weber
et al. 22 Their data is just at the one energy 14 K.
They find a very small transmission. It would be
very interesting to have data over a wide range of en-
ergies, to see if our prediction that the transmission
becomes larger above about 25 K is correct.

For dirty or damaged surfaces it is very hard to es-
timate the transmission because so little is known
about the surfaces. %e have argued that if there is a
thick layer (e.g. , 20 5,) of low-density low-velocity
material on the surface the typical results that are
found for dirty surfaces are understandable. Whether
or not the surfaces that have been used really are this
dirty should be capable of experimental verification.
The dirt on the surface has at least two effects. It in-
creases the amplitude of oscillation seen by the heli-
um, and it may also be penetrated by the helium to
form a highly attenuating system.

All of our calculations consider simply the excita-
tion of single atoms or small groups of atoms at the
surface. We have not attempted to calculate the type
of excitations that should emerge in the bulk liquid
helium (e.g. , as rotons or as phonons), or the energy
or momentum distribution of these excitations.
Also, we have not calculated the transmission into
hydrogen, or other materials. We hope to consider
these problems in a future paper.
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