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The spin dynamics of paramagnets with both isotropic dipolar and ihotropic quadrupolar exchange terms in
the spin-spin interaction Hamiltonian is investigated in the high-temperature limit. In particular, lowest-order
integral equations for the dynamical two point correlation functions, which are measurable in magnetic
resonarice and ultrasonic magnetic resonance experiments are derived by the use of a previously developed
diagrammatic technique. Th&e equations are valid for all values of the dipolar to quadrupolar exchange
energy ratio and for all values of the spin quantum number S. A systematic study of the numerical solutions
to these equations is then made for 1 & S & 7/2 and for various combinations of dipolar and quadrupolar
exchange energies. The results of these calculations for the case of S = 7/2 are used in the following paper
to help explain the observed nuclear acoustic resonance spectra in Ta' '.

I. INTRODUCTION

The concept of spin-spin interactions in a mag-
netic system is xnost often thought of in terms of
the mutual interaction of the spins via their dipole
(l = 1) moments. In principle, however, the spins
in such a system may also interact via their high-
er-order (l & 1) multipole moments. It is the pur-
pose of the yresent paper to investigate the effects
on the high-temperature spin dynamics of the
presence of a coupling between the quadrupole
(l =2) moments of such spins.

' First, however, it is useful to give a brief dis-
cussion of the usual interactions which take place
between the dipole moments of the spins in a mag-
netic system. The simplest such interaction is
described by the isotropic Heisenberg spin-ex-
chanrge Hamiltonian, "which can be written

H =--g J.(.,j)&(.) S(j), (1)
jWj

where S(i) is the vector spin operator at the lattice
site i and J',(i,j) is the exchange energy associated
with a pair of spins at sites i and j. The interac-
tion described by Eq. (1) is often the dominant
spin-spin coupling in electronic spin systems and
the exchange energy J',(i,j), whose range usually
extends only over the first few neighbor shells, "
is well understood to come physically from direct
exchange in metallic magnetic systems and from
indirect or superexchange in magnetic insulating
systems. '

Although the Heisenberg exchange interaction is
also often present in nuclear spin systems, ' ' the
dominant spin-spin interaction in these systems
is usually the dipolar interaction, ' which has the
form

H, = —g g J„(i,j)S,(i)S,(j), (2)
i&j a, b

where a and b run over the Cartesian indices x,
y, and z and J,,(i,j)-1/~'R,. —R,. ~', where R,. and
R,. are the position vectors of the lattice sites i
and j; this interaction is thus a long-range aniso-
tropic interaction. The dipole interaction is also
often present in electron-spin systems, but it is
usually much weaker than the Heisenberg interac-
tion in such systems. It should also be noted that
the spin-spin interaction in systems of spins with
anisotropic exchange may also be written in the
general form of Eq. (2) with J,s(i,j) being a short-
range interaction in that case.

In principle, the coupling between a pair of spins
in a magnetic system need not be limited to an in-
teraction which takes place via their dipole mo-
ments and thus need not be representable as a cou-
pling between the dipolar spin operators S,. As is
discussed in the literature, ' ' a complete dynamical
description of a single spin of magnitude S requires
(2S+ 1)' independent operators. "' At temperatures
such that kT is large compared to any spin-spin inter-
action energy, the most convenient complete set of
dynamical spin operators in the set of irreducible
tensor multipole operators' ' A,„(i), where l and
m are integers such that ~m~

~ l and 0&l ~ 2S.
By using these operators, one may write the most
general bilinear spin-spin interaction between
pairs of spins (or between pairs of any physical
quantities which are representable in terms of
spin or angular momentum operators) as

H= ——g p J, , (i,j)A, (i)(At, (j))s, (Sa)
fAf

where J, , (i,j) is a generalized potential which
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where

(i,j)&,„(i)(&,„(j))' ~ (3c)
r, m, m'

/

The physical origins of the decomposition, Eq.
(3b), should be quite clear. Since the A,„with
l =1 and m = +1,0 are proportional to the dipolar
spin operators S„S„respectively, H, describes
the general interaction between pairs of spins via
their dipole (l = 1) moments. In the general aniso-
tropic case, H, is proportional to the dipolar or
anisotropic exchange interaction, whi1. e if the po-
tential Z, „„,is isotropic (independent of m, m'),
B, is proportional to the isotropic exchange inter-
action. Likewise, the l=2 term in Eq. (3) de-
scribes the general interaction between a pair of
spine via their quadrupole {l= 2) moments. The
terms with E &2 in Eq.-(3) are similarly inter-
preted. .

Examples of systems where the interaction H2 is
known to be important a,re the molecular crystals
solid H„D„HD,"'"and N, ." In these systems,
the anisotropic interaction energy J', „„,(i,j) has
its physical origins in the electric quadrupole-
quadrupole interaction between rnolecules"'" and
thus varies as I/

~
R,. —R,. ~

'. The A, (i) in these
systems represent the irreducible tensor opera-
tors of the rotational angular momenta of the
molecules. In particu)ar, in solid molecular hy-
drogen and deuterium, H2 is the dominant orienta-
tionally dependent interaction between molecules.
In addition to molecular crystal systems, the
anisotropic quadrupolar interaction described by
H2 has been shown to be important in some rare-
earth ma, gnetic systems. ""

For simplicity, throughout the rest of the paper
we consider only isotropic interactions and keep
only the l = 1 and l = 2 terms in the summation in
Eq. (3b). Thus the Hamiltonian to be considered
has the form

H= H~+ II2,

where
1

H, = —g Z,(i,j) g X,„(i)(X,„(j))',
m-"- &

and

(4a)

(4b)

H, = ——Q J',(i,j)g A,„(i)(A,„(j))~. (4c)
m=-2

As is stated above, H, given by Eq. (4b) is clearly
proportional to the usual isotropic dipolar ex-

couples the spins at the sites i and j. , For con-
venience, we rewrite Eq. (3a) as

2$
(3b)

change Hamiltonian given by Eq. (1). In the rest
of this paper we shall-extend this terminology to
the isotropic quadrupolar interaction. Thus in
Eq. (4c), H, and H, will be referred to, respec-
tively, as the dipolar and quadrupolar exchange
interactions. It should be noted that in adopting
this terminology, we have at this point made no
a,ssumpti;ons regarding the range of the "exchange"
potentials J',(i,j) and Z, (i,j).

There has recently been speculation"'" that the
dominant spin-spin interaction between the nuclear
spins in Ta is the quadrupolar exchange Hamil. -
tonian H2 rather than the usual dipolar exchange
iriteraction II,. The physical origin of the coupling
between the quadrupole moments of the nulcear
spins in this system is probably an indirect cou-
pling via the conduction ele.ctrons, ""and since
"'Ta has a large qua, drupole Inoment, this inter-
a.ction could be the dominant one between the nu-

- clear spins.
Motiva, ted by this speculation, we have investi-

gated the high-temperature spin dynamics of a
system where the interaction between spins con-
tains both dipolar and quadrupolar exchange terms.
In particular, for the system described by the
Ha, miltonian of Eq. (4), we have calculated the
two-point dynamical' spin-correlation functions
which are measurable in electromagnetic and
ultrasonic magnetic resonance experiments.
These correlation functions are also characterized
by a quantum number l. The l =1 pr dipolar cor-
relation function is measurable in an ordinary
magnetic resonance experiment, '"while the l =2
or quadrupolar correlation function is measurable
in an ultrasonic magnetic resonance experi-
ment. ' " The / = 1 a,nd l = 2 correlation functions
are in general very different from each other. '
Here we are primarily interested in how these
correlation functions (or line-shape functions)
depend on the type of exchange Hamiltonian and on
the spin quantum number S. We have thus calcu-
lated both the l = 1 and the l = 2 correlation functions
for various combinations of dipolar arid quadru-
polar exchange and for a number of values of the
spin quantum number S. The approximation used
is the infinite -temperature "bubble approximation"
or mode-mode coupling approximation which has
previously yielded good results when applied to a
variety of other spin problems'" "and is the
lowest-order approximation in a, systematic dia-
grammatic expansion of the spin self -energy in a
Brillouin-Wigner kind of perturbation theory in
the spin-spin interaction. In the following paper, '
we use some of the results obtained here for the
E = 1 and k = 2 correlation functions to explain the
observe'd nuclear acoustic resonance (NAR) line
shapes obtained for "'Ta.
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Isotropic spin-spin interactions which take place
via dipolar and quadrupolar exchange are often
referred 'to in the literature as Heisenberg and bi-
quadratic exchange interactions. "" The Hamil-
tonian between pairs of spins in the presence of
these interactions may be written

(5)

where the term proportional to j(i,j) is referred
to as the biquadratic exchange term. The physi-
cal and mathematical differences between the
Hamiltonian of Eqs. (4) and (5) are worth noting.
As is shown in Appendix A, they are identical if
J, and J, are chosen to be the appropriate func-,
tions of Jp and j and if multipolar interactions
with l & 2 are neglected. However, the relationship
betwe Bn the 'quart&tie s J ' J2 and Jp j is not a
trivial one in that J, depends on J„j,and S.
Further, Eq. (5) may be viewed as the first two
terms in a power series expansion in powers of
(5(i) '5(j)) while Eq. (4) is an expansion in terms
of the multipole components of the spins. By
means of methods like those used in Appendix A,
equations relating the coefficients in the two series

/

could be derived.
Ne feel that the multipole expansion is the more

general and physically more intructive way to ex-
press the interaction. Furthermore, at least at
high temperatures, it is also superior from a
computational point of view. In Eq. (4) the con-
tribution to the spin-spin interaction from each
spin multipole component occurs in a separate
term. Thus the contributions from the dipole
(/= I) and quadrupole (I =2) moments are distinct
and the interaction energies J, and J, represent
the true dipolar and quadrupolar exchange energies
in the sense that they are the total energies which
characterize these multipolar interactions.
Therefore, the physical meaning of the terms in
the multipolar expansion can be clearly understood
because they can be associated with the usual
multipole moments of atoms or nuclei in the theory
of electromagnetism. The terms in the expansion
can thus be related to well known quantities with
which every physicist is familiar.

On the other hand, in the series expansion in
powers of ( S(i) 'S(j)), the individual terms have
no such simple physical interpretation; a, term,
proportional to (S(i) '5(j))" contains in general
contributions from all multipoles with l ~ n. A

precise physical meaning for such a term is there-
fore difficult to obtain. The total dipolar energy
obta, ined from a generalization of Eq. (5) to nth

order would, for example, be a series containing
n terms, with each term in the series being identi-
iid.ble with the part of the corresponding term in
the generalized Hamiltonian which is proportional
to the dipole-dipole interaction.

For these reasons, we will take the Hamiltonian
given by Eq. (4) as the fundamental interaction for
spin systems where coupling between the quadru-
pole moments of the spins is present. However,
in order to make contact with a large body of
literature" "&which uses Eq. (5) as the fundamen-
tal interaction, in Appendix A we show the rela-,
tionship between the quantities J„jand J,„J,if
multipolar interactions with l & 2 are neglected.

IQ addition to. .the Ta nuc1.ear -spin system,
there are a number of electron-spin systems
where isotropie quadrupolar or biquadratic ex-
change effects are believed to be important. For
example, such effects have been observed in mag-
netic compounds-such as MnAs, UO„UP, TbSb,
MnO,

' n-MnS, EuSe, and PrAlO„' inrare-earth
vanadates, arsenates, phosphates, and pnictides,
and in certain spinels (such as MnCr, S, and Li, ,
Fe, ,A1, ,0,)." In addition, the existence of such
interactions has been shown to be important for
the explanati. on of the EPR spectra in the system
MgO:Mn". "" In such systems, the quadrupolar
exchange energy J:,(i,j) has its physical origin in
a variety of different effects, each of which could
be present in a given system separately or in the
presence of any or all of the others. Among the
effects which are Qelieved to be responsible for
this interaction energy are cooperative Jahn-Teller
distortions, "orbital, contributions to superex-
ehange, '" rnultielectron exchange, "'"magneto-
striction, "virtual-phonon coupling, " indir'ect ex-
change via conduction electrons, "crystal field
effects, "and electric quadrupole-quadrupole in-
teractions. "'" In some cases, these quadrupolar
couplings between spins ean exceed the usual di-
polar coupling; this is especially true if the mag-
netic ions'are of the Jahn-Teller type. " Unfor-
tunately, despite the importance of such quadru-
polar effects in the systems mentioned above and
despite the fact that current experimental tech-
niques would probably make such experiments
feasible in at least some of these systems, there
appears at present to be no experiments in any
such systems, which have measured the high-tem-
perature correlation functions that we calculate.

Because of the importance of quadrupolar spin-
spin interactions in the compounds listed above&
as well as the interest in the Hamiltonians in Eqs.
(4) and (5) as interesting model systems in them-
selves, there have been numerous calculations in
the literature of the dynamical and thermodynami-
cal properties of, magnetic systems described by
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these interactions. Usually, these, calculations
have dealt with the properties of such a model
systems at either very low temperatures or at
temperatures near the dipolar or quadrupolar
transition temperature. "" To our knowledge,
there are no calculations which refer to the high-
temyerature correlation functions which we calcu-
late; our calculation is valid only in the extreme
high-temperature limit where kT is much greater
than any dipolar or quadrupolar ordering tempera-
ture.

The remainder of this paper is organized as fol-
lows. Section II contains a brief discussion of the
formalism used to calculate the dynamical l = 1 and
l =2 correlation functions. In particular, the spin
self-energy method' is applied to the spin system
whose interaction is described by the Hamiltonian
of Eq. (4) and the lowest order or "bubble" equa-
tions for the self-energy, which result in nonlinear
integral equations for the correlation functions,
are derived for this system for all values of the
spin quantum number S. In Sec. III, the method
of solution of these equations is discussed and they
are solved numerically for 1 & 8& —', and for various
ratios of dipolar to quadrupolar exchange energies.
Because the methods used in Secs. II and III for
the derivation and solution of the nonlinear integral
equations for the spin-correlation functions are
so similar to previous calculations, '""the dis-
cussion in these sections will be as brief as pos-
sible, with only those details which are unique to
the current problem discussed at any great length.
Finally, Sec. IV contains a brief summary and
conclusions.

Asm = (g, m)

FIG. 1. Graphical representation for the operator

calculations to follow.
In order to obtain self-consistent equations for

the G„(q, (d) in the presence of both dipolar and
quadrupolar exchange, the diagrammatic method
developed in Refs. 9 and 39 will be used and ap-
plied to the Hamiltonian given in Eq. (4). Since it
is basically the same method as was employed for
several previous calculations, '""the following
derivation will be as brief as possible with the
main emphasis being on the features which are
unique to the problem at hand. The starting point
for the derivation is the expression of the correla-
tion function in terms of a mass operator or self-
energy Z,(q, &u).

'" In the high-temperature
limit, this function is defined by the equation'"

(A,(q, (d) -Z,„(q,ur)G„, (q, (d) =i5 (),

where y is summed over. This definition of Z is
only practical, however, if the self-energy can be
expressed in terms ef the correlation function G.
A diagrammatic method for doing precisely that
was developed in Refs. 9 and 39 and will now be
applied to the Hamiltonian of Eq. (4).

The graphical representation of the operators
A, which we will use will be a single line with
the label (l, m) as is illustrated in Fig. 1. The
Reiter-type" vertices for the interaction, Eq.

H. FORMALISM

Following Ref. 9, the two-point correlation
functions which we will consider here are defined
in the high-temperature limit as q, (f,m)

(o)

q, (E,m+ m')

I

I

Cg~+ I J)(q~)8(q-q~-q2)

where the angular brackets denote a thermal aver-
age, e(t) is'a step function, and o. = (l, m). The
quantities A. are the irreducible tensor operators
mentioned in Sec. . I. The correlation functions
6 ~ may be Fourier transformed in time and space
in the standard manner'

G,~(i —j, t —t )=—Q I 'G, s(q, (a)e"' ' "'
a

w OO

-ca) (t-t')Xe

q, (g, m)
(c)

q(, (I,-m')

q [,(g —I, m+m')

I

+, 2(q, ) 8(q - q, -q2)

q, (2, -m')

q2, (E+ I, m+ m')

l

g+ (, II) g~ 2(q I) 8(q q I q2)

where N is the number of lattice sites and the
summation is over all wave vectors q in the first
Brillouin zone. The Fourier-transformed function
G ~(q, &u) is the quantity of primary interest in the

q), (2, —m')

FIG. 2. Basic vertices for the Hamiltonian of Eq. (4).
(a) Basic vertex for the dipolar exchange term; (b) and
(c) basic vertices for the quadrupolar exchange term.
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(4), are formed exactly as in previous calcula-
tions'" "and are shown with their analytic ex-
pressions in Fig. 2, where a cross at the vertex
corresponds to J» while an open circle corre-
sponds to J,. Only the vertices shown. in Fig. 2
will be considered here since they give all of the
moments exactly to order 1/z, where z is the
number of spins in the range of the interaction. '. "
In that figure, the quantities C,'", , and C'„y
are coefficients related to the commutators of the

in the following manner:

[a.., .x,„]= c,'"„'.„.x...„, , (ea)

and

2m' 2m'
+2m'sAtm] l-t, m+m'+l-l, mew' 1+1,mam' l+l, is+a'

(9h)

(b)

(c)

(g, m)

(g, m)

(t, m)

(g, m+m')

(i, -m')

(g -i,m+ mI)

(Z, -m')

{1+i, m+m')

(f,m)

(g, m)

{g,m)

The explicit forms for these coefficients as func-
tions of l, m, and S are derived in Appendix B.

For the infinite temperature limit under consid-
eration here, only the diagonal correlation func-
tions G and diagonal self-energies Z are non-
zero. Furthermore, because the interaction is
isotropic, all of these functions are independent of
m. Therefore, in the following discussion, the
abbreviations G, =G, =G, =G, and Z =Z,
=Z, =Z, will be used. The vertices shown in
Fig. 2 can be used to construct diagrams for Z,
which are valid to any order in the interaction.
Here, however, only the lowest-order or "bubble"
approximation'" will be considered and the re-
mainder of this paper will be concerned only with
this lowest-order approximation. These "bubble"

(2, -m')

F&0. 3. Basic "bubble" diagrams. (a) Contribution of
dipolar exchange; (b) and (c) contributions of quadrupolar
exchange.

diagrams are formed by connecting two of the ver-
tices of Fig. 2. The basic bubble diagrams are
shown in Fig. 3. In this lowest-order approxima-
tion, it was found that the "cross term" between
the Jy and J, vertices which appears to be present
for l = 2 vanishes. Evaluation of these diagrams
by the rules discussed in Refs. 9 and 39 gives the
following expression for Z, (q, i):

i3l(l + 1)
S(S+ 1)N „""q»'-' )' -q. 8 .]G.(q. )G (q q

2( q19 f)tN J2(ql)) J2(q, ) J,(q -q, )5&3]E (l, S)G& ( q fl i)

+ t(J (qi))'- J2(q, ) J.(q -q, )&„]&,(l, S)G,„(q—q„t)j (10)

where J',(q) and J','(q) are the Fourier transforms
of J', (i,j) and J',(i,j), the coefficient 31(l + 1)/S(S+ 1)
comes from the evaluation of Q„, (CI „.„,)' using
the explicit expressions shown in Appendix B, and
the functions E,(l, S) are derived and defined in
that Appendix. It should be noted from the expres-
sions in Appendix 8 that F (1,S)=F,(2S, S) = 0 as
they should (this means that Z, is not coupled to
G»„or G,). Equations (8) and (10) form a set of

self-consistent integral equations for the 6, and

Z, . For a given S there are 28 coupled equations.

III. SOLUTION OF THE EQUATIONS AND NUMERICAL
RESULTS

In this section, the solutions to nonlinear inte-
gral equations derived in Sec. II will be described
for the cases 1&8& —', and for several combina
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tions of dipolar and quadrupolar exchange. The
method of solution is a procedure which is similar
to that used in previous calculations'" "; this
method will therefore be only briefly discussed
here.

F'or convenience, G, and Z, are first expressed
in t'erms of their spectral representations as

where e is a positive infinitesimajL quantity. The
quantity g, (q, (()) is the line-shape function mea-
sured in magnetic resonance (l = 1) and ultrasonic
magnetic resonance (I = 2) experiments. This
function is related to the functions II, (q, &o) and
I', (q, (d) by the equation

d(() g(
7T (d —(d + SF

(1la)
I (( q) (())

[co -II((q, co)]'+ [I',(q, (d)]' ' (12)

I', (q, (d')

7P Q) —M —Zg

-=II, (q, (u) -ir, (q, &), (11b)

as may be seen by combining Eqs. (8) and (11).
H the above spectral function representations are
used and Eq. (10) is Fourier transformed, the
result is

I', (q, (d) =S S+1 Z ((~,(q,))' -~,(q, ) ~(q-(I, )&„] ' g,(q„~,)g&(q-q„~ -~,)
1 CO

+~ I f „' ).'.(i)„~ )(((z(i)))'-z(i))z(q i))))„])"(), s));, ,(i)-i)„~- ~)

+ X~,( q ))' -~ ( q, ) ~ ( q -q, )&„]&,(&, S)g, „(q- q„&u —(d,)], (13)

Equations (12) and (13) are the sets of nonlinear
integral equations that we will solve in this sec-
tion. Solving these equations could be very diffi-
cult in the general case. Thus, as in previous
calculations, '""only the "local" versions of
these equations will be solved. This "local" ap-
proximation may be mathematically expressed in
real space by the equation G (i,j, t)= 5r, , r,. G (t),
which amounts to treating the G (q, t) as q inde-
pendent functions. The philosophy behind making
such a "local" or q-independent approximation has
been thoroughly discussed before. ''9 " Essen-
tially, by making such an approximation to Eq.
(13) and obtaining the soluti. on to that approximate
equation one makes errors of the order of 1/z.
But since Eq. (13) is itself only valid to that order,
making such an approximation cannot cause too
great an error. It should be emphasized that such
an approximation is not a necessary one to solve
Eq. (13) but is is a convenient one which has
proven useful and accurate in the past'" "and
which makes the solution of Eq. (13) much simpler
numerically. It should also be emphasized that

V'=
)

(V,'+ 5V,'),S S+1 (14a)

although the "local' or q-independent functions
which result from solving the local system of
equations are not necessarily good approximations
to the corresponding q-dependent functions, they
ean be used to generate a first approximation to
the latter functions. This can be accomplished by
substitution of the "local" solutions into the "non-
local" or q-dependent equations. Furthermore,
it has been shown previously'" that in some cases
the functions g, (q, ~) are independent of q to a
first approximation. Finally, many magnetic
resonance and ultrasonic magnetic resonance
properties depend only on either the q-independent
functions or the q-dependent functions at small q,
This fact has been domonstrated in previous cal-
culations' ""and will be utilized again in'the fol-
lowing paper. '

In what folI.ows, it is convenient to use dimen-
sionless vari, ables so that frequencies are mea-
sured relative to V, which is defined as
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where 2.0—

V, '=- —g (~,(q,))', I =1,2. (14b)
ay

When frequencies are measured in these units,
the second moment of the "local" linewidth func-
tion I",(m) is unity; the quantity V' is the second
moment of this function. In terms of such dimen-
sionless variables, the "local" version of Eq. (13)
takes the form

3l(l + 1) V', "
dy,

F1 (y) =
$($+ I) V2 81(yl) lrl (y yl)

I.O

0.5

0 2.0 4.0
Y

V~ =0
S arbitrary

6.0
I

8.0

V2+—2

V2
" ' g, (y, )[z (t, $)g, ,(y -y, )

+&,(&, $)g, „,(y -y,)],

FIG. 4. Dipolar and quadrupolar spectral. functions .

g~(y) and g&(y) for Vz
——0 and S arbitrary.

where y = &u/V is a dimensionless frequency and
the tilde on the function I', (y) and g, (y) denotes
that they are dimensionless. Similarly, the di-
mensionless "local" forms of Eqs. (11) and (12)
are

R'(y) = F,(y)/([y —Il, (y)]' + [F,(y)]"f,

II,(y) = P "dy, f', (y, ) (17)

where P denotes the principle part integral. Equa-
tions. (15)-(17)are the "local" equations which will
now be solved.

These equations have been solved numerically
for all values of S in the range 1 & S & -', for a
variety of ratios of V, to V, . Some representa-
tive results for the "local" dipolar and quadru-
polar spectral functions g, (y) and g, (y) are shown

in Figs. 4-8. The g, (y) for t & 2 were also ob-
tained, of course, but since they appear to be in-
accessible experimentally, they will only briefly
be described at the end of this section. In the
figures, the particular cases V, = O„V,= 0, and

VI V2 corre sponding to pure dipolar exchange,
pure quadrupolar exchange, and equal dipolar and
quadrupolar exchange, respectively, are shown; the
first case is shown for arbitrary S, the second for
both S= 1 and S=-', , andthethird forboth S=—'and
8=-=7

The case of pure dipolar exchange (V, = 0) is il-
lustrated in Fig. 4. It is clear from Eq. (15) that
in this case the local functions are independent of
$; the curves for g, (y) and g,(y) shown in that
figure are therefore valid for all S. Furthermore,
the results presented in that figure are identical
to the results for those functions which we obtained

2.0—

l.5

V( =0

S = I

1.06

0.5

'0 2.0
1

4.0
y

I

6.0 8.0

FIG. 5. Functions @(y) and g2(y) for V&
—-0 and S=&.

in Ref. 9, as they should be. It can be seen from
Fig. 4 that both functions are monotonically de-
creasing functions of y and that both fall off ex-
ponentially at large values of y. In fact, g,(y)
looks quite similar to a true Gaussian function.
However, it is slightly flatter around y =0 than a
true Gaussian. On the other hand, g,(y) is de-
cidedly non-Gaussian in that is is much flatter near
y = 0 and falls off much more steeply with increas-
ing y.

The case of pure quadrupola, r exchange (V, = 0)
is illustrated for S= 1 and for S= -', in Figs. 5 and

6, respectively. As can be seen from those
figures, the results for both the dipolar and the
quadrupolar spectral functions in this case are
very different from the results obtained for the
case of pure dipolar exchange and the results ob-
tained in this case for S=1 a,nd for S=-', are also
very different from each other. For S=1, il-
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FIG. 6. Functions gi(y) and g&(y) for Vi=0 and S=p

lustrated in Fig. 5, the dipolar spectral function

g,(y) shows a dip as y goes to zero and peaks at a
point away from y =0. This is similar to the be-
havior found for this function using the "bubble"
approximation in other systems. "'" On the other
hand, the quadrupolar spectral function g, (y) for
S=1, also illustrated in Fig. 5, in an almost
Lorentzian-like function for values of y up to 1.0
at which point it has fallen to —,

' to its value at
y =0. For larger values of y it begins to fall off
exponentially fast. There is a marked contrast
between the S= 1 results for pure quadrupolar ex-
change shown in Fig. 5 and the S= —,

' results for
that case shown in Fig. 6. For S= -', , as may be
seen in that figure, the dipolar spectral function

g,(y) is now sharply peaked an'd almost Lorentzian-
like for values of y up to 1.0. In fact, the shape
of g, (y) for S= -,'closely resembles the shape of

g, (y) for S= l. On the other hand, the quadru-
polar spectral function for the case of S= —,

' and

pure quadrupolar exchange is very Gaussian-like
throughout the entire frequency range. However,
it is slightly flatter and falls off slightly steeper
than a true Gaussian. It is clear from a compari-
son of Figs. 5 and 6 with Fig. 4 that for both S= 1
and S= -'. both g, (y) and g, (y) in the pure quadru-
polar exchange case are markedly different from
the corresponding functions in the pure dipolar
exchange case.

We have also calculated both g,(y) and g, (y) for
the case of pure quadrupolar exchange (V, =O) for
values of S intermediate between S= 1 and S= —', .
We have found that the largest change as a function
of S in this case occurs for those functions on
changing from S= 1 to S= —,', with the shapes of
both functions for S= —,

'- being more nearly like
those for S= —', than for S=1. The case S=1 and

V, = 0 thus seems to be somewhat of a special

2.0—

~i =~a
S =5/2

'0 2.0 4.0
Y

I

6.0
I

8.0

FIG. 7. Functions g&(y) and g&(y) for V&= V& and S=~.

case. In fact, for S= —,', the dipolar function g,(y)
is already sharply peaked at the origin and al-
most twice the amplitude of the quadrupolar spec-
tral function g, (y) and the latter function is al-
ready very Gaussian-like. This behavior is very
dissimilar to the shapes of those functions for
S= 1 and pure quadrupolar exchange. Further-
more, we have found that the changes in the func-
tions g, (y) and g, (y) which occur as the spin quan-
tum number increases beyond S= —,

' are very grad-
ual, with the major changes being that g,(y) be-
comes more sharply peaked and g,(y) becomes
rounder at y =0 as S is increased. In addition,
we have found that these changes in the l = 1 and
l = 2 spectral functions with increasing S become
smaller as the value of S becomes larger. In fact,
the results for those functions for S= —,

' are almost
identical to those for S= —,', with the differences
being imperceptible on the scale of Fig. 6.

Thus, one may say that, insofar as the dipolar
and quadrupolar spectral functions in a system
with only quadrupolar exchange are concerned, the
classical (S= ~) limit where these functions will
be independent of S has been reached for all prac-
tical purposes at S= —,

'. Physically, this means
that the fact that the spins are quantized is, at
least for the calculation of g, (y) and g, (y), no
longer important for S& —,

'. It should be noted,
however, that is has been previously shown" for
other systems that when the classical limit is
reached for all practical purposes for a, given
physical quantity, it is not necessarily true that
it has been reached for all physical quantities.
Thus, the fact that the classical limit has been
attained for g, (y) and g, (y) for a system with pure
quadrupolar exchange does not necessarily imply
that it has been attained for other quantities of in-
terest (e.g. , spin-diffusion coefficients, dipolar
linewidths, etc.) or for systems described by other
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FIG. 8. Functions g&(y) and g~(y) for V&
——V2 and S=

2
.

Hamiltonians. Therefore, one should be cautious
in a,ssuming that the quantization of the spins will
not be important for S& —,'. Furthermore, as has
a.-so been previously pointed out, "the "classical
limit" as used in the above sense is not the true
classical limit, which mould be formaH. y obtained
by properly taking the S= ~ limit of Eq. (15). It
is not yet clear exactly how to do this.

The results for .the local spectral functions g,(y)
and g,(y) are illustrated for the case of equal di-
polar and quadrupolar exchange energies (V,= V,)
in Figs. 7 and 8, which show these functions in
this case for S= -,'and S= -', respectively. Most
of the remarks made above for the pure quadru-
polar exchange case also apply to the results
presented in these figures. The case of S= 1 is
discussed below. For S= —,', shown in Fig. 7,
the dipolar spectral function g, (y) is much more
sharply peaked at y = 0 than is the quadrupolar
spectral function g, (y) and has an amplitude at
the origin which is more than twice the amplitude
of the latter function. Both functions are Gaussian-
like in this case, but g, (y) is too sharp at y = 0 to
be a true Gaussian, while g, (y) is too flat. The .

results for S= —,', shown in Fig. 8, are, not very
different from the S= —,

' results. Here, the l =1
spectral function is even more sharply peaked
than it is for S= —,', becoming almost Lorentzian-
like for small y, while the l=2 function is much
rounder and even more Gaussian-like than it is
for S= —,

'. Again, we. have also calculated g,(y)
and g, (y) for all values of S in the range 1 & S & —', ,
but have only displayed the results for S= —' and
S= —,

'. As in the pure quadrupolar exchange case,
the changes in these functions with increasing S
between S= —,

' and S= —,
' are very gradual with the

major changes being that g,(y) becomes more
sharply peaked with increasing S while g, (y) be-
comes rounder near the origin. In this case also,

g,(y)I„. =g, y I..., =g'(y)I. .., .
g arbitrary $=1 S=&

(18)

It can be shown analytically that Eq, (18) must be
true; this is done explicitly in Appendix t . As
may be seen by comparing Figs. 4 and 6 and using
Eq. (18), the dipolar spectral function for S= 1 ie
markedly changed by the presence or absence of
the dipolar exchange energy V„changing from a
function which peaks at a frequency away from
y = 0 in the 'case V, = 0 to a function which is Gaus-
sia,n-like about y= 0 in the case 'Vy —'V2.

As was mentioned above, in order to obtain self-
consistent solutions for the spectral functions
g,(y) and g, (y), it is also necessary to find all
g, (y) for 2 (I ~ 2S. Although these higher-order
spectral functions are probably not accessible ex-
perirnentally, it is nevertheless worthwhile to at

the changes with increasing S diminish as S be-
comes larger until at S= —,

' no further appreciable
change occurs if S is increased. Thus, the clas-
sical limit is again reached for all practical pur-
poses at S= —,', insofar as the shapes of the l = 1
and l = 2 spectral functions are concerned.

Not surpI'isingly, the shapes of the spectral
functions for a given value of S in the case of equal
dipolar and quadrupolar exchange energies (V,
= V, ) are intermediate between their shapes for
V, = 0 (Fig. 4) and their shapes for V, = 0 (Figs. 5
and 6). However, the results in this case for
these functions at a given value of S are, with the
exception of the specia1. case of S=1 discussed.
below, more nearly like the resu1. ts 'for the case
of only quadrupolar exchange than like those for
pure dipolar exchange. This fact can be easily
understood, by noting that, according to Eq. (14a),
the quadrupolar exchange energy V, enters the
second moment of the local linewidth function
F,(co) with a weight which is five times the weight
of the dipolar exchange energy V, . - A similar. sit-
uation will also hold for the higher moments.
Thus, even though V, = V» which implies that the
dipolar and quadrupolar exchange interactions
make equal contributions to the Hamiltoriian,
quadrupolar exchange will be dominant in the
second and higher monzents and thus in the shape
of the spectral functions.

s was true for S= 1 and V, = 0, the ease S
and V, = V, is somewhat special in the sense that
the results obtained for the spectral functions in
this situation are very different from those ob-
tained for other values of S. In this special case,
the dipo1ar and quadrupolar spectra, l functions are-
equal. Furthermore, 'g, (y) is the same for this
case as it is for the case of pure dipolar exchange
(V, = 0, S arbitrary), which is illustrated in Fig.
4. Thus we have
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lea.st mention in pa, ssing some of the salient fea-
tures of these functions. In general, these func-
tions behave similarly to the functions g,(y) and

g, (y). For the case of pure dipolar exchange
(V, = 0 and S arbitrary) g, (y) for I & 2 is very sim-
ilar in shape to g, (y) (Fig. 4) but weaker in ampli-
tude at y = 0, becoming flatter and flatter near the
origin and dropping to zero at larger values of y
as I increases. For example, g, (y) is virtually
a constant over the frequency range where g, (y)
and g, (y) are nonzero. For both the case of pure
quadrupolar exchange (V, =O), and the case of
equal dipolar and quadrupolar exchange (V, = V,)
the results obtained for the g, (y) for l & 2 follow
a pattern a,s a function of increasing / which is
similar to that just described for V, =O; the larger
the value of l, the flatter and broader the function
and the smaller its amplitude, with the exception
of the function g,z, (y) for the case V, =O, which
will be discussed shortly. As a, function of S for
l fixed, the g, (y) in these cases behave similarly
to the functions g,(y) and g, (y). In particular, as
S is increased g, (y) becomes more sharply peaked
about y = 0, with the g, (y) for S= —', being much
more Lorentzian-like than the same function for
S= 1; the major exception is again the function

g,~,(y) for the case V, =O. The function g,z,(y)
for pure quadrupolar exchange was found to always
have a shape similar to that found for g, (y) in the
case S=1 and V, =O. In particular, in this case
this function always has a dip at y = 0 and a peak
at a frequency away from the origin. Finally,
the classical limit for. the functions g, (y) was in
all cases found to occur for all practical purposes
at a higher value of S than it occurred for the
functions g, (y) and g, (y), with, for example, the
function g, (y) for S= 3 and the same function for
S= —,

' showing appreciable differences.

IV. SUMMARY AND CONCLUSIONS

In the preceding discussion, we have presented
a general theory for the first principles calcula-
tion of dynamical two-point spin-correlation func-
tions in a spin system described by a Hamiltonian,
Eq. (4), containing both dipolar and quadrupolar
exchange interactions. By the use of a previously
developed diagrammatic technique'" a set of in-
tegral equations, Eqs. (12) and'(l3), for these
correlation functions was obtained. These equa-
tions are applicable at all ratios of the quadrupolar
exchange energy to the dipolar exchange energy
and for all values of the spin quantum number S
and they are valid in the infinite-temperature
limit, which is defined as the temperature range
where kT is much larger than any spin-spin inter-
action energy. Furthermore, as discussed

previously, ' these equations form the lowest-order
approximation in a hierarchy of.self-consistent
approximations which may be generated by carry-
ing the diagrammatic technique to higher-order
diagrams. The expected a'ccuracy of thehe equa-
tions is of the order of 1/z, where z is the num-
ber of nearest neighbors in the range of the inter-
a,ction; they give the second moments of the cor-
relation functions exactly while only giving the
higher moments to order 1/z.

The "local" versions of these equations were
solved numerically and a study was made of their
solutions for 1 & S &

—,
' and for the cases of pure

dipolar exchange, pure quadrupolar exchange,
and equal dipolar and quadru~olar exchange. In
the numerical study, we placed particular em-
phasis on the dipolar and quadrupolar spectral
functions, g,(y) and g, (y), which are measurable
in magnetic resonance and ultrasonic magnetic
resonance experiments. Among other interesting
behavior, we found from these solutions that for
S= —,

' the classical or S= ~ limit has been reached
insofar as the S dependence of the shapes of thy
functions g,(y) and g, (y) is concerned. In other
words, for S~ —,

' these functions are for all pra, c-
tical purposes independent of S for all values of
the dipolar exchange energy to quadrupolar ex-
change energy ratio.

The two basic limitations of the present theory
are its restriction to the lowest order or "bubble"
approximation to the spin self-energy and its re-
striction to the infinite-temperature limit. It
might be possible to overcome these restrictions
by appropriate generalizations of the present the-
ory. For example, for the case of dipolar ex-
change only, Fedders" has been able to take into
account higher-order diagrams in the spin self-
energy by performing a resummation of an infinite
subset of these diagrams and an extension of his
method to simultaneously include the effects of di-
pola. r and quadrupolar exchange might be possible.
Also, Reiter'" has proposed an extension of the
diagrammatic spin self -energy formalism which
enables one to calculate dynamical two-point spin-
correlation functions at all temperatures in the
range T, ~ T & ~, where T, is a magnetic ordering
temperature. Again, he has made this generaliza-
tion only for the case of dipolar exchange, but his
formalism could perhaps be extended to include
quadrupolar exchange effects. Either of these
possible extensions of the present formalism
would be a formidable ta,sk. Also, as is shown in
the .next paper. ,

"the present formalism is adequate
to help explain the ma. gnetic and ultra, sonic mag-
netic resonance data in "'Ta, which was the origi-
nal motivation for these calculations. Further-
more, experimental data which measures the cor-
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relation functions that we have calculated in other
systems described by the Hamiltonian of Eq. (4)
does not, to our knowledge, exist. Thus we feel
that the above generalizations of the present for-
malism should await more experiment@1 data.

s(s+1)(2s 1)(2s+2)

If all multipolar 'interactions with l & 2 are neg-
lected, we cari write the spin-spin interaction in
the form of Eq. (4), repeated here for conven-
ience:

H=H, +H,
where

(Al)

(A2)

APPENDIX A: RELATIONSHIP BETVfEEN THE QUANTITIES

Jo AND j AND THE QUANTITIES J, AND J2

S'(s+ 1)'
3

If it is assumed that both the Hamiltonian of Eqs.
(A1) —(AS) and that of (A4) describe the same set
of spins, the two may be equated. Then, using
Eqs. (A8) and (A9) in Eq. (A4), one may find a
relationship between the interaction energies
J,(i,j)', J,(i,j) and Jo(i,j), j(i,j). If the unimportant
constant term in Eq. (A9) is neglected, these re-
lationships take the form

and J',(i,j)= 2 $($+ 1)[J,(i,j) ——,
' j(i,j)], (A10)

. . g ~2 (i)(~2 (j))', (As)
2 t2

where J;(i,j) and J',(i,j) are the dipolar and quad-
rupolar exchange energies, respectively. Tradi-
tionally, the spin Hamiltonian in the presence of
both dipolar and qua'drupolar spin-spin interactions
has been written in. the form of Eq. (5), also re-
peated here for convenience

2 g J,(i,j)S(i) S(j)

—
2 Q j(i,j)(S(i) K(j))', (A4)

where J,(i,j) an'd j(i,j) are the Heisenberg and bi-
quadratic exchange energies, respectively. The
relationships between the spin operators and the
operators 4, for E =1,2 take the form'

A, „=+S,/[-2' $(S+ 1)]'~2
t

A,o= S,/[2 S(S+ 1)]'~',
(A5)

(A5')

(Ae)A.2 „=S,'/[ —,', S(S+ 1)(2S -1)(2S+3)]'~',

A2, ', =v($„$,]/[—'S(2S —1)(2$+3)]'i' t

and

(A8 )

a„=[s', —,
' s(s+1)]/[ —,', s(s+1)(2$ —1)(2s+ 2)]'".

(Av)

1

g(i) 5(j)= -', s(s+ 1) g ~,„(i)(~,.(j))', (A8)
e=-&

These expressions may be used in Eq. (A4) to ob-
tain expressions for the quantities S(i) '8(j) and
(8(i) '5(j})2 in terms of the A,„. After y, consider-
able amount of algebra, we find

APPENDIX B: COMMUTATION PROPERTIES OF THE A(~,'
EVALUATION OF THE QUANTITKS C( ~+~ AND

C(~) +~. AND THE FUNCTIONS F, (l, S)

From the tensor properties of the A, , it is.
easily shown that the commutators of Eq. (9) have
the forms

[A,„„A,„]=C(lm', lm; l, m+m')A,

and

[A, , ,A, ]=C(2m', lm', l —1, m m')8, , „, ,

C(2m ', lm ', l + 1, m + m ') A„,
(B2)

As was done in the text, throughout the rest of this
Appendix the abbreviations

C', „',„,=C(lm', lm; l, m+m')

C'„", „, , =C(2m', lm;i+1, m+m')
f

(B4)

will be used. The quantity C, , is almost triv-
ially calculated from the well known commutation
relations

[S„~,„]=~,.

and

J;(i,j)= —'S($+ 1)(2$ —1)(2S+3)j(i,j) . (A11)
!

Thus, the true dipolar exchange energy for the
system described by the Hamiltonian of Eq. (A4)
is not J',(i,j), but a linear combination of J',(i,j)
a.nd j(i,j), as was claimed in the text.
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and

[S„A,.] = [l(l+ 1) —m(m ~1)]"'A,.„, (Bs)

where

l, l, l,

3[(((*1)= m(m+ 1)] )'i'
2S(S+ 1)

(B7)

and

C,'„=[3/S(S+ 1)]'i'm . (as)

along with the relations between the A, and the
operators S, and S„' shown in Eqs. (A3) and (A4).
Combining Eqs. (85), (B6), (A3), and (A4) with
Eq. (B1) yields

is a 6-j coefficient,

(i, l, l,

&m, m, m, j

is a 3-j coefficient, (SiiA, iiS) is the reduced ma-
trix element o A, , and A, ~ is the Hermitian'3. 3
conjugate of A, . Comparison of Eq. (B9) with
Eq. (B2) for the case l, =2, m, =m', l, =l, m, =m
yields explicit expressions for the C'„. . . which
have the form

(

The evaluation of the C'„, , ~ in closed form is
also straightforward but requires a large amount
of algebra. Curiously, although recursion rela-
tions between these quantities have been derived
and utilized, "closed-form expressions for them
have apparently only been derived for the case
nz'=0. " Here, a method similar to that dis-
cussed in Ref. 32 will be used to derive expres-
sions for the C',», , which are valid for all l, m,
nz', and S. One can obtain the general expression
for the commutator of two irreducible tensor spin
operators by the use of their tensor properties. '
F.or the tensor operators A, this commutator
takes the form"

and

~ = (-()"' [(-()"'—(](2) —()
SSS

/2 l l —1 )I (SIIA, IIS)(SIIA, IIS)

im' m -(m+m') j (SIIA, , IIS)

(Bio)

[A, , A,, ]=

l3 i l y+l2i l, l, l,
[( 1))i'2'3 1](2l,+1)

3=&3 l3=I ll-l2l

I'l, l, l, '(]

xi
&m, m, m, j

(SIIAg, IIS)(S IIA, , IIS) A„

(S I IA, , I I S)

(2 l l+1 ) (SIIA, IIS)(SIIA, IIS)
xi

(,m ' m —(m + m ') j ( S I I A(„I I S)

(B11)

These expressions can be straightforwardly eval. —

uated, but a considerable amount of algebra is
required. The (SiiA, iiS) and the 3-j and 6-j co-
efficients can be evaluated by methods which may
be found in any standard quantum mechanics text."
The results of such an evaluation are

and

v' 45 1,~ 4$(S+ 1) —(l —1)(l + 1)
' '"+"' 2 ],(2l —1)(2l + 1)S(S+1)(2S —1)(2S+3) j

v' 45 4S(S+ 1) —l (l + 2)"~+"' 2 (2l + 1)(2l + 3)S(S+1)(2S-1)(2S+3) j

(B12)

(B13)
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where the g, (l, m, m') are defined as

g (l, m, +2) =+—[(l+m)(l+m —1)

&&(1 vm -2)(l +m+1)]' ', (814)

g (l, m, t1)=v
3 fl a2m+ 1][(l+m)(l vm -1)]'~',

APPENDIX C: PROOF OF EQUATION (18)

The relations, Eq. (18), may be shown analyt-,

ically to be true. The proof is as follows. In the
case V, =0 and S arbitrary, Eq. (15) gives for

1,

r,(~)= f "' a(~,)a(y ~,)

(V, = 0, S arbitrary) . (C1)

g (i, m, o) =am[(1+m)(i -m)]'", (816) Also, in the case V, = V, and S= 1, that equation
yields the following expressions for l = 1 and l = 2:

g ,(l, m, +2) = + [l + m)(l + m + 3)

x(l am+ 2)(l am+ 1)]' ', (817)

g (l, m, +1)= +—[l v 2m][(l a m + 2)(l a m + 1)]' ',
(816)

and

and

cfp ~I', (y) =- ' g,(y, )g,(y -y, )
6 „n'

5 "dy,+6,' g.(X,)g(X-y, )

(V, = V„S=1) (ca)

g,(l, m, o)= -2m[(i+m+1)(l -m+1)]'~'. (819)

The functions E,(l, S) which occur in Eq. (10) are
defined as

E,(l, S) = Q (C'„",', .)'. (Bao)
f5

By substitution of Eqs. (812)-(819) into Eq. (820)
and after a considerable amount of straightforward
but tedious algebra, one can obtain the results

15l(l —l)(l + 1)
2l+1

and

I~4S(S+ 1) —(l —1)(l + 1)~

( S(s+ 1)(2S —1)(2S+3)]
(821)

15l(l + 1)(l + 2)
2l+1

t 4S(s+ 1) l(l + 2)
s(s+ 1)(as —1)(as+ 3)

As can-be seen, these functions are independent
of the quantum number m, as they should be, and

they have the properties that E (1,S) =E.(as, S)= 0,
as is claimed in the text.

(c3)

where use has been made of the expressions for
the functions F,(l, S) which are derived in Appendix

B. In Eqs. (Cl)-(C3) I",(y) is, of course, related
to g, (y) by Egs. (16) and (17) of the text. It may
now be easily seen that the relation g,(y) =g,(y)
is a solution to the system of equations given by

Eqs. (C2) and (C3) and that furthermore, the ex-
pressions for I',(y) and I', (y) which result when

this equality is taken into account are identical to
that given in Eti. (C1). Thus

g (y) lv, =o =gi(x) Iv =v, =g (x) Iv =v,
S arbitrary s=s $=1

as was claimed in the text.
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