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Asymptotic spectrum of momentum eigenstates of one-dimensional polarons
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We consider an electron interacting with acoustic phonons through the deformation potential in one
dimension. By using a trial state that is an eigenfunction of momentum we show that at high momentum the
velocity of tQe polaron approaches the speed of sound. Since the trial state that we are using is an upper
bound for each momentum, the more usual quadratic energy-momentum relation is clearly eliminated.

I. INTRODUCTION

In a previous paper' we have studied the inter-
action of an electron with acoustic phonons through
the deformation potential in one dimension. A ma-
jor purpose of that work was to determine the
energy-momentum relation for a polaron in a
model which is soluble to a large degree. 'The

energy-momentum relation in the strong-coupling
regime was estimated variationally by using a
trial-state vector which describes a lattice de-
formation centered about some arbitrary point and
an electron bound in the potential well set up by
that deformation. 'The electronic part of the trial-
state vector contained a plane-wave phase factor
in addition to a bound-state wave function. 'This

phase factor then led to a nonzero expected value
for the total momentum of the system. We refer
to this variational theory as the moving Pekar
theory, since it is an extension of the Pekar vari-
ational theory' which was devised originally to de-
scribe an electron self-trapped in a static-lattice
def ormation.

Variational energy estimates are generally use-
ful because they are relatively insensitive to im-
precise knowledge of the true energy eigenstate,
and because they also provide an upper bound to
the ground-state energy. Since the Hamiltonian
and total momentum operator commute, the ex-
pected value of the Hamiltonian gives an upper
bound to the lowest-energy eigenvalue for each
value of momentum, . provided the trial eigen-
states are momentum eigenstates. Since the trial
state in the moving Pekar theory is not a momen-
tum eigenstate, the boundedness property at each
momentum is not guaranteed in that theory.

'This defect is remedied in the present work by
constructing momentum eigenstates out of the mov-
ing Pekar trial states in a manner due originally
to Hohler. ' The expected value of the Hamiltonian
in these momentum eigenstates is then expanded
asymptotically for strong coupling. 1his asymp-
totic expansion takes a different form at small and
large momentum. For P «ms(4va)', where m is

the electron-band mass, s is the speed of sound,
and n is the electron-phonon coupling constant, we
make an effective-mass approximation to the pol-
aron energy spectrum. 'The moving Pekar theory

I

gives a self-energy and effective mass each of or-
der o', while the Hohler theory gives a correction
of order e to both the Pekar, self-energy and Pekar
effective mass. For p»ms(4m+)', the polaron
spectrum in the Pekar approximation is an asymp-
totic series in powers of Q/ms)'~'(4ma)"'~' with a
leading term equal to sp. The Hohler theory gives.
an asymptotic series identical to the Pekar theory
out t'o a term independent of p and of order n. Thus
the Hohler theory verifies that the polaron energy
is linear in p at large momentum.

In Sec. II we briefly review the moving Pekar
theory, and in Sec. III we present the Hohler
theory based on the moving Pekar theory, and con-
struct the asymptotic expansi. on for strong coupl-
ing.

II. MOVING PEKAR THEORY

The system of an electron interacting with
acoustic phonons in one dimension via the deform-.
ation potential is described by the Frohlich Hamil-
tonian

where we use ms' as the unit of energy and S/ms
as the unit of length. In Eq. (1) a~ is the boson de-
struction operator for a phonon of wave vector k,
x is the electronic coordinate, and E is the length
of the crystal lattice. 1he total momentum oper-
ator for the system is

8
P= -z

8
+ +~amok,

and generates translation of both the electron and
lattice displacement.
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%e now make a variational estimate of the sys-
tem energy in a trial state:

its(x)) e=' '" "'u(x —R)e"s& I0),
where u(x-R) is an electronic wave function which
describes an electron localized about a point R in
the lattice. We assume that u(x) =u(-x). In order
for the electron momentum to then have a nonzero
value, we must give the trial state a plane-wave
phase factor e' '" ' which enables the electron to
move through the lattice. 'The lattice part of the
trial function is e ' ' i0), where

1
,u(x —R) —2Pu'(x —R) = eu(x —R)

2 &x

where

P = 4&T o.'/(I —v') .
E(Iuation (10) has one bound-state solution for
which

u(x —R) = (-,'P)'i'sechP(x-R),

From these expressions we then calculate

(10)

(12)

S(R) = -St(R) = Q (d*,a,e" d„at-& " ) ~ (4) p)&
= (»k/2P) csch(»k/2P),

and then
This lattice state describes a coherent lattice dis-
placement (with Fourier components (f~) centered
at R and thus correlated with the bound electron.

The parameters se and d~ and the functiona, l form
of u(x) are now determined, by minimizing the ex-
pected value of II subject to the constraints that
the trial-state vector is normalized to unity and
that the exyected value of the momentum operator
is P. %e do this by introducing the Lagrange
multipliers A. and v and then make

dx ~x H-A. -vP ~x

stationary. The results of the variational calcu-
lation are

(6)

EO dx& q, (x) t+g„(x))

= —,
' v' —-'(4» o.')' (1 —Sv')/(1 —v')'

p'= dx ~ x I ~ x =v+

= v+ 3(4»o')'v/(I —v')'.

From these parametric equations for E~ and p
it follows that

(14)

(Is)

(16)

(7)

and v takes on the physical significance of the
polaron velocity with a limiting value of 1 in ve-
locity units of s.

where

p, =p ~= dxe'~u'x .

In addition, a, differential equation,

2

,u(x -R) - g (ik i
)'i'(d„+ d „)

k

(8)

III. HQHLER THEORY

'The trial-state vector in the moving Pekar
theory is not a momentum eigenstate. Hence as
noted above we cannot argue that E~ is an upper
bound at each momentum p. But consider the
trial- state vector

(17)

x e "&" "&u(x-R) = eu(x-R), where N is a normalization factor, so that

arises for the functional form of u(x -R), and
when d„ from E(I. (7) is introduced into this e(lua-
tion, we obtain

pX pX =l. (18)

The state i())~(x)) was first shown by Hohler' to be
a momentum eigenstate. To see this we write

00 . 9I'i'y (x)) =N dR 8'~" —i [u(x R—)e'"'" "'—]e '"'io)
ex

+X dR e""u ~-R e'"'"-"' a'a I e"~' 0
moo
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From the general property

8 8f—(x R-) = ——f(x -R)
ex &R

and an integration by parts, we obtain

+ti dRe'" u(x —R)e'"'""'I pa', a~k i—-'Ie ' 'IO).&. .-s)(' i . S'& ss
k k 8R)

(20)

(21)

It then follows from the identities

e s(B) s(B) d eQB
k k k (22)

f (R R }= (0 I

e-s &s'es &~
I
0&

xp d~ y e-~kr (28)

(23)

N~= dR dR'exp i P-v R-R'
w g7 ~ OO

e-s(R) - es (R). a

8R
8

= i s
—g kd, (a,e""+a'„e-"")+Q kd',

that the integral term in E&l. (21) vanishes. Thus
Ig~(x)) is an eigenstate of total momentum with
eigenvalue p for arbitrary d„v, and u(x). We
then take these quantities as the ones given by the
moving Pekar theory in E&ls. (7), (12}, and (15).
'The parameter v retains its significance as the
polaron velocity in the Hohler theory at high mo-
mentum to the order determined in this work.

%e first determine the normalization factor N
defined in E&l. (1V). From E&i. (18) we obtain

with r=R-R'. By recalling from E&l. (15) that

p-v=g kd'„

we may write the normalization factor as
«c)

N '=—-du F,(u) F,(u) F,(u},
0

where the form factors E, (u) are given by

E,(u) =u csch(u)

F,(u) =exp(-P[(1+ v')/(1 —v')]H, (u)j,
F,(u) = cos fP [2v/(1 —v') ]H, (u)),

dt 1 2 mt
H, (u} = —-E,' —[1-cos(tu)],

0

dt1
H, (u) = ——F', —I[tu- sin(tu)].

7T t ' 2)

(27)

(28)

(29)

where

x f(R —R')g(R -R'), (24) In arriving at these expressions we have used
the continuum correspondence

(R X- ') R=f Rx x(x —R)c(x-R') =Pr ccc)Npr)
&)0

(25)
and have introduced the changes of variable u =pr
and t =k/P.

In a similar way we calculate the Hohler energy

Ep=— dx px H px
m

=N dR dR' dxexpi p- v R-R' u x-R ' e '"" 0 e~ " 'He '"' 0 e' u x-R
g ~ 00

(20)

This expression for the expected value of the Hamiltonian can then be cast in the form

d 4wn~' '
z =E +Ã'f dr e f&~ ")~f(r) IkI de(e

'"R 1)g(r) +iv
d

—g(r)-I &I p (IkI)'&2dk(e "s—1)ks(r) ',
w &O k 4I

where
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p, (r) f duu(x sr)u(x)e-'
I gQ

=—(1 —e"")csch —
~

csch(pr),mt'
T 2P/

(32)

with Ir, (r) =g'(2'). By going to the continuum limit and changing the variables of integration as before, we
obtain an expression for the deviation from the moving Pekar energy

&Ep =Ep —Ep

=-P' duu, (u)Z, (u)Z, (u)/ f dup, (u)P, (u)Z, (u),
0 0

where F,(u), F,(u), and F,(u) are given in Eq. (28), and the additional form factor F,(u) is given by

X,(u) =2(,) cue ( p, 2( )s)f (p
—)siu—'I(—)

2v "dt, rrt 4 sin'(tu/2) 2 sin(tu) 1 d
l+v sin 2H3 u +— lnF, —u

tu 1-v' P du (34)

We are interested in corrections to Ep in the lim-
it P-~ for which we require 4mn»1- v'. When

P is large the important contribution to the inte-
grals in hE comes from small u. From the ex-
pansions

where in dimensional units we have

E,= (4rrn)2ms2[--', —0 573 2( 4m .n) '+ ~ ~ ~ ],

m3'=m(4rrn)'[-' —1 1464(47m.) '+ ".]. (40)

H, (u) = c,u'+, H, (u) = c,u'+

with

C, =3g(3)/~', C, =4g(4)/v4,

(35)

(36)

ln both of these expressions the second term in
the brackets arises from the use of the Hohler
state rather than the Pekar state. At large mo-
mentum the elimination of v between Ep and p
leads to4.

where g(n) is the Riemann r function, it is evident
that the most rapidly varying form factor is E,(u).
Since we are interested in the leading term in an
asymptotic expansion for ~p, we use the approx-
imation

—0.0278 —0.009 27y '/' —~ ~ ~ )

ms (0 5 0.0728y / + ~ ~ ~ ) (41)

Eo (4rrn)2ms2(y P 655y2/3 0 0954yl/3

E,(u) —1,

E,(u) = exp[- p[(1+v')/(1 —v2)]c2u2],

E,(u) =1,
)t1+v 2 4v'(1+ v )E4(u) = 3~ 2 c3u es 2s2 pc2C3u p
&1 —v v J

from which we compute

(37)
M3 = —4)rnms2(0. 2866+ ~' ~ ),

where

y =P[ms(4vn)'] '.
ft is evident that for

p/ms & (47m)'» 1,

(42)

(43)

(44)

LhE =-8n f(4)/t(3)(1+v'). (38)

Finally, to determine Ep as an explicit function ofp
we must eliminate v between E and P through
Eqs. (14), (15), and (16). At small momentum this
elimination leads to,

the corrections due to using a Hohler variational
state are small in comparison with the moving
Pekar theory, and in particular,

lim- — = sdEp

p ups OO

Z, =E, +p2/2m+, (39)
persists. The polaron is trapped below the speed
of sound.
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