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Effective mass of self-trapped electrons in gases
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The effective mass m~ of self-trapped electrons in gases is calculated, and used to estimate the
translational contribution —(3/2) kT In(me/m) to the free~cue'rgy difference between self-trapped and free
states for electrons in helium gas. %hen added to the free-energy difference between stationary self-trapped
and free states this translational contribution has the effect of converting metastable stationary self-trapped
states into stable moving self-trapped states.

I. INTRODUCTION

An electron in thermal equilibrium with a dis-
ordered condensed system with which it repul-
sively interacts can form a quantum-mechanical
localized state. In this state, the electron, by
pushing away atoms of the condensed system,
effectively digs its own well, falls into it, and
becomes self-trapped.

Necessary conditions on temperature, density,
and electron-atom interaction strength for having
such self-trapped states in gases have been cal-
culated by many authors, ' ' in various approxi-
mations. A common feature of these treatments
is that free energies are calculated for a station-
ary self-trapped state, i.e., in its center-of-mass
frame of reference, thereby omitting contribu-
tions from translational 'motion to free energies.
The density of translational states depends on
the particle mass, and the effective mass m*
of the moving self-trapped state, which receives
contributions from the inertia of the gas atoms
it sets in motion, is expected to be considerably
larger than the free-electron mass m. The dif-
ference in free energies between self-trapped
and free states due to translational motion is

,'kT in(me/m), f—avoring the formation of the
trapped state beyond those considerations involved
for stationary states. So the necessary conditions
on temperature, density, and interaction strength
for having self-trapped states in gases are mod-
ified by including translational motion. In this
work, we estimate the effective mass m* for
self-trapped states, and find that inclusion of the
term —,'kT ln(m*/m) lowe—rs the free energy of
trapped states relative to free states, by an
amount sufficient to convert a region of density
and temperature in which stationary self-trapped
states were previously found to be metastable
into a stab1e region for moving self-trapped states
states.

II. CALCULATION OF m~

The Helmholtz free energy for the formation
of the stationary (V =0) trapped state of lowest
energy in an ideal, noninteracting gas is'

E, = d'r I'2m V Or '+gpor Or

p.(r) =pe """'
—(8'/2m)&'Po(r) + pg'e ' o(' lac(r) = Ego(r) .

(2)

(3)

Exact numerical solutions to Etls. (2) and (3)
have been obtained in Ref. 8, leading to values
for E', tobe compared with Ez=pg for a free
electron, to determine conditions under which
(P, ~ P~) the self-trapped state is stable. Since
p,(r) and gc(r) do not depend on time, the trapped
state is stationary in these calculations.

In this paper, we impose a uniform velocity V
on the self-trapped state, and find the new Helm-
ho1tz free energy E, in the form E, = P,'+ —,'nz*V',
defining the effective mass m*. This effective
mass m* will be found to be connected with a dis-
sipative phenomenon via the gas diffusion constant
D [see Eti. (31)]. Therefore it is clear that to
maintain the velocity V constant, a steady elec-
tric field is necessary to provide the energy
necessary to maintain the diffusion, arid we as-
sume such a field to be present.

First the electron ground-state wave function
Pc(r) is replaced by g(r - vt), representing a
uniform center-of-mass velocity V for the self-

+kTp, (r) lnp, (r)/p]

with m the electron mass, g an interaction
strength (dimensions of energy-volume, g =2ttaa'/
m for electron-atom s-wave scattering). The
fluid density p,(r) and the electron wave function
gc(r), determined by extremizing E, are, with
P =1/kT

19 1351 1979 The American Physical'Society



H. A. GERSCH

trapped state. This uniform velocity alters the
gas density from p, (r) to a new function, which
we write

p(r, t) =p(r —vt)+5p(r, f) . (4)

The first term in Eq. (4) represents the adiabatic,
thermodynamic equilibrium response of the gas
to the motion of the electron, while 5p(r, f) is
the dynamic response influenced by thermal dif-
fusion processes. V/e will find the trapped state
free energy I'& to depend quadratically on 5p, so
that if we calculate 5p from linear response the-
ory to terms linear in velocity V, we wil. l get the
dependence of E& on V', and hence find the ef-
fective mass. Making the replacements

y,(r)- y(r -Vf)

+ k Tp( r —Vt) Inp( r —Vt)/p]

+ d y5p r t g r —Vt+kTlnp r —Vt p

p,(r)- p(r —Vt)+ 5p(r, f)

in Eq. (1), E, up to terms quadratic in 5p is
given by

d'r 5 2m 6 r —Vt 2+gp r —Vt ' r -Vt

5p(k, (()) = g(k, e)V(k, (d) .
Here, V(k, &u) is the wave-vector, frequency de-
pendent perturbation

V(k, w)= jd r f dig('(r-Vt) e' 'e'", (10)

which produces 5p(k, ar), and y(k, ~) is the gen-
eralized susceptibility, or linear response func-
tion for the gas. ' To calculate the free energy I',
up to terms of order V', it is sufficient to ex-
pand the response function in powers of fre-
quency:

g(k, (d) = g(k, 0) + [dent(k, (u)/d(u], &u+ ~ ~ ~ .
Taking into consideration that the real part of X

is even in v, while the imaginary part of g is
odd in &u, we see that, in Eq. (11), the first term
is real, while the second term is imaginary,
representing energy dissipation in the gas. The
first term, g(k, 0), simply corresponds to the
first-order approximation to the static response
of the gas to the moving electron, which is al-
ready contained in the term p(r —Vt). To see
this, calculate 5p(k, (d) using just this term,

5p(k, &u) = y, (k, 0)V(k, a&),

which gives the space-time density fluctuation,

+ J' d 'r[5p( r, t)]'/p( r —Vt) .

(6)

Since p(r -Vt) represents the adiabatic response
to the moving self-trapped state, it satisfies an
equation similar to Eq. (2)

pe-()g()2(F vt)

H7 (r -r')

For a fluid, the behavior of g(k, 0) for small
wave vectors k is known to be"

(13)

so that the term linear in 5p in Eq. (5) disappears,

Z, = J/day[(a2/2m)[V(I(r Vt)['—
+gp( r —Vt)g'(r —Vt)

+ kTp( r —Vt) lnp( r —Vt)/p]

+ d'yap r, t ', p r-Vt 7

In this expression I"
& is regarded as a functional

of g(r —Vt), since p(r —Vt) is already determined
by Eq. (6) in terms of (j)(r -Vt). Left to de-
termine is the dependence of the fluctuation part
5p(r, t) on (I)(r —Vt). This we do using linear
response theory, assuming 5p(r, f)« p(r —Vt).
In terms of the wave-vector-frequency trans-
form of 5p(r, t),

limy(k, 0) =-p/mc',
/

where c is the isothermal sound velocity. For
the ideal gas, ca=kT/m, lt(k, 0)- -p(8, and Eq.
(13) gives

5p(r, f) =-p@P(r -Vf). (14)

Comparing this with the relation

2p(r -Vt) =e ~~ ' ' =1-p@P(r -Vt)+ ~ ~ ~,

5p(k, (u) = [dy(k, (u)/d(u], (dV(k, (u)

we see that the term X(k, 0), which yields the
static response to the moving electron in linear
response theory has already been included in
p(r -Vf). Proceeding to the next term in Eq. (11),

5p(k, (()) = Jl d'r dt 5p(r, f) e'"' e '"',

we have the first order, or linear response

and writing g(k, &u) in terms of real and imaginary
parts, y =X'+iy", we have, as previously re-
marked
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dX 't dX"'I
(de~0 d+ ) p

The imaginary part g" is obtainable from S(k, (d),
the dynamic structure factor for the gas, '

]t"(k, &u) =-s(1- e )S(k, &u)

so that

C, =sPpS(k, 0) .
Then the space-time density fluctuation from this
term is

i)p(r, t) =i(2e)'fd'2 fde teC V()e, te) e' ' (12)

The integral over &u in Eq. (19) may be written

and, expressing V(k, &) in the form given by Eq.
(10),

d&u (2)V(k, &u)
e'"'

= -2mg — d»r' e'"' ]([)2(r' —Vt)dt

=2m&g d'x'e' ' V ~ V' ' r'-Vt,
1

r

in which the gradient operator is taken with re-
spect to r'-Vt. Inserting Eq. (21) into Eq. (19),
and replacing r'- Vt by r",

f[p(r, t) = 5p(r —Vt)

=-(2lr) 'd f d r"[V VP'(r")] Jl d'kC exp[-ik (r-Vt-r")], (22)

so that the density fluctuation 5p is stationary in
the coordinate system which moves with the self-
trapped state. Equation (22) provides the desired
connection between 5p and P, and when inserted
in the last term of Eq. (7) gives the free energy
E, as a functional of the electron wave function l[).

Minimization of E, with respect to P then pro-
duces the Schrodinger wave function for the
moving electron. Comparison of Eq. (1) for the
free energy 5, of the stationary electron with
Eq. (7) giving E, for the moving electron indicates
that (t)2(r) and p(r —Vt) satisfy different Schro-
dinger equations, because of the added fluctua-
tion term in Eq. (7). Were this term not present,
g(r-Vt) would satisfy the same Schrodinger
equation as (t)0(r), Eq. (3), indicating It)(r-Vt)
=)t),(r -Vt), and the shape of the self-trapped
state would remain undistorted as it moves through
the gas. We now argue that such shape distor-
tions can be safely neglected for sufficiently
small velocities V, when the last term in Eq. (7)
is smal. l. Since this term may then be regarded
as a perturbation, and since it depends on V',
we will have [t)(r -Vt) =P,(r-Vt)+O(V'). Now

E, is an extremum for P =[t)0 (in the absence of the

1 Dk'
2 +) 2 (Dp2)2 2 (23)

where D, the diffusion constant depends on the
interactions between gas atoms. It may at first
glance appear unjustified to have earlier treated
the gas atoms as noninteracting in calculating
free energy E&, and now to use a response func-
tion characterized by these previously neglected
interactions. However, this merely reflects the
circumstance that although these interactions

fluctuation term), so changes in P of the order
5$ =P —g, will produce changes in E, of the order
(5g)2. Including fluctuations produces a 5g pro-
portional to V', and a 5E, proportional to V4,

and hence negligible for small V. Therefore the
wave function for the moving trapped state
g(r —Vt) can be taken as the (known) displaced
wave function P(r -Vt) =g,(r —Vt) for the station-
ary trapped state in Eq. (I) for E, and as well in
Eq. (22) for 5p(r, t). It then remains to charac-
terize the gas response function C» in Eq. (22).
The dynamic structure factor S(k, ~) for a gas in
the small k, ~ regime is known to be a I orentzeian

representing thermal diffusion':



H. A. GERSCH 19

make only very small corrections to equilibrium
properties, they are nonetheless important in
determining the thermal diffusion. From Eqs.
(23) and (18) follows

uniform density p for the restricted range of
distances for which Eq. (29) is valid, ~r -Vf [ &R.
Then integration yields the result

C» = Pp/Dk', (24) 3x3 R lD (31)

and the integral over C» in Eq. (22) is

d'k C» exp[ ik-~ (r —Vt —r")]= 4mPP
rll p

(25)

resulting in the following expression for the fluc-
tuation 5p:

I

(26)

(27)

integrate over polar angles of r", and obtain

-2Ppg V ~ (r —Vt)
3rD [r -Vf j'

x r'" g'(r") dr" .
d~ I I 0

,0

Integration by parts then gives

5p( vf) . Ppg v'( -vf)
2m'D

i r —Vt i'

(28)

(29)

The difference in free energies between a moving
and a stationary self-trapped state, from Eqs.
(1) and (7) is

= -m*V' (30)

Here we can safely replace po(r - Vt) by the

5p(r —Vt) =, d'r"

This gives the density fluctuations in the gas out-
side of the moving self-trapped state. It carries
the same restrictions for validity as the Lorent-
zian form for S(k, &u) in Eq. (23), namely the
distance )r —Vt( should be outside of the trapped
state by at least a mean free path for atom-atom
collisions. For smaller distances, the gas atoms
respond more l.ike free particles, and a simple
calculation enforces the expectation that the con-
tribution to 6p from this free-particle region is
negligible. However, because of this rather ill.-
defined lower liinit on ~r —Vt~ as well as the
ambiguity involved in defining the boundary of the
self-trapped state when the density profile around
the electron is by no means sharp, we can only
estimate the size of 5p. Consistent with these
constraints, we assume (r —Vtj» (r"[; approxi-
mate the denominator in Eq. (26) by

/r —Vt —r"
/

=- [r —Vi) '
] 1+

r" ~ (r- Vt)~
r-

Accounting for the translational motion of the
electro@., the difference in free energy of self-
trapped and free-electron states will be given
by -»kT ln(m*/m).

III. NUMERICAL ESTIMATES

Numerical estimates are now made of these
results for self-trapped electrons in helium gas,
along the stable limit line, and summarized in

Table I. In Ref. 8, values of gas density p and
temperature T at which the self-trapped state
becomes stable (P,'= Pz ——pg) were shown to be

,given by (Eq. 4.33 of Ref. 8)

(4xk) ~g~~(2m/@ )3~~p»~~/7' = l l 605 (32)

For application to helium gas we use a scattering
length a ing =2xak /m corrected for multiple
scattering by a Wigner-Seitz method" (a- 0.62 A

as p-0). To calculate an effective radius R, for
the self-trapped state, we define R, as the clas-
sical turning point for a gas atom in the repul-
sive potential gg20(R), gag(RO) = ,kT. Since —the

density profile around the electron is p(R)
= p exp[- pggo(R)], this definition of Ro requires
p(R, ) = p e ", Figure 5 of Ref. 8 gives the density
profile along the stable limit line as a function of
a dimensionless length z = (2mpg/k')' 'R, and
indicates that p(z, ) =pe "corresponds to
z, =1.7, or R, =19.3/vp A, where p is the gas
density in units of 10" cm'. As previously re-
marked, the distance R appearing in Eq. (31) is
to be taken equal to 9, increased by a mean free
path l, for which we use" l = (-,'x)~'(1/4pa)
=—10.45/p A for a He-He cross section o'=—30 A'."
This leads to the values of R given in the third
column of Table I for four values of p and T
along the stable limit line. Values of the diffusion
constant D for helium gas at these densities and
temperatures, obtained from experimental mea-
surements of viscosity q,"using the approximate
relation D = rl/Mp, are given —in the fourth column
of Table I. As a cheek on the self-consistency
of using the linear response theory to calculate
5p, which requires 5P/p&&1, we calculate the
maximum value for this ratio, which, according
to Eq. (29) occurs for r -Vt =R, and in the direc-
tion of V. Results are given in the fifth column
of Table I, with V measured in cm/sec, and
indicate a satisfactory smallness of 5p/p for
speeds V up to thermal velocities of helium gas
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TABLE I. Estimates of effective mass m* and related parameters for four sets of p, T val-
ues along the stable limit line for stationary self-trapped electrons.

T ('I) p (10 ~ cm ~) D (10 3 cm /sec) R (L)
10' ((5p)

p

3 &T m*
ln

2 pg ply

10
20

- 30
40
50

2.0
2.9
3.6
4.3
4.8

1.64
1.86
1.89
1.93
2.03

18.8
14.9
12.9
11.6
11.0

3.0V
2.1V
1.8V
1.7V

1.4V

20.8
14.8
13.9
13.2
11.2

-0.26
-0.35
-0.41
-0.46
-0.51

atoms, V = 10' cm/sec. The sixth column of
Table I gives values for the effective mais m*
as fractions of helium mass M, obtained from Eq.
(31). These values are somewhat smaller (by

20%%uq) than the hydrodynamic estimate of one-
half the mass of atoms excluded by the trapped
state.

We now estimate the contribution to the dif-
ference in free energies between self-trapped
and free states, due to translational motion in
the absence of an external. electric field. Be-
cause of the dissipation, the average velocity V
of the self-trapped, .state now decays with time to
zero, starting from any assumed initial value,

50.

40

10-

0 1 2 3 4

p(10 /cm )

FIG. 1. Solid line is the density-temperature curve
for the transition to the self-trapped electron state in
Quid helium, obtained from Eq. (32), using the numeri-
cal factor 9.49 in place of 11.6. The triangles represent
experimental points denoting isothermal measurements
(Hefs. 2, 4, 15) of mobilities of 10 ~ of the semiclassical
value for electrons in plane-wave states (see Hef. 7).

but according to equilibrium statistical mechan-
ics, due to random fluctuation forces, the mean-
sguare instantaneous velocity (v'(f)) goes to its
eguipartition value (v'(f))- 3kT/m*. Assuming
that m* in this equil. ibrium result is the same as
that we calculated under steady state c-onditions,
we get the values of 2(kT—/pg) ln(m*/m) given
in the last column of Table I, representing the
translational contribution to the difference in free
energy of self-trapped and free states, in units
of pg. Al.though the numerical estimates involved =

in obtaining m* are rather crude, the insensitivity
of the factor ln(m*/m) to these uncertainties
implies that these free energy estimates should
be correct at least in regards to order of mag-
nitude. Previous calculations, which omitted the
translational contribution indicated a metastabl. e
region for self-trapped stat(' s, where P& had
a local minimum, but with minimum value l.arger
than E& = pg for a free state, by about 0.04pg.
(See Fig. I of Ref. 8.) From the values in Table
I for the translational contribution to the free
energy, it is clear that these previously found
metastabl. e states are now stable. The effect
is to increase the region in the p, T plane where
self-trapped states are favored to include the
previously designated metastable region. As
shown in Ref. 8 this amounts to replacing the
numerical factor 11.605 in Ec(. (32) by 9.4905, ,

thus increasing the maximum temperature T at
which self-trapped states exist, for a fixed den-
sity p, by about 22%. In Fig. 1, the tempera-
ture-density curve for the transition to the self-
trapped state is compared with isothermal mea-
surements of the density at which the electron
drift mobility sharply drops 2, 4, i5 The quoted in
crease in theoretical maximum temperatures for
self-trapped states upon including translational
motion is seen to result in a good fit between
theory and experiment.

Finally we note that the effective mass m* ap-
pearing in the equipartition result (v'(f)) = 3kT/m*
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has been measured in He at T =4.2 K and
p=2x10' em ' to be in the range 3M m~~ 5M,
where M is the mass of a'He atom. " These
values appear to be about 5 of the estimates of
m* given in Table I, which will tolerate some re-
duction (for example by increasing the distance
f in R =Ra+i to R=R, +2l, say), but nothing like
a factor of 5. It appears possible that the correct
value for m~ in the equilibrium free energy may
be substantially less than the value for m* cal-
culated for a steady average velocity V. Namely,
the mass m* appearing in the equipartition result
(v') =3kT/m* should be determined by the inertial

response of the self-trapped state to random col-
lisions with the gas atoms, and these may occur
too rapidly for the full steady state diffusive flow
to be set up around it, implying a reduced value
for the equipartition m*.

However, even a severe reduction of the values
of m* appearing in the term —~kT ln(m*/m) by as
much as 5 of the values quoted in Table I does

' not alter the conclusion that metastable self-
trapped states are converted into stable states
upon including translational free energy contribu-
tions.
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