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Theory of ESR dipolar splitting of a spin pair in the presence of avalanche phonons
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The ESR spectrum of a pair of paramagnetic spins S = 2, interacting via dipolar magnetic

forces, is calculated in the presence of an incoherent phonon avalanche, which is coupled to the

spin pair by linear spin-phonon interaction. The problem is approximately solved by a Green's-

function approach. Two cases are discussed, the first for an infinitely narrow phonon spectrum,

and the second for finite bandwidth of the avalanche phonons. When the ESR frequency falls .

out of the avalanche band, the spectrum of the pair is shown to consist of two lines shifted from

the 'no-avalanche resonant field and more closely spaced than in the no-avalanche situation.

When the ESR frequency is within the avalanche band, a sharp decrease of the ESR intensity is

expected. These results are interpreted in terms of ac Stark shift and of screening of dipolar in-

teraction by the avalanche phonons. Their relationships to electromagnetic power narrowing of
ESR lines and to the "magic angle" eft'ect in NMR are discussed. Finally the theoretical results

are examined in connection with phonon-avalanche expe'riments on Ce +-doped lanthanum

. magnesium nitrate.

I. INTRODUCTION

Phonons in solids, under suitable conditions, are
able to cause screening of electrical charges, and in
fact one of the most striking effects of this screening
is superconductivity in metals. One may inquire if
phonons could also screen dipolar interactions and
look for physical effects which are likely to be related
to this screening. One of the most common forms of
interacting dipoles in physics is a set of magnetic
atoms embedded in a solid matrix; usually the mag-
netic dipolar interaction is not the only source of in-
teraction among the atoms, at least if their magne-
tism is of electronic origin, but if exchange and lattice
strains are small it has good chances of being a dom-
inant mechanism at ordinary temperature. On the
other hand, it is well known that magnetic dipoles of
electronic origin can interact with lattice vibrations in
a crystal via the so-called spin-phonon interaction; so
one may expect that, owing to absorption and emis-
sion of phonons, an indirect interaction sets up
between different magnetic dipoles which might inter-
fere with the ordinary coupling, manifesting itself as
a screening of the magnetic dipolar interaction. In
fact a coupling due to absorption and emission of vir-
tual phonons has been previously shown to be

effective between the atoms of a paramagnetic pair',
this coupling is likely to show up at low temperature.
We have recently started an investigation of the
screening of dipolar interaction in a paramagnetic sys-
tem by very-high-temperature phonons, such as
those which might be emitted in a relatively narrow
band during a phonon avalanche, ' We found the ex-
pected effect which turned out to be describable in

terms of an effective dipolar coupling constant and of
an effective gyromagnetic factor', the unitary
transformation used to this. aim, however, limited the
investigation to the case of an off-resonance phonon
avalanche, because of resonant divergences appearing
in the unitary transforming operators. The aim of
the present paper is to remove these diSculties from
the calculation of the ESR spectrum of the system,
and to present a more comprehensive account of the
phenomenon of reduction of dipolar interaction by a
phonon avalanche.

We consider a pair of neighboring spins, in a static
magnetic field along z, which are coupled to the lat-
tice vibrations of a host crystal by a direct spin-
phonon Hamiltonian in the rotating-wave approxima-
tion, and to each other by the truncated dipolar in-
teraction. This system is described by the total Ham-
iltonian ( t= 1)
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and look for the response of the system as a function
of coo. In particular, the imaginary part X" of the sus-
ceptibility is proportional to the microwave power at
frequency 0 absorbed by the'atoms. This power is
what is recorded in a typical ESR experiment. In the
absence of spin-phonon interaction (e„=0) two lines
should appear at ~0 = 0 +

4
a. Our aim is to see

how this situation is modified by coupling to
avalanche phonons.

We calculate the susceptibility by the well-known
Green's-function technique. In fact X"=—ImX and'

X ~ lim (((S' +S );(S+ + S+ ) ) )E o+;„

(1.3)

where X =X' —i X". We define the Green's function

where we have neglected the phase difference
between the two spins, under the assumption that
k (r, —r,) «1. The Larmor frequency of the spins
located at r[ and r2 in the lattice is denoted by coo in
(1.1) and the summation over k runs over a narrow
band of lattice modes of frequencies cuk whose aver-
age is near ~0, but does not necessarily coincide with
it. The spin-phonon coupling constant to the kth
mode is denoted by ~k, and n is the coeScient of the
secular part of the dipolar interaction, depending as
usual on ~rt —r2~, Neglecting in (1.1) lattice modes
out'of the avalanche band is justified because we as-
sume that they are scarcely populated: during a pho-
non avalanche the temperature of the phonons in the
hot band may rise to 10'—10'K.' Moreover we feel
entitled to adopt the rotating-wave approximation
(RWA) because we assume the average frequency of
the hot band never to depart very much from the
Larmor frequency coo. Available experimental data
on avalanche-phonon bandwidth seem to support this
assumption. ' Finally, we base the adoption of the
truncated Hamiltonian on our previous off-resonance
results, which show the negligible influence of the
energy-nonconserving terms in the present situation.

In order to pursue our investigation on the scret;, n-

ing we shall develop a theory of ESR of system (1.1).
In other words, we add to (1.1) a term describing a
small rotating electromagnetic field of amplitude h

and frequency 0 as a time-dependent perturbation

V(t) =gtish [(St. +SI)e'"'

In (1,4) E is a complex variable, while ~m), ~m') are
eigenfunctions of the total Hamiltonian of the sys-
tem, and E,E ~ the corresponding eigenvalues.
Moreover

—(1/KT) E
go e

is the partition function of the coupled system. Any
Green's function is characterized by a set of poles on
the real E axis, given by all possible differences
E —E of eigenvalue pairs. It is easy to convince
oneself from (1.4) and (1.3) that the poles of

(((st +s~);(st +s2)))„

E ((A;8))e = ([A,B])+ (([A,x];8))s (1.5)

where the single brackets ( ) denote thermal aver-
age. Equation (1.5) can be supplemented by another
equation of the same form for (([A,sC];8))E, and
iterating this procedure gives rise to an infinite chain
of coupled equations. This may not seem v'ery help-
ful, but if one is able to approximate a few of the
Green's functions in terms of the preceding ones in
the hierarchy, it is possible to obtain a finite number
of linear equations with the same number of Green's
functions as unknowns. The above approximation is
known as "decoupling procedure, " and it is usually a
source of conceptual difficulties, because there is no
established simple rule to make approximations like

(([A,se];8))e ——) (E) ((A;B))e

In order to have a guidance as to the type of decou-
pling suitable to our needs, we shall first discuss a
model simpler than that described by (1.1), where we
are able to adopt a satisfactory decoupling procedure
which was devised for a different problem. This is a
model with just one phonon mode and a spin pair.
We shall successively apply this decoupling procedure
to the multimode case in Sec. III. From now on, we
shall drop suffix E from the Green's-function syrn-

for real 0 and as a function of ~0 correspond to the
position of lines in the ESR spectrum of the system.
Since eigenfunctions and eigenvalues of the complete
system are usually unknown, it is not possible in gen-
eral to calculate the relevant Green's functions direct-
ly from (1.4). It is a rigorous property of any
Green's function (1.4), however, that
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bol, except where it can be useful as a reminder of
the proper functional dependence.

II. SINGLE-MODEL CASE

%e consider a model of a pair of spins interacting

via their dipole fields and coupled to a highly popu-

lated phonon mode. This model can also.be solved

by less exotic techniques, but it shall permit us to
develop a decoupling procedure which we shall suit-

ably extend to the more complicated multiphonon

case. The Hamiltonian of the system is

X cpp($, '+S, ) +cubtb

+ —, p[b($' +S') + bt($' +$')]

+a[s,is,'- —,(s+'s'+s's+i)] . (2.1)

In order to calculate the ESR spectrum obtaiinable by
the small field (1.2) the relevant Green's-functions
equations are

(E —cpp) «(S' +S );(S+ +S+)&)

=—(1/n) &(Si+S,')) —p«b(si+S, ');(S+ +S+)» + «[(S' +S'),age];(S+ +S+)&)

(E —cp) «b(S, +S )'(S+ +S ))&

-(1/2n) &b(S+ +S+~)& + e[&&—b(~S' +$ );(S+ +S ))& —&&btb(S' +S~)'(S' +S )&&

+ «(S,i+$,')(s' +s');(s,'+s,')»],
(E+«)p —2cp) «b (S+ +S );(S+ +5 )&)

= p[«b b (Sz' +Sg);(S+ +. $~)&& + &~'b($++SI)(S' +S );(S+ +S+)&)]+&&[b (S+ +S+),Rg];(S+ +S+)&&

(2.2)

Neglecting for the moment terms in 3'.~, this set of
three equations can be approximately closed by n'ot-

ing that the strength at the poles of a given Green's
function depends on the number of b operators ap-
pearing on its left-hand side. Consequently we shall

neglect

«b(s~i +SI)(S' +Si);(S~i +$+i)&&

in the third member of (2.2) and

where

Gi «(S' +Si);(S+i +S+i)»

1/2

Gi — «b ($, + SP); (S~i +SI )) &

n

Gi ——«b~(s i +Si);(S~i +5+i) &&
n

(2.4)

«(s i+.$,') (s' +s');(s,'+ s,')»
in the second member. Moreover we mak. e a first

decoupling by changing operator btb into i.-number n,

the occupation number of the phonon mode, where-

ever it occurs in (2.2). With these approximations,
and in the absence of dipolar coupling, Eqs. (2.2)
yield the closed system

(E —cpp) Gi + p Jn Gi =——&(S i + S,i))
J2

1 1

2
aJn Gi + (E —cp) Gg+ pJn Gi

2
1/'2

&b (S+ +SI)&2v ff

The poles of the various G, appearing in (2.3) are

given by the roots of

E —cup (1/J2)aWn . 0

(1/%2) aJn E —cp (1/J2) aJn 0 (2.5)

0 (1/J2) pJn E+cpp —2cp

which can be treated as an eigenvalue equation,

yielding

E+ co+A, Ep co, E o) —A,

p Jn Gi+(E+cpp —2')Gg =01

2
(2.3)

A - [(cop — )'+cps'n]'" (2.6)
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as eigenvalues, with associated eigenvectors

—,
' (I +cose)

a = —(I/J2) sine

—, (1 —cose)
1

(I /W2) sine

ap = cos8
—(I /W2) sine

—(I —cos8)1

a = (I/J2) sine
—(I +cos8)

(2.7)

where

A+= t (I +cose)(S' +S')
—sin 8(I/ Jn ) b (S,' +S )

—
—, (1 —cos 8) (I /n) b'(S+' +S+')

Ao=(1/v2) sine(S' +S2)

+cose(2/n) ' b (S,' + S, )

+ (I /W2) sine(1/n) b'(S+ +S+ )

A = —,'(I -cose)(S' +S')

+ sine(1/ Jn )b (S,( +S,')

—
2

(I + cos 8) (I /n ) b (S+' + S+ )

Operators (2.11) have the very useful property

[A, ,X] =E,A, + [A, ,X,]

(2.11)

(2.12)

where

sine=own /A, cose=(coo —cu)/A

Eigenvectors (2.7) can be used to assemble new
Green's functions

(2.8)

which can be used to write directly equations for I;
in the presence of dipolar coupling as .

(E —E )I

(—(1+cose)(S,(+S,') — sineb(S+ +S+))
2n 1l

+ (([A+,~gj;(S+ +S+)))

I ~ =
2

(I +cose) G( — stnHG2+
2

(I —cose) G3
1 1 1

2
(E-E,)r,

(—sine(S, (+S,') + coseb(S+'+S+'))

ra = sinHGt+cosHG2 — slnHG3
1 1

2 2 + (([A,,Hc,];(S,' + S„'))),
=

&
(1 —cose) Gt+ —sinHG2+ —(I +cose) G,

1 1

2

(2.9)

(E-E )r

(—(I —cose)(S,'+S,~) + sin8b(S+'+S+t))
2m n

which may be conveniently written
+ (([A,X,];(S,'+SI))) . (2.13)

I += ((A+;(S+ +5+)))

r, = ((A,;(s,'+s,'))),
r = ((A;(s,'+s,'))), (2.10)

A most delicate step is the decoupling procedure
which is necessary to express Green's functions

(([A;,Xg];(S+ +S+)))
in terms of the I s in order to close system (2.13).
%e use a procedure developed in a previous paper,
and begin by considering explicitly

(([A+scdj;(S~t +S+)))
-(t/EnE (uxr)E, (m (A+SCJm') (m'-~ (S+ + 5+)jm) —(m ISCqA+~ m') (m'((S+ +S+)

~ m)e —e
2~ZO mm

' E+E —E

(2.14)
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which we try to relate to

((A+;(S+ +S+)}}

(1/KT) E —(1/KT) E
e -e

2e'Zo m, m'

(([w,,ge,];(s,' +s,')})
(1/K—T)E (1/K-T) E

2~ZO mm'

{m(~,(m'} (m'((S,'+S,')m)
E+E —E ~

(2.17)

(m (a,(m'} (m'((S,' +S,') (m }
E+E -E

(2.15)

in the simplest possible way as

(([w, ,ge, l;(s,' +s,') ) }

=)((E){(A,;(S' +S'))) . (2.16)
/

Here )((E) is a c function of E which we wish to
determine approximately. We treat &q in (2.14) at
the lowest possible order in 0, , by keeping its diagonal
matrix elements only. Consequently we approximate

where3'. ~ are diagonal matrix elements of K~ on
the eigenstates of X—X~. In order to relate (2.17)
to (2.15) as in (2.16), we have to require that (2.16)
be a good approximation mainly in the neighborhood
of E =E+, which is the only pole of I+ in the ab-
sence of dipolar coupling, and presumably its most
important pole in the presence of a. In fact in the
neighborhood of this pole we have E ~ —E =E+,
consequently, even if we do not know eigenstates
(n, +), (n, 0), and (n, —)

ofhce

—fez, corresponding to
eigenvalues n~+E+, nco+Ep, and nco+E, we do
know that if (m) = (n, 0} then (m') = (n +1, +},
while if (m) - (n, —} then (m') = (n +1,0), because
only these two pairs of states satisfy E -E E+.
On the other hand, the matrix elements of Rq on
eigenstates (n, i } (i =+,0, —) are easily found by
transforming 3:d as

—,(3 cos'8 —1)

T 'SC~ T = u (3/4&2) sin8cos8
3 2
8

sin28

(3/4 J2) sin8cos8

——(3 cos28 —1)4

—(3/4 J2) sin8cos8

3 2sin28
8

—(3/4&2) sin8 cos8

-(3 cos28 —1)

(2.18)

by the matrix

a+ ap1 1

T= a+ ap2 2

a+ ap3 3

a 1

2a (2.19)

(ii) (m) =(n, -}and (m') =(n+1, 0};then

Xg =
8

u(3cos 8 —1)mm

SC g =—
4 u(3 cos'8 —1)

8(g ——u(3 cos 8 —1) =—i( . (2.20b)8

Seg =—
4

u(3cos'8 —1)1

Seg" =
8

u(3cos'8 —1)

Scg —lcd =
g

u(3 cos 8 —I) —+h, (2.20a)

obtainable from (2.7). We therefore conclude that
there are the following two possibilities:

(i) (m) = (/), 0} and (m') = (n+ I, +};then

Since 3'.d has been treated at the lowest possible order
in u, it should not cause mixing of states (n, /}, and it
should only shift their energies. These shifts are
likely to cause diN'erent values for E ~ —E in cases
(i) and (ii) above, and hence two slightly displaced
poles of (2.17) in the neighborhood of E -E+ in-
stead of one. Near one of them, vanishing of energy
denominators in (2.17) should emphasize the role of
terms with (m) and (m'} as in (2.20a); the opposite
should be true near the other pole. A little thought
yields the following decoupling
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(([A „gL'„];(SI +S2 )) )

—h. (E) ((A;(S' +S2))) = X (E)I', (2.21)

where

+I)I (E&E,)
(E)=

I I («E )
(2,22)

where

+I~I (E &E )
"-(E)= '-I)

I (E «)
I

Substituting (2.21) and (2.23) into (2.13) we find

(2.24)

Within the same approximations, an analogous pro-
cedure yields the following decoupling:

(([Ap,ged];(S+ +S+))) —0

(([A,X,];(SI +S,') ) )

—jr, (E) ((A;(S' +S,'))) =X (E)I, (2.23)

[E —E,—j,(E)]r,
(—(1 +cos g) (S,I + S,2) — sing b (S+' + S+2) )2' n

—= &R+) .

(E-Ep)rp

(—»«(S,'+S,') + cosH b(S' +S'))
—= (R p)

[E —E —j (E)]r

(—(1 —cosg) (S,' +S,') + sing b (S+' + S+') )2' II

-=(R ) (2.25)
In Fig. 1 the I"s obtained from (2.25) are represent-
ed as functions of E for fixed cop and co. The location
of their poles correspond to approximate eigenvalues
of the complete Hamiltonianse. Inverting Eq. (2.9),
we obtain

)

( ((S ' +S 2 );(S I + S 2 )) ) =—G I
———(1 + cos 8) I' + (1/ J2) sing I'P + —, (I —cos g) "-

I (—(I+cosg)2(S,I+S,') —(I/Wn)(1+cosg) sing b(S,'+S'))
4' E-E,- j,(E)

+ (—sin2g(S, I+rS2) +(1/Jn) singcosgb(S+ +S+))
E —Ep

(—(I —cosg)2(SI +S2) +(I/Jn )(1 —cosg) sing b(S +~S+))
E E ~ (E)

~ (226)

I'[E) „(l)" -slwl-,
I I
I I
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FIG. 1. Diagonal Green's functions along real E axis.
Poles are located at approximate eigenvalues of Hamiltoni-

an, and their position is indicated by dotted vertical arrows.
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Next we consider GI(E = II +i q), and assume
0 ) ~. It is easily seen that the only important term

on the right-hand side of (2.26) is the first, whose

denominator as g 0 takes the form

(0 —Ip) —[(pip —pr)2+ e2n]ji2 —ji,(II) . (2.27)

This denominator in fact may vanish as cop is varied

like in a typical ESR experiment. Since )+, as
defined by (2.22) and (2.20), is aiso a function of
pip —Ql, the zeros of (2.27) cannot in general be
found analytically. We shall assume that o. is small

enough, however, and put

(cop —rp)2 = (0 —pI)2 —e2n

in the expression for X+. The zeros of (2.27) are
thus given by

(II —~)2 & e2n

Moreover they coincide for

(II —«u)2 = 'e2n—
2

(2.29)

(2.30)

= (II —
pp

—1I.+) —e n

r

—3~ 12(II —pI)' 3& nI 20 —oJ + —6 N
8 (II —Ip)2

(2.2g)

We remark that, for small n, these zeros are real
only for
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From these results it is possible to predict the follow-
ing features of the ESR spectrum with 0 & ~ and
small e.

(i) If detuning 0 —«i is large enough to satisfy
(2.29), two lines should appear, almost symmetric
about the field

«ie = «i + [(0 —«i) —e n ] ' 2 (2.31)

This can be described as a shift towards smaller
values of the static magnetic field away from ~p- 0,
which is the value of the resonant field for ~ =0.
There is also a "ghost" doublet at

~o =~ —[(n ~)' e'n—]'~',

3~
4

I
fl —~l [(n ~)' e'n]'"— (2.32)

but for this doublet «ie & ei and cos8 & 0 from (2.8).
Consequently it should be much fainter than the first
(or "main") doublet because of intensity factor
(I +cos&)' in the first term of (2.26) and we shall
neglect it.

(ii) The splitting of the two components of the
main doublet is approximately given. by

[n- i) a)

FIG. 2. . Energy levels of single-spin —single-mode (e)
system for a=0 (dashed lines) and ~ &0 (continuous lines)
as functions of static magnetic field 0)p. Energy 0 & cv of
monitoring photons falls within "forbidden" gaps of ampli-
tude eon

and it vanishes when (2.30) is satisfied. This effect
can be attributed to screening of the dipolar interac-
tion by phonons.

(iii) If detuning fI —ei is small so that (2.29) is not
satisfied, the zeros of (2.27) move into the complex
~p plane out of the real axis and the ESR spectrum
does not display poles, as a function of ~p. This
eA'ect can be qualitatively understood in terms of the
single-spin —single-mode model of Fig. 2. The un-
coupled (e=0) energies of the S = (spin 2 )+
(«i mode) system are represented by dashed lines as
functions of Larmor frequency cop of the spin in the
static magnetic field along z. If the ESR frequency 0
is slightly larger than co, resonance occurs for Np = 0,
as shown in the figure for the n-phonon subspace.
When the spin-phonon coupling is turned on (e %0),
levels are changed as shown by the continuous lines,
and forbidden gaps of amplitude eon are —created.
It is easy to realize that, unless (2.29) is satisfied, the
system is out of tune with 0 and cannot absorb this
frequency for any value of ~p. This explains the
disappearance of the ESR lines predicted by the
present theory, at least within our approximations.

For 0 & ~ the important term on the right-hand
side of (2.26) is the third, whose denominator takes
the form

(ft —ei) + [(«io —0))'+ e'n]'~' —X (0)

The argument goes through as previously, except that

now the main doublet is centered at

eie = «i —[(0—«i)' —e'n]'~'

The splitting of the two lines of this doublet is again
given by (2.32), and the same considerations as be-
fore can account for its disappearance when (2,29) is
not satisfied.

III. MULTIMODE CASE

Kp+Ki p

see = eie(sg' +S, ) + «i $ bk bk
k

+ —,
'

~ X[b„(s,'+s,') +b„t(si +s2)],
k

~ i = x(el' Qi) bk bk + SCy
k

(3.1)

where we gave approximated by neglecting the small
dependence of ek from k within the narrow hot band.
The coupled Green's-function equations relevant to
our purpose are

%e are now ready to tackle the multimode problem
of (1.1) which we write in the form
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(s —,& (((s' +s');(s! +s,')) ) =—((s,'+ s,')) —.( x b, (s,'+s,');(s,'+s,':&))
k

+ (([(S' +S'),3.,];(S,) +S,')»,
1

g b„(s+ s):(s +s ) = pe (s +s ) +s~a' gbq (s +s );(s'+s )))
k k ~ b !

1

y, b„(s' +s');(s,'+s,')&)
k k

( (

+m(((S)+S,2)(S' +S');(S' +S,'))&

1

+ Xb, (s, +s, ),~, ;(s, +s,))),
k

! )

(s+ p
—) ) $b, (s", +s,');(s,'+s')))

k
(

(3.2)

)

1 r

=s $ ebb, (s,'+s,');(s,'+s,') + b& $b, (s,'+s')(s' +s');(s' +s,')))
k k k

+ b„s' +s2,3.&, s' +s2
k

b

where gt is the number of modes in the hot band.
We remark that in the absence of X i the structure of
system (3.2) is similar to that of system (2.2) in the
same limit. Moreover, under the conditions of pho-
non avalanche, we expect' n/~ && 1, where n is the
tota1 number of phonons in the hot band. Conse-
quently we may neglect the 9t-dependent terms in
(3.2). We also wish to approximate

f

have the same frequency in 3'.0. Moreover the con-

tribution of these processes to the residues must

disappear in the limit of an infinitely narrow

avalanche band; so we expect this contribution to be

negligible if the hot band is narrow enough, which

should always be the case for a phonon avalanche. 4'
Consequently we feel entitled to use approximation

(3.3) in (3.2) which, upon neglect of sc&, takes the

form

bk bk 0; S++S+
(

—n ((0;(Si +S+)» (3.3)

(E —(go) G, + (1/ J2) eJn G2 =—(1/sr) ((S,' + S,') &

(1/ J2) EJll G) + (F- —(0) G2 + (1/~2) k~«3

where 0 is an operator in (3.2). This is not a trivial
approximation, since it involves neglecting all terms
containing

(m ~bktbk O[m'& (m'[(Sb. +S+2) [m&
/i Wk'

E+E —E ~

as a factor in the expression of the Green's func-
tions. In fact, processes of absorption and emission
of photons in diA'erent modes might interfere and
contribute fairly substantially to the residue of the
exact Green's functions at their poles, as thoroughly
discussed by Swain' in connection with the problem
of resonance fluorescence. We remark, however,
that these terms should not change the location of
the poles of our Green's functions, as long as the
eAects of gc i are assumed negligible, since all modes

' 1/2

Xb„(S' +S ))27K n

(1/ J2) eJn G2 + (F. + (0o —2cs) G3 =0

where

G, = &((S' +S');(S,'+S,')»,
t i/2-

G, = — g b„(S,'+ S,');(S,' +S,')
n k

12

(;,=—' Xb, (s, +s, );(s, +s,))) .
n

(3.4)

(3.5)
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System (3.4) is essentially the same as (2.3), and it
can be solved by the same technique used in the pre-
vious section. We thus arrive at the "diagonal"
Green's functions

A =
z (1 —cosH) (S' +S')

+sinH gb» (S,'+SP)

(E —E,)r, = (1/2~) (—(1+cosH) (S,'+ S,')

t

sinH gb» (S)+SP)&
n k

+(([A,,sc ];(S,'+S,')))

(g —Ep)1 p=(1/W2n) (—sinH(S, '+S, )

2——, (1 + cos 8) —$ b» (S+' +S+')
n

It is easy to show that unitary operator

T =exp X [b„(S+ +S+) —b„(s' +S )]
2 n

(3.8)

can be used to obtain (3.7) as
1

+ cosH X b„(S+ +S+))
n k

+ (([Ap, ge, ];(S+ +S+))),

(3.6)

1/2
2

n

2

$ b» (S+ +S+)

(s' +s')
A+

$b» (S,'+S,') T = Ap (3.7a)

(g E ) f' = (1/2~) (—(1 —cosH) (S,' + S, )
1

+ sinH gb» (S++S+))
n k

within the same approximations as used in decou-
pling from (3.2) to (3.4). Since we have

[A, , ep] = E,A,

+ (([A,ae, l;(S,' +S,')» ,

where the E, 's are still given by (2.6), but with a

diFerent meaning for co and n as discussed above,

and where sin8 and cos8 have been chosen to be for-

maily the same as (2.8). Also the 1' s are formally

the same as in (2.10), but

A+ ———,(1+cosH)(S' +S-')

—sin 8 $ b» (S,' + S,')
n

——' (1 —cosH) —X b» (S+ + S+)
2 n

as in (2.12), we may use T to express eigenfunctions
}m& of 3Cp in the Green's functions in terms of the
free-field eigenfunctions as

[ln. +) } [In, [}&}
[l., o&} =T {l.+1,=&},
[ln. -&} [In+2, [$&}

(3.9)

where [ln, ][)} denotes the ensemble of all degen-
erate eigenstates of the free-field Hamiltonian with n

phonons in the hot band and both spins up. Within
the mentioned approximations, operator Tin (3.9)
transforms this ensemble into that of the eigenfunc-
tions of 3'.0 relative to eigenvalue n cv + E+, which we
indicate by ll n, +) }. Analogously, (l n +1, ) }
represents the ensemble of eigenstates with n +1
phonons and

Ap ——(1/J2) sinH(S' +S )
~ 1/2 ,

+cosH — gb» (S,'+S,')
n

+ sinH —$b„(S++S+)1 . 1

U'2 n k

(3.7)

', (I}[)+I[»)

as a spinor part, while [l n + 2. [j) } is relative to
free-field eigenstates with n +2 phonons and both
spins down. These two ensembles are transformed
by T into [ln0)} and [ln,, —) } respectively, which be-
long to eigenvalues nco+Eo and nco+E of ~0.

Following the same lines as in Sec. II, for
i =+, Q, —we approximate:-
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(((~ + ).(s i +s2)
&& X ( m m') (~m'm' ~mm)

2&ZO mm'

(ml~, lm') &m'l(s,'+s,') lm)
E+E —E ~

(3.10)

in the neighborhood of E —E ~
—E —E;, where

lm) c {ln, 0)) and lm') c [In+1, +)}or lm) c [ln. —)) and lm ) c (In+1, 0)) (i =+);

Im) c (ln, +)}and lm') c (In +1, +)), or Im) c (ln, 0)) and lm') c (ln +1,0)}

Im) c [ln )» and lm') c {In+1,—)) (i =0)

Im) c {ln, +)) and lm') c (In+1, 0)) or lm) c (In, 0)) and lm') c (In+1, —)) (i = —)

(3.11)

We consider separately the two contributions to hagi
™—hei . As for the phonon part, it is evident from (3.11)

that the average number of phonons in states lm') is always larger than in states I m) by one. Therefore we

should expect always

(m
'

I $ ((ok —ru) b„bk I m ') —(m I $ (cok —c«) b„b„I m ) —elk —au (3.12)

where k' is the mode selected by a particular pair m, m'. The average of (3.12) over all possible pairs should van-

ish, however, since presumably the various pairs yield in turn as many positive as negative values of cok —~. On

this basis, we shall neglect contributions of the phonon part of 3'.
~ to 3.'~ —3-'~ . The problem is thus reduced

to evaluating Kd and St.'d . Using (3.9), we find the following results relative to the cases in (3.11): for i =+,

zi' '=((n+1, 77I)T 'ÃdT(In+1, 77)), Xi ={(n+1, l}T '3'dT{In+1, )}

or

I'i "=({n+2,=I}T 'st' T(In+2, ~&), 3-'i = ({n+2.jjl)T 'I'dT(In+2, jj));
for i =0,

~i..' = {(.+1, 77l}T-'~,T(In+1, »&}, ~i. = ((., 77I)T-'~, T(ln, 77&}

or

3C i = ((n+2, I) T 'Kd T(ln +2, )}, Jci = [(n +1, I) T '~«T(In +1, ))

or

3'i = ((n +3, jjl}T ~sed T(ln +3, jj)), 3'i ™= ((n +2, jjl}T 'XdT(In +2, jj))

for i = —,

se i
= ((n +2, l}T ~Ad T(In +2, )), I'.i = {(n, 77I}T 'J('«T(ln, 77)}

01

st'i = ((n+3 jjl}T '&dT[ln+3 jj)}. ski = [{n+1.=1}T '~.T [In+1.=&»

(3.13)
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T 'sCd T =
2

(3 cos'8 —1)3.'d (3.14)

Transforming the dipolar Hamiltonian by unitary
operator (3.8) with the usual approximations and
neglecting out of diagonal operators yields

similar to the classical splitting of the response peak
of two coupled oscillators of the same frequency. For
large detunings, we adapt (2.31) to the multimode
case as discussed above by putting

and (3.13) become
OJ = (Oik), 6 = (f.k), ll = X ilk

k

(4.1)

or

mm
m&

™ g andm&m
3 3 Furthermore, we develop (2.31) in powers of e, ob-

taining

I ~

mmpc/ =—
—, h. and 3.'p = —, h. (i =+) 0 o)p (tk} n /2( (u)k) —kpp) (4.2)

or

I.m'm' I, mm &

),
2

) ( ())
3 3

i ~

mm 1
K~ =——X and 3.'m~ = —

A,
3 3

m'm' & mm3:P = —) andrew =—) (i= —)3 3

(3.15)
which is a result analogous to expression (7) of our
previous paper, ' when counter-rotating terms are
neglected, and which can be taken as the effective
Larmor frequency of the spins. The decrease in the
effective dipolar interaction, as obtained by (2.32)
upon substitution of (4.1), should be a most prom-
inent feature of the ESR spectrum for

where X is formally the same as in (2.20), although 8
is different since we are dealing with the multimode
case. Upon substitution of (3.15) in (3.10) we find
the following decoupling:

I

(([a,,x,];(S,'+SI))) = Z, (E)r, ,

I

where h.;(E) is given by (2.22) and (2.24) for
i =+, —,while Xp(E) =0. Thus we see that, within

the present approximations, the results for the mul-
timode case are not formally different from those ob-
tained for the single-mode case.

IV. DISCUSSION AND CONCLUSIONS

On the basis of the results of the treatment out-
lined in Sec. III, we may conclude that the features of
the ESR spectrum should be approximately the same
as those discussed at the end of Sec. II, except that co

and e in (2.31) and (2.32) should be interpreted as
average phonon frequency and average coupling con-
stant, respectively, taken over all modes in the hot
band, and n as the total number of avalanche pho-
nons. Naturally we expect that the two lines in the
spectrum, which are split as in (2.32), should become
broadened when the finite width of the avalanche
band is taken into account in a better approximation.
Moreover, we remark that the present treatment
might run into trouble if the width of the hot band
becomes so large as to include the ESR frequency Q.
We feel confident enough that our model represents
the main features of the problem, however, to expect
that a sharp decrease in the intensity of the ESR line
should take place when the avalanche band includes
the ESR frequency Q, as discussed at the end of Sec.
II for the single-mode case. We remark that the phy-
sical origin of this effect appears to be of a different
nature than ordinary saturation broadening, and more

0 (kpk) 2 (ak) X ~k
k

(4.3)

In this case, in fact, it should manifest itself experi-
mentally as a drastic reduction of the linewidth in the
presence of the phonon avalanche. The shift of the
resonance field is likely to be of the same nature as
the ac Stark effect predicted and observed in optical
spectroscopy. " The reduction of dipolar broadening
may be attributed to screening of dipolar interaction
due to absorption and reemission of phonons in the
avalanche band. Result (4.3) is very much remindful
of the "magic angle" concept, which was introduced
not long ago to explain the increase of relaxation
time T2 in the presence of a strong coherent elec-
tromagnetic field in NMR' and ESR" experiments.
We remark however that in our case the effect is due
to an incoherent phonon avalanche, and in fact a
substantially different, and perhaps more sophisticat-
ed, approach has been necessary in order to arrive at
the present conclusions.

The experimental results which may be correlated
to the present theory are rather scanty since no ex-
periment, to the best of our knowledge, has yet been
performed specifically to the purpose of investigating
this problem. Phonon avalanche generated by initial-
ly inverted populations of magnetic levels'of Ce im-
purities in lanthanum magnesium nitrate was ob-
tained by Brya and Wagner, ' and its time evolution
was monitored by looking at the ESR lineshape of
the Ce atoms. Since the ESR was performed by sud-
denly shifting the Larmor frequency of the Ce atoms
out of the hot band of average frequency (&ok)

through monitoring frequency 0 (0 ( (cok)), on the
basis of our theory a displacement of the line towards
low fields and a broadening given by (2.32) should
have been observed. Using the values of the various
physical parameters given by Brya and Wagner, and
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calculating in the Debye approximation

e —af2n/g(o)p) T,]'",
g (QJp) = 30)p/2K c (4.4)

we predict, under the assumption of a detuning
co —0 =10 G, a shift of -2.7 G and a width reduc-
tion factor of -0.42 for n =10"phonons in the hot
band, or a shift of —0.2 G and a width reduction fac-
tor of —0.95 for n =10". We are inclined to favor
the latter situation as more realistic, in spite of the
fairly long lifetime of avalanche phonons experimen-
tally measured, ' because of partial initial inversion of
the paramagnetic atoms in the sample and other like-

ly losses. If our expectations are correct, the shift
was too small to be observed in Brya and Wagner's
experiment, since it should have been masked by
larger shifts which have been experimentally ob-
served and attributed to demagnetization effects. 2 A
line narrowing should have been observed, however,
even if the dipolar interaction is only one of the con-
tributions to the experimental width, and indeed it
cannot be excluded on the basis of the experimental
line profiles displayed in Fig. 13 of Brya and
Wagner's paper, 2 especially towards the end of the
avalanche. Two criticisms of our approach should be
explicitly made at this point. First, our calculations
are valid for small o., and in particular for n & eJn at
small detuning; in the experimental setup discussed
above, however, detuning co —0 is likely to be large
enough to ~arrant applicability of the theory: Second
and more important, the Green's-function technique
applies to quasiequilibrium situations, while in Brya
and Wagner's experiment the system is far from
equilibrium for most of the avalanche process; conse-
quently one should be cautious 'in using our theory in
such an experimental context. Towards the end of
the avalanche ho~ever, the spins may reach a state
not too far from equilibrium with the hot-band pho-
nons which have not yet disappeared because of finite
phonon lifetime, and we may hope to extend the ap-
proximate validity of our results to this region of
time. With the above warnings, we wish to mention
also the spin-echo results on the same paramagnetic

material by Mims and Taylor, ' who measured a T2
relaxation time of 4 p,sec during a phonon avalanche.
This may be contrasted with a previous measurement
in the absence of any avalanche by Cowan and Ka-
plan, ' who found T2 —1 p,sec. This increase of
spin-spin relaxation time during a phonon avalanche
may not be very meaningful, however, due to experi-
mental difficulties inherent in this kind of measure-
ment. 5

In conclusion, we have studied, by a Green's-
function technique, the effects of a strong phonon
avalanche on the ESR spectrum of a pair of paramag-
netic atoms with dipolar interaction and spin-phonon
coupling. When the monitoring ESR frequency 0 falls
out of the hot band of phonons, our theory predicts a
shift of the ESR line and its narrowing. The latter
effect is attributed to screening of the spin-spin in-
teraction, and its magnitude depends on the physical
parameters of the system; in ideal circumstances
(2.32) yields a "magic" number of avalanche phonons
which gives zero dipolar broadening. For small de-
tuning, the details of the ESR spectrum should be
calculated numerically; also the applicability of our
theory might become doubtful if the monitoring fre-
quency falls within the hot band, although we expect
a reduction of intensity on the basis of the single-
spin —single-mode case and of qualitative arguments.
The results of the present theory agree with those
previously found for the eigenvalue spectrum of
(1.1) in the off-resonance case by a unitary transfor-
mation technique. ' Comparison of our calculation
with previous experimental results ""does not yield
conclusive evidence as to the existence of effects
predicted by the present theory. It would be interest-
ing to have a specific investigation of this problem
done, since an increase of spin-spin relaxation time
T2 during a phonon avalanche may prove important
in lowering the threshold for phonon maser opera-
tion. "
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