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Simple model of hydrogen and lithium chemisorption on jellium substrates
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Within a simple one-parameter quasianalytic model, we are able to reproduce the main one-body features
of first-principles calculations for hydrogen chemisorption on jellium surfaces. These include the qualitative
variation in the width and position of the resonance peaks as the adatom-substrate separation is allowed to
change. The general variation of these features with the elctron density of the substrate is also reproduced
with remarkable accuracy. Preliminary results for Li adsorption are also presented, and also seem to be
compatible with the limited data from first-principles calculations. Nevertheless the limitation of the present-
model to an l = 0 solution means that it cannot include sp-hybridization effects which appear to be
important. The simplicity of the current model enables a simple physical interpretation of the mechanism of
chemisorption on free-electron-like substrates. In addition there is a strong possibility of extension of our
model to systems, of greater practical importance, for which a first-principles calculation is as yet not
possible.

I. INTRODUCTION

This paper has arisen from the need to under-
stand, and to place in the context of the whole
theory of chemisorption, a series of important
recent first-principles calculations for chemi-
sorption on free-electron-like substrates. ' '
These calculations employ the remarkably suc-
cessful local-density-functional (LDF) approach
we remind ourselves that this approach seems to
give an excellent approximation to the ground state
of various systems, its application to the excita-
tion spectrum being, however, rather less firmly
based. Furthermore, the approach is formally
similar to the Hartree theory, it being the case
that once the self-consistent Hartree-like poten-
tial is established, solving for the wave functions
and energy levels is only a one-body problem.

The calculations in question' ' all uniformly
employ as a starting point the jellium model, in
which the substrate ion-core charge density. is
smeared out to form a uniform positive back-
ground truncated stepwise at the surface. This
model is often considered as a useful starting
point for considering the surface properties of
the clean sp-metal surfaces. ' In the chemisorp-
tion calculations a point charge, of magnitude
equal to that of the nucleus of the adatom in ques-
tion, is added to the jellium background at a dis-
tance d from the "jellium edge, " at which the back-
ground drops to zero. The major numerical task .
of re-solving the LDF equations is then under-
taken. The chemisorption energy, the dipole mo-
ment, and the change in density of states &N(c)
on adsorption are among the quantities calculated.
Calculations exist for H, 0, Li, Cl, and Si ad-
sorbates on jellium done in this way. ' ' Calcula-
tions have also been made for H and 0 adsorbates
in which the substrate atomic structure is taken

into account using a perturbational calculation to
first order in the substrate ion-core pseudopo-
tentials. ' ' The substrate pseudopotentials are
found to modify radically such properties as the
equilibrium distance d (and hence the nature of
substrate-adsorbate binding); the chemisorption
energy and dipole moment being also modified.
However, 4 N(e) at a given d is not usually cor-
rected for the pseudopotentials, and we shall
similarly ignore this effect in the following. It
is, however, possible to take into account the
substrate pseudopotentials in a nonperturbational
way by means of a cluster calculation, as done
by Harris and Painter, ' for example.

A word should be said on the experimental im-
portance of sp metals as substrates in chemi-
sorption, for which less well-established high-
quality experimental information appears to be
available than for transition metal or semiconduc-
tor substrates. For example, on exposure of
aluminum to oxygen there remains uncertainty
as to whether adsorption or absorption of the
oxygen takes place. "' The chemisorption of hy-
drogen on such metals as Al, Mg, and the alkalis
seems not to have been established. " On the
other hand, hydrogen should chemisorb (if it is
not absorbed) on the latter systems in its atomic
state. ' Such an adsorbed layer is stable with
respect to desorption if the atomic chemisorption
energy 4E exceeds half the H, dissociation energy,
i.e., exceeds 2.3 eV." For, say, Al low-index
faces, the above-mentioned calculations suggest
AE is insufficient for such stability, '"' but,
nevertheless, at sufficiently low temperatures
such that diffusion is negligible the adsorbed H
atoms should be observable in a metastable state
as found for H on some noble metals. "

In the alkali adsorbates the rather similar
properties of various transition metal substrates"
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and the large radius of the valence-shell elec-
tronic states suggests that the transition metal d
bands, specially when narrow, might riot be. very
important in the substrate-adsorbate interaction.
In such a case the substrate sp band might be
dominant and a free-electron-like model of the
substrate —whose d electrons are treated as
cores —might be useful in calculating some
properties. Lang has rather successfully dis-
cussed the work function change in alkali chemi-
sorption on transition metal systems using a
jellium model for the substrate. "

One aim of the present work, of which short
accounts have previously been published, '""is
to aid interpretation and understanding of the
jellium-based calculations for hydrogen on free-
electron-like substrates. In chemical terms, we
would like to know whether the hydrogen is to be
regarded as adsorbed in essentially atomic form,
or whether there is a recognizable chemical bond.
The former view seems suggested by earlier work
within an approximate LDF formalism, "where an
atomiclike resonance was calculated. In view of
the improved treatments now available, ' ' which,
as we shall show, suggest the contrary view, the
results of Ref. 16 will not be further discussed
here.

We shall concentrate on the change in density of
states EN(e) on chemisorption, and follow the us-
ual approximation of assuming the main effect of
substrate pseudopotentials is to give a more real-
istic d without changing b N(e} at that d. We re-
gard this quantity as containing valuable informa-
tion as to the nature of the chemical bond in the
LDF ground state. Its relationship with the actual
excitation spectrum is regarded as secondary
here. The present work is confined to monovalent
adsorbates, mainly hydrogen but lithium is also
considered. The approach is to start by trying
to identify the main physical elements in the
adatom-substrate interaction, which are incorpo-
rated into a simple model whose results are then
compared with the first principles calculations.

Let us first outline the physical ideas, taking
hydrogen as the example. Our starting point is
the Anderson model of chemisorption within the
restricted Hartree-Fock formalism, '"" This has
a number of points in common with LDF formal-
ism. In this picture one starts with a self-con-
sistent effective hydrogen 1s level, E,«, which
for a slightly negatively charged adatom lies a
little above the mean of the ionization and affinity
levels —say at 6 eV below vacuum level. The
change in density of states AN(c) due to bringing
up the adatom is then

(la)

where
I
k} i,s a band state of the semi-infinite

metal with energy e~ and
I
1s} is the H valence

orbital, V being the perturbation on bringing the
atom up to the surface. " A(e) is the Hilbert
transform of &(e).

It is seen from Eq. (1) that if 6 is small there
is a sharp peak or resonance in 4N which occurs
at an ene.rgy z„given by the solution of the trans-
cendental equation

e —e,« —A(e) = 0. (3)

In Fig. 1 we illustrate the graphical solution of
(3}. 4(e) and A(e) have been taken for simplicity
to have the form

g=c(1 ga)3~2

A=c(-,'c(3 —2e )+ [e(a —1) —8 (-1 —e)](e'-1)"'j,
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FIG. 1. Anderson model approach. (a) Functions 6
and A for c=1 (see Sec. I) with graphical solution of
Eq. (3). (b) Quantity 4n (e) plotted vs e at ee&f =-0.2
for various values of c; curves labeled by c.

where the phase shift q(e) is given by"

q(e) = —tan '( a(e)/[e —c,« —&(c)]];

0&ad&v. (lb)

The function 4(e}, central to the theory, is de-
fined by

&(e)= P 1(ls
I vl» I'&(e —e~} (»
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where 8 is the step function and c is a scaling
constant. Note the E' ' behavior of 4 at bottom
of band, as would be appropriate for the surface
density of states. However, since an upper cutoff
is required, we have for simplicity taken a sym-
metric 6, though this would be more natural for a
tight-binding system. Accordingly, the results
obtained from this model will not be very meaning-
ful for a jellium surface in, say, & ~ 0.5. From
Fig. 1 it is seen that &, lies below z,«. The
larger A (which scales with 6), is, the larger
this lowering will be; (a) and (b) in Fig. 1 refer,
respectively, to small and large. &. Since the
matrix element V,~, and hence 6, is expected to
increase as the atom approaches the surface, it
is thus expected that &, mill drop uniformly below
e,«as the atom approaches the surface; (a) and
(b) in Fig. 1 can be regarded as appropriate for
large and small atom-surface distance, respec-
tively.

The width of the resonance is h(s, ). This reso-
nance width is thus expected at first to increase
as the atom approaches the surface, but if q, gets
near the bottom of the band it will, decrease again.
Finally, if a, goes below the band edge [which is
actually the case in Fig. 1(b)] e, becomes a lo-
calized state.

In Fig. 1(b) we also illustrate the phase shift
q(c) through the proportional quantity dn(e)
= 2q(e)/v. &n(c) is the change in number of elec-
trons bound below energy & due to adding the hy-
drogen, its derivative being &N(c) [see Eq. (la)j.
a,« is chosen to lie near the band center. The
curve c=0.08 corresponds to a line somewhat
steeper than case (a) of Fig. 1(a). The shape of
hn(e) is characteristic of a well-defined atomic
resonance, showing a rapid change in dn(e) as one
traverses through it, from 4n small at &= -0.5 to
4n nearly 2 at &=0. In the case c=2.7 on the
other hand, one has a bound state below band and
also above it, corresponding to case (b) of Fig.
1(a). In studies of the Anderson model of chemi-
sorption" it is well established that these bound
states are bonding and antibonding states, respec-
tively. We expect these states together to con-
tribute An= 2 electrons (since one atomic orbital
j a) has been added to the system), but each state
only 4n= 1; thus, the value of 4n near mid-
band should correspond to about unity, corre-
sponding to a bonding state. Looking at the c = 2.7
curve, we see it has 4n= 2 for z near bottom of
the band, as it must due to the bound state, but
this value drops rapidly to about 1 at midband in
accordance with the above simple argument.

A subtle situation is found at values of c between
the atomic and covalent limits. At c =0.65, an
atomiclike resonance, broader than at c =0.08 is

found, but 4n tends to saturate at about 1.2; this
resonance is not purely atomic but has. some
bonding character. At c = 1.2 we have again a
sharp resonance, just above bottom of band. The
resonance itself binds 1.4 electrons, seeming
paradoxically more atomiclike than at c = 0.65.
However, the resonance gives itself away on
looking at b n(c) for larger e, where a fall-off
reminiscent of the bonding state case c= 2.7 is
seen, which shows the resonance is really a "vir-
tual bonding state. "

To summarize the discussion of the Anderson
model, it is expected that there is a narrow
atomiclike resonance at E,«- 6 eV below vacuum
at large d, which broadens and shifts down with
decreasing d. If the coupling is strong enough, on
further decreasing d, the resonance will narrow
on approaching the bottom of the band and may
then appear as a bonding state. Consideration of
the area &n(e) under the resonances can further
be used as a diagnosis for bonding or atomic
character. Furthermore, if f,«and E~ lie near
the center of the band, then bonding-type reso-
nances or bound states will be occupied (and anti-
bonding unoccupied) leading to an important con-
tribution to the binding energy from these states.

The change in density of states b N(c) accord-
ing to LDF calculations when a proton is intro-
duced at distance d from the jellium edge is
shown in Fig. 2 for r, =2 and 3.' Broadly, the
features just described are indeed seen. At
large d there is a narrow level at &,«=6 eV be-
low vacuum lhvel for r,= 2 and r, = 3 (at d = ~ the
level is found to be at 7 eV below vacuum). In
both cases this level at first broadens and shifts
down with decreasing d, then narrows on approach-
ing the bottom of the band. Finally, it is known
from calculations done for a proton well inside
jellium that when x,& 1.9 there is a bound state
just below the bottom of the band. "

An attempt to make a more quantitative applica-
tion of these ideas, which seem qualitatively cor-
rect, encounters difficulties in calculating &(e).
This applies particularly to the high-energy be-
havior which is essential to get correct if the
Hilbert transform A(e) is to be calculated.

In the present work, the explicit calculation of
&(e) is avoided by using the Korringa-Kohn-
Rostoker (KKR) formalism. " In this method, the
potential of the system is approximated by one
which is spherically symmetric within a sphere of
radius R centered on the proton, whereas outside
the sphere it is the potential of the unperturbed
surface. It is then possible to express AN(e) in
terms of (i) the one-electron Green's function of
the unperturbed surface and (ii) the solution of
the Schrodinger equation of angular momentum E
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but since it is mainly the binding strength of the
spherical potential which is important, this is not
believed to be serious.

In the case of alkali atoms one tends to base
one's thinking on the situation for d at or exceed-
ing the equilibrium distance from the surface. In
this region a single alkali atom is largely ionized,
and the adatom-surface interaction is not usually
considered strong enough to form a resonance
with significant bonding character, though it might
be strong enough to significantly hybridize the
adatom s and p valence orbitals. ' In this situa-
tion, shifts in resonance position originate in
shifts in z,« from such causes as the image po-
tential or other screening effects rather than from
A(&),"the "weak-coupling" case of Fig. 1(a) being
probably near the truth in the physical region.
Considerable interest nevertheless attaches to the
resonance width 4 itself. We shall assume that
the resonance involves the 2s (in the case of Li)
atomic orbital, provided it is reasonably narrow
compared with the energy separation of the 2s and
2p orbitals. Accordingly, we again use the KKR
model as for hydrogen, modifying the sphere
radius and internal potential appropriately; in
this case our guide to these is, respectively, the
Li atomic radius and the position of the resonance
in the first principles calculations, ' in an attempt
to reproduce correctly the shape of the resonance. .
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FIG. 2. Change in density of states 4N(q) due to
chemisorption of the H atom on the iellium surface
according to first-principles calculations of Ref. 5.
Curves labeled by distance ff of proton from jellium
edge. (a) x~=2; (b) r =3.

and energy a inside the sphere. The physical
ideas already expressed in the Anderson frame-
work can readily be incorporated. The inclusion
of only a 1s valence orbital on the H atom goes
over in the KKR method to retaining only the l = 0
solution inside the sphere. The idea of a constant
self-consistent adatom valence energy &,« leads
to the assumption that the I = 0 binding strength
of the potential inside the sphere be independent
of distance from the surface. The radius of the
sphere chosen is rather small (actually 1 a.u. ),
in order to minimize the region of space in which
the Schrodinger equation is constrained to an l =0
solution. This necessitates taking a somewhat
deeper potential inside the sphere than is realistic,

H. FORMALISM

Let H, denote the Hamiltonian of the free sur-
face, and v the potential in the neighborhood of
the adsorbing atom. W'e shall assume that v is
a spherically symmetric potential which is non-
zero only within a sphere of radius A. If we now
denote the eigenvalues of the total Hamiltonian H
including v by e„, and those of Ho by q~, then the
difference in density of states (including spin) in-
troduced by the perturbation v is given by

AN(e)= 2+5(e —I„)—2+5(E- e~) .
n

(4)

AN(e) = 2v 'Im —lnf(e) .
d&

We shall not give the full expression for f(e)
within the KKR method, but confine ourselves to
the case of importance in this paper where only
l = 0 solutions to the Schrodinger equation inside

If we now introduce a function f(e) which is analyt-
ic everywhere except at a finite number of poles
e, (the energy eigenvalues of H,), and whose zeros
are at e„, we can show by use of a well-known
theorem of analysis" that Eq. (2) can be rewritten
in the form
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the sphere are considered. Let the l= 0 solution
to the 'Schrodinger equation inside the sphere at
energy s be p,(r), and G'(r, r') be the Green func-
tion G'= (e —H, ) ' belonging to the unperturbed
Hamiltonian H, ; then a choice for f(e) is

G(r, r') = lim dS dS 'G2(r, r') . (6b)
r= R-2( r= R-f

Here the integrations are over the surface of the
spheres of radius r and r'(r'&r). It is seen that
f(e) is indeed zero at the perturbed eigenvalues
e„[see E(1. (3.10) of Ref. 21], and it has poles at
the unperturbed eigenvalues &~ due to the pres-
ence of the functions G'(r, r').

Thus hN(c) is given in our approximation by

~l(t(e) = 2v-' im —ln G(r, r')

—,, G(r, r'&(,(~'&) . (7&

The great advantage of this method is that it is
capable of considering separately the solutions
inside the sphere through g„and those outside
through C', and then to match them at the sur-
face of the sphere. We note here that the KKR
method" is variational with respect to the e„and
thus to EN(e); in fact, it minimizes the mismatch
at the surface of the sphere. The determination
of P,(r) presents no problem; one simply has to
solve the Schrodinger equation for the chosen
potential v(r). The main difficulty is thus the
calculation of the Green function G'(r, r'). For
a free-electron gas with a surface, 6' is given
by the general expression

G'(-, -)=Q' ~"(' ~"', (8)
6 —6p+ zs

where capital letters are designed to represent
variables parallel to the surface, and lower-case
letters to represent variables perpendicular to
the surface, E„-= 2 (K2+ k,') in atomic units, and s
is an infinitesimal positive (luantity. The It»

's
depend on the model of the surface chosen. We
have adopted a finite-barrier potential model- to
describe the surface. The barrier of height Vo
is taken at z =so. By considerations of charge
neutrality of the system, it has been shown that
the jellium edge is situated at a distance z,- from
the barrier, "where

+ 2
-1 sin' —

2 2
—1

Here k, =(2V,)'~2 and kz is the Fermi wave vec-
tor.

There are two possibilities for the wave func-
tions, "according to whether k, is greater or less
than 0o. For 0„&k„ the eigenvalue spectru~ is
nondegenerate and the wave functions are given by

4»,(z) = cos[k»(z -80) —5]; z &8(&

5 is a phase shift given by tant& = -q, /k, and q,
=(k,' —k2)'~2. For k, &k, the eigenvalue spectrum
is doubly degenerate, and the two linearly inde-
pendent wave functions are taken to be

1' k -q'
egg (ggo)+ g e ~kg( '0) ' g(g

2 k, +q,'y(»(&)

g e(((' (»-»&& .
, 0,+q,'

(12)

q' —jp
+ qg g efqg(g-go) ~ 8)8

q,'+ k,

and q,'= (k,' —k;)' '.
These were chosen in such a way that g"& rep-

resents the analytic continuation of E(ls. (10) for
k, & k, in which case g»(2& is the only possible
'choice which is linearly independent of (rj(».

kg
These define the continuum completely. One

can now construct the Green's functions by in-
serting the (r&'s as given by K(ls. (10—12) into E(l.
(8). In order to calculate G, it is then necessary
to expand the (I&'s in terms of spherical harmonics
about the sphere center (here taken as the origin),
and then keep only the l = 0 term in the expansions.
One now has to sum over k. The integration over
k is straightforward although rather lengthy and
is. detailed in the Appendix. There are two possi-
ble expressions for G(r, r') according to whether
the barrier at zo lies to the right or to the left of
the sphere center at the origin. These expres-
sions are given by
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[2x' —1 —2g(x' —1)' ']e'*dx);
/kp

s,&0, (14)

where k=(2z)' ' v=[2(V, —z))' ' n=2k, z„and
j, is the spherical Bessel function of order zero.

The KKR formalism only permits evaluation of
G rigorously when the sphere does not overlap
the barrier, i.e., zp~R or zp& -R. In practice,
continuity of the wave functions for z «zp in Eqs.
(10)-(12) should keep the results reasonable for
a small amount of overlap. We shall in the follow-
ing assume the results remain reasonable pro-

0.5R.
Before going on to calculate 4N, let us look

briefly at the properties of G(r, r'), and first of
all, let us look at the simple limit Vp-. In this
case it is easily shown by repeated integration by
parts that Eqs. (13) and (14) reduce in the limit
kp ~ to

e-fur' ~ 2&~gp

4',(k-r), —j,(kr'); z, & 0—(,)
0 x' ' 2kzo

0; 8&0

(15)

i.e. , the results found in our previous work for
an infinite-barrier potential model. "

In the limit zp-~, as in the limit V, -O, one
obtains the result for the Green's function in the
case of an impurity in the bulk, if only the s
phase shift is taken into account, "i.e.,

For negative values of z„one sees immediately
that the imaginary part of G(r, r') is vanishingly
small at low energies due to the exponential term .

in (14) which is very small for z/V, «I. At high
energies the behavior is rather similar to that
found for zp&0.

The function p,(r) which appears in (7) is the
regular /= 0 solution of the Schrodinger equation
in x&R at energy &. This function being always
real, it is easily shown that Eq. (7) reduces to

n, N(z)=2v '—dn
dE

(18)

y,(z) = L,(z), (20)

L„(z)=, lnG(r, r') ~„„,„.

ImG(r, r')y, —Im(8/Br')G(r, x')
ReG(r, ~')y, —Re(s/9~')G(r, ~') '

where y, is the logarithmic derivative of $0 cal-
culated at r =R, and the real and imaginary parts
of G(x,r') and their derivatives with respect to
x' are also taken at r =x'=R.

The positions of the resonances are given by the
zeros of the denominator of Eq. (19), which occur
when

G(~,r') = 4~q, (kr)e-"-"'/~'. (16) Limiting results are

In the limit z,- -~, Eq. (16) is suitably trans-
formed to take account of the change in "local
bottom of band" which is in this case at the vacu-
um level, i.e.,

G(r, r') = -4', (iver)e ""'/z'. (17)

Let us now 1ook at the behavior of G at low en-
ergies for finite z, &0. The bulk term in (13) which
gives the behavior at small E of the imaginary
part of the Green's function for an s phase shift
in the bulk [see Eq. (16)] is eliminated completely
by a term which arises from the presence of the
surface (i.e. , which depends on z,), thus giving
for the imaginary part of the Green's function an
z' ' behavior at low energies. Or in other words,
the atom sees a surfacelike density of states (e' ')
instead of a bulk-like density of states (z'~')..

The high-energy behavior of G(r, r') is not quite
so simple. G(r, x') is an oscillating function of z.
The amplitude of the successive oscillations de-
creases rather slowly as z '

(21)

(2 fe /)'~'; z(0
RL„=(
1
R~

——- k tankR e & 0.

(22a)

(22b)

We notice that Eq. (19) strongly resembles the
equation for the phase shift in a bulk impurity scat-
tering problem, to which it reduces if Eq. (16) is
substituted for G into (19), As in bulk scattering
theory, a sharp resonance can occur if the de-
nominator of (19) goes through zero [i.e., (20) is
satisfied] when the numerator is small. This does
not happen for E =0 bulk resonances as the numer-
ator has the c.'i" behavior which does not vanish
rapidly enough at small e, in contrast to the a'~'
behavior for an / =1 resonance. "

In the present problem when zo&R (sphere lies
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inside barrier), as just pointed out above for ImG,
the numerator of (19) behaves as e'~' for small z,
i.e., like an l = 1 phase shift, so that a well-defined
resonance can indeed exist even when the sphere
is inside the surface. When z&R (sphere outside
barrier) the numerator of (19) is attenuated expo-
nentially to an extent increasing with distance from
surface and modulus of energy below vacuum. Now

a resonance of sharpness increasing with distance
from surface can occur. The present formalism
thus shows very simply how a resonance can be
developed which is at once sharp yet essentially
l =0-like inside the sphere.

One notices here also the analogy between our
expression for 4V as given by Eqs. (18) and (19),
and its equivalent in the Anderson formulation,
i.e., Eq. (1). However, a rigorous mapping of one
expression on to the other proves difficult to carry
out unambiguously except in the limit where the
proton is far outside the surface. In this case we
find that the expressions for a and A in Eq. (1)
are

p(g) g-i~-~ e-2~(~o s)
0

(23a)

—1/2
a(e) =- z 'A ' —1 —— e '""o s' (23b)

«p Vp

where

(23c)

Here &,« is the energy of the bound state of the
well at z,- ~ (sphere far outside surface), given
by the solution of Eq. (20) with L& (c) given by Eq.
(21).

m. RESULTS

u(~)=-v, e ". (24)

We take R=1 a.u. ; In fact, small changes in R
have little effect on the results. R should not,
however, be taken too large to satisfactorily use
a one phase shift model. The only remaining pa-

A. Hydrogen

The calculation of g and 4N depends on the form
of the perturbation v(r), which manifests itself
through the logarithmic derivative y,(e). In fact,
p,(e) was found to be very little dependent upon the
actual shape of the model potentials chosen —we
have tried square-well, Yukawa, and exponential
potentials —provided that these were taken to be
equally strongly binding. W'e give the results for
the form

rameter is thus v„which was chosen so as to
give a weakly bound state for the proton in bulk
jellium as has been found when r, & 1.9 in first
principles calculations. A value of up= 2.7 a.u.
gives the bound state at 0.02 a.u. below the bottom
of the band; this is independent of x, since z is
measured with respect to bottom of band. Equa-
tion (24) implicitly assumes that v(r) is unchanged
(relative to bottom of band) when z, &R, i.e. ,
sphere outside barrier, an assumption requiring
justification. Now most of the barrier potential
Vp is seen from jellium calculations to be made
up of exchange-correlation potential, especially
at large x,. Even at r, = 2 the electrostatic con-
tribution is only nP- 0.25.a.u. , compared with

V, = 0.6 a.u. It could be argued that for zp&R we
should increase v(r) by hg (a rather small correc-
tion for r, & 3). However, we argue that since the
relatively small sphere radius chosen excludes a
considerable portion of the attrative region around
the proton which is sampled by the "1s orbital, "
we should have some compensatory factor which
we arbitrarily select by neglecting hP.

The finite square barrier model has been used
as an approximation to the jellium one by Mahan. "
The fact that Mahan required the extreme value
Vp 6 p to fit jell ium of x, & 3 suggests that the
analogy between the finite barrier and jellium
models might be better at lower electron densities
r, ~ 3. In this context we recall that in the present
work we do not employ Mahan's variational pro
cedure to determine V, but we simply take the val-
ue of Vp as the calculated jellium work function
plus Fermi level.

The results of our calculation of b,N(e) based
on the potential (24) with V, = 2.7 a.u. are shown
in Figs. 3 and 4 and in Table I." It is ne'cessary
to recall that the problem of sphere overlap with
the barrier prevents the inclusion of results from
our calculation at d values for which ~s, ~

&0.5 a.u.
in Fig. 3 and Table I; in Fig. 4 we have interpo-
lated so as to smoothly fill in the excluded region.
There is a striking general agreement between our
results and those of the first-principles calcula-
tions. Our results give a fairly clearly defined
resonance peak in dN at most d. The d variation
of the maximum in this resonance is seen from
Fig. 4 to be in very fair general agreement with
that of the first principles calculations for r,
=2. 3, and 4. Furthermore, the width is narrow
at large d, then increases as d decreases, and
finally narrows again as the bound state is about
to separate just as in the first principle calcula-
tions. Quantitatively, Fig. 3 and Table I show
that the resonance width is found to be in fair
overall accord with the latter except that our cal-
culation cannot reproduce the awkward situation
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rs= 2

3 0 (1.90)
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3
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h~{e) O. U.

'

I
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6 (a.u. )
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d(a. U. )

01—

-0 5(1.1)

FIQ. 4. Energy relative to vacuum level of maximum
in resonance peak of AN as a function of d for three ~~
values. Broken curves —Hef. 5; full curves-present
work. Levels at d= ~ shown at right (broken line-aef.
5, full lines —present work). Fermi levels shown at
top le@.

10
} I

20 30
QN(P) 0,U. "

FIG. 3. AN(e) in Fig. 2, according to present work.
Curves labeled by values of d and by Az (ez} in paren-
thesis (a) r,=2.; (b) r~=3.

in which the sphere is at the barrier. We take
this as indicating that the physical model which
is the central point of this paper is physically
correct.

Notwithstanding the general agreement just men-
tioned, let us indicate its limitations. First, in
the probably rather unstable region of negative d
where the bound state is about to separate, our
resonances are too narrow [see especially the r,
= 2 case in Fig. 3(a)]. Second, theredoesseemto
be a discernible tendency in Table I for our reso-
nance width to reach its maximum at a larger val-
ue of d than that found in the first principles cal-

culations; this may possibly arise from differ-
ences between the jellium and finite barrier mod-
els. Third, the choice (24) leads to different po-
tentials v(r) relative to vacuum when r, varies, so
the resonance position converges to different
"atomic levels" at d in our model. Here, how-
ever, the resonance positions in the first pri~~ci-
ples calculations (see Fig. 4) still show just such
nonconvergent behavior at the largest positive d
values available, and furthermore seem curiously
to be converging to a level mell above that given
for the neutral 8 atom in LDF approximation. In
this connection there is seen in our r, = 2 reso-
nance position in Fig. 3 to be an analogous small
one-body shift upwards at d = 3 a.u. relative to
d= ~." The upward shift is clearly seen analyti-
cally to occur from Eqs. (3) and (23a) when the
level e,~~ lies above ~ Vo. However, this effect
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TABLE I. Resonance widths and positions. 20

s 2

d'
b

Er,

E

8

ag(e~) f

-1.0 -0.3
-15.2

0.0 0,7 1.1
-11 6 ''' -7 3

2.0 3.0
-5.6

1.8
0.7
0.9

~ ~ ~ 5.0
3 3 ~ ~ ~

p . ~
'

~ ~

r —3

~ ~ ~ 44 25
4.0 4.2 2.5 1.2
14 14 16 19

-15.7 -14.0 ' ' -12.0 —8,2 -6.0 -5.4

10

d
Erg
Er,
2Qg

2&2
.sq(~~)

—1.0
-8.6
-8.8

0.4
0.4
1.1

—0.5
-8.3
-8.2

0.9
0.8
1.1

0.0 0.5
-7.8 -7.1
-7.7

1.5 2.6
16
11

r =4

1.p
-6.1
-6.2

2.0
F 1
1.3

1.5
-5.4
-4.1

1.7
3.0
1.0

3.0

-2.5

1.0
0.2 05

6 / VO

10

d
Erg
Er2
2Qg

2&2

sg(c„)

-1.0
-5.9
—6.0

0.3
0.1
1.2

-0.5
-5.6
-5.9

0.5
0.3
1.2

0
-5.2
-5.6

0.5
0.5
1.3

0.5
4 9

—5.0
0.7
0.9
1.2

1.0 1.5 3.0
-4.5

—4.4 —1.9
0.7

1.6
1.2

1.2
0.2

seems too small to explain the whole of the effect
in the first-principles results just alluded to.
Finally, there arises the important question of
the area under the hN(e) curves, which will now

be discussed.
In Fig. 5 we illustrate hn(e), as defined in Sec.

I, for r, = 2 (r, = 2 is very similar except for a
slightly lower relative position of &~). Curves
such as that for d= 1.1 may be regarded as illus-
trating the phenomenon of an "incomplete reso-
nance". "'" However, we gain further information
by using the Anderson-model discussion in Sec. I.
It is seen that, apart from the lack of a common
intersection, curves d=3.0, 1.1, and -1.0 in Fig.
5 have a strong resemblence to curves c= 0.08,
0.65, and 1.2, respectively, of Fig. 1(b). We,
therefore believe it is reasonable to interpret
them in the same way. We could therefore con-
clude that at d= 3.0 we have an atomiclike reso-
nance, at d= 1.1 a partly bonding and partly
atomiclike one, whereas at d= -1.0 we have a
virtual bonding state. It is remarkable that Fig.
5 resembles so closely curves derived from a

~d in a.u.
Energy of maximum in resonance from Ref. 5 (eV).
Energy of maximum in resonance —present work (eV).

"Full width at half-maximum of resonance from Ref. 5

(eV).
Full width at half-maximum of resonance —present

work (eV).
~According to present work.

FIG. 5. hn(e) vs e at rs=2. Curves label. ed by values
of d.

narrow -band Anderson model (Fig. I).
By comparison of Fig. 5 with Fig. 1(b), it. also

seems that e,«and also e~ are reasonably near
the band center. In accordance with the discussion
in Sec. I, the quantity hn(ez) should then afford a
single number giving information on the bonding
character. If hn(e„) is near unity there is an oc-
cupied localized bonding state or occupied reso-
nance of strongly bonding character, with unoc-
cupied anti-bonding states, implying a degree of
covalency. On the other hand, if bn(c~) is near
2 or 0, it implies, respectively, a full or empty
atomic resonance. Figures for dn(c~) are added
to Fig. 3 in brackets and are found in Table I.

It is seen that at r, = 2 there is moderate bonding
character [hn(ez) =1.36] at d=1.1, the Jellium
equilibrium distance. The d value is reduced on
the Al close-packed surfaces, "' so although
bn(e~) is more or less unchanged at a smaller
value of d such as 0.'|, we expect from Fig. 5 that
the resonance has more bonding character. Co-
valent character increases further as indicated by
4n(e~) approaching unity at negative d. At large
d, hn(e~) approaches 2, corresponding to an oc-
cupied atomic resonance. Similar behavior is
found at r, = 3 except t ".t the atomic resonance is
unoccupied. The important conclusion of this dis-
cussion is that for a practical system such as H

on Al there is something resembling a covalent
bond in that the occupied resonance has strongly
bonding character.

Of course, the numerically calculated bn values
in Fig. 2 are required to be strictly unity by self-
consistency. Ours differ from unity due to pro-
jection on the l = 0 subspace. It is assumed here
that the effects neglected by us are mainly of the
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nature of screening and thus information about the
bond is best derived from the approximate 4n.
However, one may wonder whether the whole of
such a notable disagreement in area hn(&z) be-
tween, say the case r, = 2, d= 2 in Figs. 2(a) and
3(a) can be explained in this way.

B. Lithium

In the case of lithium there is the additional
complication of a 1s' core. We consider only the
Li valence shell and thus include the core by
means of a "model potential. " For simplicity,
we have chosen a square-well perturbing potential
rather than (24), since the core should eliminate
the attractive central region from the model po-
tential. Thus our v(r) is

v(r) = -v, ', r —R.

Arbitrary units

LW
lh

CF
I

6~a.ui
I
I0.3 -I
I
I
I

T
I
I
I
I

I

0

FIG. 6. AN(e) for Li adsorbed on jellium at r,=2.
Broken curve —Ref. 2; full curve —present work. The
latter are labeled by the value of R used.

(25)

8 should ideally be the atomic radius of Li, but
as for H a somewhat smaller B and larger v, was
used to reduce the region of space constrained to
an l =0 solution. A was varied in order to deter-
mine the role it plays in the calculation. The re-
maining parameter v, was then chosen such that
the position of the resonance coincides with that
found by Lang and Williams in their first-princi-
ples calculations' for Li adsorption on jellium (r,
= 2).

The results at the Lang and Williams equilibrium
distance of 2.5 a.u. from the jellium edge'" are
illustrated in Fig. 6, and compared to those of
the first-principles calculations. ' The curves are
labeled by the R values. A change in R is thus not
seen to produce a drastic variation in the reso-
nance width. The best agreement with the calcu-
lation of Lang and Williams was obtained for R
= 2.5 a.u. In comparison, we note that the atomic
radius of Li is 2.9 a.u. The corresponding value
of v, was given by v, =0.45 a.u. This particular

well gives an l = 0 bound state situated at about 3
eV below the vacuum level, in comparison to the
ionization energy of 5.4 eV for Li. There is thus
an upward shift of 2.4 eV of that level attributable
to the image force or other screening effect. The
value of the resonance width at this value of 8
= 2.5 a.u. is about 2.5 eV. This makes it larger
than the 2s-2p energy separation of 1.85 eV for
Li,"which necessarily means that these two levels
are strongly hybridized —an effect which has been
predicted for Cs adsorption on transition metals. "
Our l = 0 calculation is thus inadequate and must
be extended to take account of the l = 1 solution in-
side the sphere.

If the distance from the jellium edge d is al-
lowed to vary (R and v, being kept fixed at R = 2.5
and v, = 0.45 a.u. ), one finds that whereas the po-
sition of the resonance hardly varies at all, the
width changes dramatically from about 4.5 eV at
d=2 a.u. to about 1.5 eV at d=3 a.u. One should
remark at this stage that the former situation is
poorly described within our model, not only be-
cause of the necessity of inclusion of an l = 1 solu-
tion inside the sphere, but also because there is
a certain amount of overlap between the sphere
and the surface barrier. (i.e. , z, = 0.7 a.u. ). On
the other hand, our model should adequately de-
scribe the case d= 3 a.u.

Inclusion of the substrate ionic pseudopotentials
in first-order perturbation theory was shown to
lead to a reduction of d to d= 2.1 a.u. ,

' for adsorp-
tion of Li in a three fold site on Al(111). This
value of d is still much larger than the ionic ra-
dius of Li (1.2 a.u. ).

It is also of interest to consider the case of
lower-electron-density substrates such as the
case x, = 3, since this should represent reasonably
well the sp band of Ag or of Ni (r, = 3.08 corre-
sponding to 0.6s electrons per Ni atom). The pa-
rameters representing the adatom properties are
taken from above (R= 2.5 a.u. , v0=0.45 a.u. ). A
new feature of the results for ~,= 3 is the pres-
ence of a downward shift of the resonance position
as d is decreased, which was absent in the case
x,= 2. This downward shift may be regarded as
a bonding shift and indicates the possibility that
adsorption might be less ionic for these lower-
density substrates.

IV. CONCLUSION

We have derived a virtually analytic expression
for the change in density of states hN(e) when a
monovalent atom is in interaction with a surface
approximated by the finite square barrier poten-
tial. The atom is restricted to have only an s-like
valence orbital; this is achieved by keeping only
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the l= 0 solution in the muffin-tin-KKB tec'hnique.
The model is applied to hydrogen chemisorption

on jellium, for which elaborate self-consistent
first principles calculations are available. The
potential inside the hydrogen muffin tin, chosen
by consideration of the situation, for hydrogen deep
inside jellium, is kept independent both of distance
d from jellium edge and of r,. Good overall agree-
ment with the first-principles calculations was then
found, involving reproduction of the dramatic vari-
ation of width and position of the resonances as a
function of d, for x,=2, 3, and 4. The assumed
potential seems, however, to break down if the
hydrogen is too far outside the surface. We are
therefore able to confirm a simple chemical pic-
ture of the resonances occurring in the first-prin-
ciples calculations as essentially 1s in character.
We are also able to allot bonding character to the
resonances. They are found to be substantially

atomic in character when the proton lies well out-
side the surface, but to develop strong bonding
character near the equilibrium distance.

In applying the model to lithium chemisorption
on jellium, again good results were obtained for
the essentially atomic-like 2s resonance by com-
parison with first-principles calculations. Ex-
tension of our method to treat problems not so far
dealt with in first-principles calculations, such as
a/sorption of the higher alkalis, is under way.
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APPENDIX: CALCULATION OF G{r,r')

~. &o)0

The integration over k must be split into two contributions arising from the k, & k0 and k, & k0 regions.
After expansion of the plane waves in spherical harmonics, and truncation of this expansion beyond the
first term, we find

G(rjr') =8m'g ' ' . 1+,' —1 cos2k, ze+ ' 1--$ sin 2k, z,e(k, —k,)
j,(k~)j,(6') 2k,' 2k, k' '~' .

+ZS k0
k k

X/2
—;-1 cos2k, z,e(k, —k,)

0 0

where 8 is the unit step function.
The calculation of the imaginary part of G(r, r') presents no difficulty, and it is found that ImG(r, r )

can be written in terms of a single integral which in turn can be evaluated numerically,
fk/ 00

jmG(r, r')=4»kj, (kr)j,(kr')(1+ —' ' '([sx'-1 —kx(»' —2)'i'e(x —1)) cssnx
0 '

(A1)

+2x(1-x*)"'sinnxe(1 —x))C»).

We now look at the real part of G(r, r') After cha. nging the order of integration, we find

(A2)

ReV(r, r')=2
~

','" y'dy+k, t f[2x' —1 —2x(x' —1)'~'e(x —1)]cos{).x

+ 2x(l -x')'~' sino[x 6(l -x))dx 'y j",y '
y dy.

"j ( r)j( r')
e —y'/2 (AS)

The first term can be integrated analytically. The integration with respect to y in the second term can be
written in terms of sine and cosine integrals. These are regular functions everywhere in the complex
plane except for the singularities of logarithmic nature of the cosine integrals. " One can then, by use of
the residue theorem, rewrite these in terms of simpler integrals to find

R»G(r, r')=4»j (kr)(kn (kr') —k j {kr') ([kx' —1 —2»(x' —()'&' e(x —1)]sinnx
0/A0

2 (i .) i e(i .)cess.) C ), (A4)
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where n, is the spherical Neumann function of order zero. If we now make use of the identity

f [2x' —1 —2x(x' —1)'~' e(x —1)]cos(]x+ 2x(1 -x')'~ ' sinnx e(1 -x)] Cx = 0,
0

we can rewrite Eqs. (A2) and (A4) into equation (13) of the text.

(A5)

o(0
Once more there are two contributions to G(x, v') arising from the k, &k, and k,)k, regions. The wave

function for k, & k, is a real exponential; it can, however, be rewritten in terms of plane waves which we
then treat in the manner described above. In this way we find

(AB)

where q = [k' —(k'+ j(')]' '
The imaginary part of G(x, r') is then given by

[2x'&1 —2x(1+x')' ']ensnxdx); E&V, .
k

4', (in)j, (in")k, 2x(1 x')'~-'e "dx; E& V„
ImG(x, x') = Elao

4',(ik~)j,(i~r')k, —+
'L K'

0

(A7)

In order to calculate the real part of G(x, x'), we have to change the order. of integration as in the case of
0. There is a supplementary difficulty in this case due to the fact that we must integrate along all of

the real axis and part of the imaginary axis as well. After some manipulation we find

0'
4trj, (ttrx), +kj, (t xx') -[k'x' —1 —k'x(x' —1)' 'e(x —1)]e' dx); Ee V, *

ReG(r, r') = ~/a,

-4lli„(t'n)(trn, (ixx')+kj (iev') (2x'+1 —kx(x'+1)' ']sinnxdxj; E&V, .
i~/00

(AB)

Equation (14) now follows immediately from Eqs. (A7} and (AB}.
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