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Interfacial polarization effects in ionic conductors
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The frequency-dependent dielectric response of a simple model ionic conductor has been calculated using

boundary conditions that prevent the passage of itinerant ions to or from the sample. The calculation

includes the important eAects of local fields which lead to an inductive in-phase response in the absence of
blocking, and describes the development of interfacial polarization as the applied frequency is decreased. The
work allows for the definition of several characteristic frequencies at which the nature of the response

changes, including an inductive to capacitive transition in in-phase response at higher values of conductivity.
These features enable a separation pf vibrational (intrawell) and hopping (interwell) contributions to be made

and also make possible an evaluation of the concentration of conducting ions and an estimate of their

relaxation times. A brief application of the results using pubhshed data for Ag4RbI5, Li4Si04, and vitreous

LiNb03 is also included.

I. INTRODUCTION

In an earlier paper, ' hereafter referred to as I,
the effects of electric-dipole-induced local fields
on the dielectric response of ionic conductors were
discussed for the ease of an infinite sample or of a
finite sample with Ohmie contacts, through which
the itinerant ions ean pass freely into and out from
the material. Two major effects were deduced, the
first being an enhancement of the low-frequency
ionic conductivity over the equivalent situation in
the absence of local-field effects and the second
the development of a negative (or inductive) contri-
bution to the real part of the dielectric constant,
The latter is proportional to the ionic conductivity
and can dominate the in-phase response component
at moderate carrier concentrations.

The inductive contribution to the dielectric con-
stant seems already to have been observed in a
number of instances. ' ' However, experimentally
it is extremely difficult to approximate with ac-
curacy the Ohmic-contact condition so that the
earlier findings are usually masked experimentally
at lower frequencies by contact blocking effects.
In this paper we shall consider the opposite ex-
treme from I, namely, the presence of completely
blocking contacts through which no itinerant ions
can escape or enter the material. This limit is
much more closely realizable in practice. 'Ne in-
vestigate in particular the effects of electric di-
yoolar fields on'mobility and diffusion and deduce
simple relations describing the development of in-
terfacial polarization with decreasing frequency,
and the frequency dependence of the measured di-
electric response in the blocking frequency regions.
These blocking characteristics usually enable us to
separate the vibrational (intrawell) and hopping
(interwell) contributions to response and also allow
for an independent estimate to be made of the rele-

vant concentration of mobile iona and of their re-
laxation times. All this information can be extracted'
from dielectric measurements at frequencies- of
order of or below the megahertz range.

In this paper we again use the basic model for
ionic conductivity set out in I. Vfe consider an as-
sembly of cells (or potential wells) with parallel
orientation each of well depth V„and of spatial
extent 2x„(see Fig. 1 of 1). A fraction 1- c of the
sites are considered filled, reducing, in a mean-
field approximation, the hopping probability

W'= c~ exp(-V„/kT)

by a factor of c from the value v exp(-V„/kT) that
it would have if the adjacent hopping sites were al-
ways available (i.e., empty). The frequency v is
termed the attempt frequency and is expected to as-
sume. values 10~-10"Hz typical of optical phonons
although, for reasons not yet wholly understood, '
values up to several orders of magnitude smaller
are often found.

We assume the barrier height V& to be large
compared with kT (thermal energies) so that the
physical system represented by the model has two
characteristic frequency regions, one associated
with intracell motion (which we term vibrational)
and one with ion hopping, whichare mell separated.
This being the case, the two responses can be di-
rectly summed with little error accruing from in-
terference effects. Paper I investigated the effects
of local electric dipolar fields on the hopping and
vibrational dielectric response functions e„and &„
of the system, the total dielectric function e being
1+c„+e„. The long-range electrostatic forces
cause the effective field E(&u) at a particular cell
site to be shifted in both magnitude and phase from
the applied, or Maxwell, field Eo(&o) =ED exp( tat)-
at that same site. The form of this shift, if the in-
tracell motion is expressed in a damped-harmonic-
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oscillator formalism, is given by Eq. (16) of I as

E((u ) 02 —&u' —iZ'(u

E,(~) 0' —~' —ir'~ (1.2)

where I' is the positive damping parameter, 0, is
the frequency of the in-cell motion in the absence
of dipolar forces, and 0 is the (long-wavelength)
frequency in the presence of these forces. The
magnitude of these shifts depends on the degree to
which the itinerant cations (assumed univalent with
charge +e) are coupled to lattice modes of high
optical-mode strength during their in-cell .motion.
Theoretically, at least, one can even consider the
limit of a dielectric instability produced by the di-
pole forces. The latter situation may actually ob-
tain in amorphous LiNb03."

The final product of I was therefore a series of
four equations [Eqs. (24)-(27) of that paper] relat-
ing the real and imaginary parts of &„and &„ to the
fundamental microscopic parameters of the prob-
lem. Conductivity o, (i= v, k) is related to the
imaginary response components &,", where e, = e,'

+is,", by the equation

o( = (a&6('/47' ~ (1.3)

E~(R ) = 4'~(1 -—T )7'/V(l+(d 1 )t

o„(v)=A„(1+&u'7~, )7/V(1+ ~'~')7, ,

e„'(~ ) = 4m'„(0)/V(1+ ~'~'),

o„(v)= ~'~g„(0)/V(1+ v'7'),

(1.4)

(1.5)

(1.6)

For the overdamped case we can introduce the
characteristic times 7 =1'/0' and 7', =1/0', in terms
of which the relevant equations become

values for o and e''=1+ e,'+ e„'. We shall demon-
strate below that equivalent measurements with
blocking electrodes enable us not only to separate
E'„and &„' but also to evaluate the concentration pa-
rameter c and the relaxation time 7. Blocking ef-
fects normally begin at frequencies below material
dispersion so that in the blocking equations to be
developed we shall neglect the effects of material
dispersion, i.e. , we assume &w«1 throughout.

II. MOBILITY AND DIFFUSION COEFFICIENTS

The equation of detailed balance including the ef-
fects of diffusion and motion under the influence of
an applied (Maxwell) field E, at lattice coordinate
position x is9'0

sp(x i) s'p s(pE)
8x Bx

(2.1)

in which D and p. are the diffusion and mobility co-
efficients, respectively, and p is the concentration
of positive ion carriers per unit volume at the po-
sition x at time t. This concentration p, in the
presence of the perturbing field E„now differs in
general from the uniform concentration po= (1 —c)/
V of negative charge residing in the lattice frame-
work and providing the overall charge neutrality.
In this section we determine D and p as functions
of the complex hopping response &„ to which they
are obviously physically closely related.

Using the terminology of I, if (n&) is the occupa. -
tional probability of cell j at time t then in a local
field E((u) the mean field rate equation for hopping
to sites j+ 1 is

in which V is cell volume, y„(0) is the static di-
electric susceptibility in the absence of hopping,
and

d(n„,),
( )dt

where'

(2.2)

A„= 4S' x'„(1- c)W//AkT, , (1 6) W' = W[1 + (Sag/kT)E((u)] . (2.3)

Sx& =A.ae. (1.9)

For co~ «1, which is typically ~«10' sec ', we
note that g„(~)-0 while o„(v), e„'(v), and e„'(&u)

rapidly approach their static values g„[i.e., equal
to o„(0)], e„' and e„', the true limiting material di-
electric parameters. The last of these is related
to the conductivity 0 =o„ in the static limit by

where 5 is an effective charge parameter and ~ is
a number which relates the collective mode ampli-
tude x„ to the equivalent itinerant'ion amplitude a
in that mode according to

In dynamic equilibrium it follows that a charge

d(n, „) d(n, ,) (2.4)

is effectively transported through a distance 2a by
this field in 1 sec. The implied current is there-
fore j=2' from which the mobility p is defined by
the relationship

i = ~(n~)E0(&), (2.5)

in which (E&u) is the applied field. Using (2.2) to
(2.5) we obtain the form

c„'= -4vg(v —v, ), (1.10) g =(4Wax„S/kT)[E(~)/E, (~)], (2 6)

and is always inductive.
With Ohmic contacts, dielectric experiments at

frequencies below material dispersion provide only

which, in the absence of local-field effects, would
be r'eal and frequency independent. The same is
true of the diffusivity parameter D which is obtain-
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able from (2.6) by use of the Einstein relation

p/D = e/kT, (2.7)

Pl
~

g~+ l PL)
pdx' ( e„

(3.6)

where e is the charge on the carrier (assumed
monovalent). From (2.6) and (2.7) we find

D =(4~'nx~~/e) [E(~}/ED(~}l.

Using the Einstein relation and the definition (2.12)
of parameter f this transforms to

(3.7)

However, in the presence of local effects p. and D
assume frequency-dependent complex values. Us-
ing the low-frequency form of (1.2), viz,

where

p' =f/e„- i((d/D) . (3 8)

E(&o)/Eo(~) = (1 —i&sr, )v/(I - i&or)~, ,

the mobility (2.6) transforms to

p, =- 4ie„Wax„SV(d/4wkTA„,

(2.9)

(2.10)

where we have used Eqs. (1.4) and (1.5). Now using
Eqs. (1.8) and (1.9) this reduces directly to

The current density is the sum of displacive and
convective contributions in general but, by virtue
of the boundary condition (3.1), the latter vanishes
at x=O, I. It follows that the total current
J,exp(-i& t) flowing into and out from the sample
per unit area is simply the displacive term at the
boundaries, i.e.,

p = i(de&„/-kTf,

in which

(2.11)
((e 'I sE, i&ac„E,(0)

4' (3.9)

f=4ve po/kT . (2.12)

From the Einstein relation (2.7) the diffusivity pa-
rameter follows as

D=-t~Ch (2.13)

III. BLOCKING RESPONSE

We now consider Eq. (2.1) subject to a boundary
condition for which no, mobile cations are allowed
to cross the boundary layers at ~ =0, L, i.e., sub-
ject to the restriction

p, (x) =A sinh[p(x-2L}), (3.10)

where A is an amplitude parameter that may be
determined as a function of applied voltage by inte-
grating (3.5) directly for the Maxwell field and sub-
stitution in (3.2). We find

'h p ~+( p- "(Lcoh

(3.11)

The physically relevant (odd symmetry) solution of
(3.7) is

PPE0=D —
q x=0~ L. (3.1)

Using Eq. (3.1) to obtain the boundary field

E,(0}= (DpA/pP, }cosh( ,' pI.), —(3.12)
The voltage V(t) between the electrodes is

L
V(t) = E,(x, t) dx.

0
(3.2)

(ie„&uepA/f) -cosh( —,
'

pL) . (3.13}

the current J, can now be evaluated in explicit
form from (3.9) as

Introducing a small probing voltage V(t) =
= V, exp(-i&et) the Maxwell field Eo and mobile ion
concentration p respond in a linear response ap-
proximation in the form

Equation (3.11) and (3.13) can now be combined to
provide the formula for admittance Y; it is

AOJ1 SCv A0 &6„+ifD
'P, 4» p»„L» (2(/P/p) t»ph( pL)) '-',

and

P(x, t)=p, +p, (x)e ' ',

E,(x, t) =E,(x)e

(3.3)

(3.4)

(3.14)

in which A0 is the electrode area. Expressing the
diffusion coefficient in terms of hopping response
via Eq. (2.13) now provides the final form

in which p, and E, are small quantities.
Using the Poisson equation"

BED 4ve'I
(

) P PO

together with (3.3) and (3.4), the Eq. (2.1) now
linearizes in the form

(3.5)

-iEv A0 v+4»», L+(2»„/p)t»ph( pL))'—',(3.15)

From this expression the capacitance C and re-
sistance R..of the blocking electrode configuration
follow from Y=R ' —iC and the blocking values of
conductivity o~ and dielectric constant e~ from
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os = L/RAO, es = 4wLC/Ao . (3.16)

The last step in expressing 0~ and e~ wholly in
terms of the material response e„and e„obtains by
noting from (3.8) and (2.13) that

For simplicity we shall take v»7„ implying a
fairly soft dielectric, and shall assume that +v «1
at all frequencies for which blocking effects are
significant. The former condition leads, from (1.4)
and (1.5) to the relationship

p' =f( .'+ '). (3.17)
&a +7&a

I II (4.1)
Introducing e,. =e,' —ie,"=I/s, (i =v, h) we can then
express p as

p = ff(e„'+e„')7'~ (1+a )'~ [cos(—,
'

g) —i sin( —' g) 7,
(3.18)

and has been found to hold in Ag, abI„ for exam-
ple, 2 at frequencies above blocking.

The basic equation to be considered is (3.15) in
the limit of pI. finite but large compared w'ith unity,
l.e.,

in which
4wLY=-is, eAopL(s„+ e„)/(pLe„+ 2es) . (4 2)

n = tang = (e„"+e„")/(e„'+e~) . (3.19)

In most circumstances of experimental signifi-
cance pL is very large compared with unity. We
shall suppose this to be true for this paper, in
which case the tanh(-,' pL) factor in the denominator
of Eq. (3.15) can be replaced by unity. At higher
frequencies for which blocking effects are negligi-
ble the Maxwell field is essentially V, /L through-
out the sample. As the applied frequency decreases
an interfacial charge distribution develops in
boundary layers of width 6, with 6/L -1/pL «I, at
the electrodes. This layer progressively screens
the bulk material and causes the Maxwell field in
the bulk volume to decrease with decreasing fre-
quency until it approaches zero (complete screen-
ing) at (v=0. However, throughout this process the
bulk material experiences a Maxwell field that is
essentially independent of x except within the
boundary layers themselves.

In addition, the interfacial charge buildup in the
surface layers induces equal and opposite charges
in the electrodes, which effectively cancel any
local-field contributions inside the bulk from the
blocked hopping mechanism. It follows that the two
basic assumptions leading to the derivation of Eqs.
(1.4) to (1.7) from I—namely, that the effective
field is uniform and contains no contribution from
the ionic conductivity mechanism itself —remain
valid in the blocking electrode context except within
the narrow boundary layers themselves. Thus, as
long as p&» 1 the present theory should be ade-
quate, except perhaps for resistive terms at ex-
tremely low frequencies for which the complete
screening limit is approached and for which the en-
tire dielectric response takes place within the
boundary layers themselves.

At the lowest frequencies s„"= 4wo/v dominates the
denominator. However, as the frequency ~ rises
terms in pLe„become competitive and eventually
dominate. In the latter regime we see immediately
from (4.2) that

4wL Y= i&A, (-s„+s„),
leading via (3.16) to

os = ((o/4w)(s„"+ sg)

and

I I I
&~ —~v+ ~a y

(4 3)

(4.4)

(4.5)

~El

0
0

0 I

5

IOg)p 4U

EY +E'h
I
V

9 10

which are measures of the true material properties
as set out in I.

At the lowest frequencies ~ «&„where

v, =8wo/(f'~Le„"~'), (4.6)

the capacitance saturates to give a frequency inde-
pendent "fully blocked" dielectric constant

IV. ANALYSIS

The solutions (3.16) for blocking responses &ys

and e~, which follow from the admittance formula
(3.15), can be analyzed in all their essential fea-
tures without recourse to numerical computation.

FIG. 1. Blocked dielectric constant e z computed
numerically from Eq. (3.15) as a function of angular fre-
quency w for material parameters 7'=10 sec, f ~ I
=10, 0=10 (Ocm)", and e„'=10. Since t &~ l fot.iowsas
4' zv = 0.11 this represents a dominantly capacitive mat-
erial response s„' »

~
s„' ~. Marked frequencies vq and

e2 are described in the text.
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—32vso2/(fl/2Lsl 1/2~2) ~ ))~ (4.9)
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while the conductivity settles down to its bulk value
(4.4}. At still higher frequencies ss undergoes a
further change and one of two things occurs. If &„'

»I s„'I, such that the material dielectric constant
&„+&p is positive then E'~ goes smoothly over to
its bulk value (4.5) when &u & &a„where

&g = 8ln7/(2f'/'LE" )' ' e„' » Ie„'I. (4.10)

On the other hand, if s„' «I &~I, implying an induc-
tive material response, then the blocked dielectric
constant suddenly deviates from (4.9) to go through
zero at e=+. ~where

FIG. 2. As Fig. 1 but for material parameters 7
=10 sec, f / L=lo~, c=l(Q cm), and e„'=100.
Since I

s j, I follows as 4m o v=1.1 xlo~ this represents a
dominantly inductive material response e „' «

I e„'
I . The

region marked capacitive corresponds to a positive value
of response e z and that marked inductive to a negative
value of this response. Marked. frequencies roq, (d3 and
~~d are discussed in the text.

~ g(4gB ~J v 1 y (4.7)

which may take on very high values indeed (typic-
ally F10'). In this same region the conductivity os
varies quadratically with frequency in the form

os=fL s„(d /64s, (0 «(ch. (4.8}

As the applied frequency rises to values v& ar,
the blocked dielectric constant &~ begins to fall and

goes over to a & ' frequency dependence

+md ~ x/s ix/s }
si I &a I7'( Ls„+4wcT)

and then becomes negative, finally approaching the
bulk material value when w~ &, where

&u' = 8so/( f '/'Le "/'7), (4.12)

An inductive bulk capacitance implies 4pgT &&„but,
since values f'/' L a 10s are typical, one normally
has f' a Ls„"s»4sc~ in which case v;„~= &u, such
that the switch to induction and saturation at the
bulk value follow each other closely in frequency.

All these features can be clearly seen in Figs.
1-8 for which Eq. (4.2) has been solved numerical-
ly for both bulk capacitive and bulk inductive situa-
tions. Important points to note are that u, and m,
(or &u, ) are just the intersection frequencies of the
extrapolated low- and high-frequency capacitance-
modulus values with the extrapolated linear inter-
mediate frequency section (4.9) on a log-log plot.
In addition, from (4.6) and (4.12) we find the very
simple ratio

(u', /tc, = I/v. , (4.18)

a relationship that provides a rather direct mea-
sure of the characteristic relaxation time T of the
itinerant ions. Finally, from (4.6) and (4.10) we
note the relation

g 3»
b
O

F -5-

-8-

-10
5 6

IOgqo 4)
9 10

FIG. 3. Blocked conductivity az [in units of (0cm) ]
computed numerically from Eq. (3.15) as a function of
applied angular frequency. Curve (i) corresponds to the
material parameters relevant for Fig. 1 and curve (ii)
for Fig. 2. Note that 1 (&cm) ~ is equivalent to 9X10'
esu.

(g2/~2 fl/2L/26&1/2 (4.14)

Since, as a function of increasing temperature,
ionically conducting materials will, in general,
progress fr'om a bulk capacitative response to an
inductive one, a quite detailed analysis is available
via the set of equations set out above. Thus, at
lower temperatures, a direct measurement of e„'

and f is possible leading to an estimate for the
hopping ion density po. Then, since the tempera-
ture dependence of f is known from (2.12), mea-
surements in the inductive response regime can
provide for a separate determination of 6 and o as
functions of temperature and finally of the temper-
ature dependence of 7 and
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cI, = -4wgT . (4.15)

Most importantly, if accurate experiments were
available as function of frequency, temperature,
and possibly electrode separation L, it would now

be possible to determine unambiguously whether
observed anomalies in es (such as, for example,
are found in amorphous LiNbo, ) are intrinsic ma-
terial anomalies rather than blocking effects and,
if so, whether they originate from the vibrational
or hopping mechanisms.

V. APPLICATIONS

A full analysis in terms of the above interfacial
polarization results requires ideally experimenta-
tion as a function of frequency, temperature, and

electrode separation L. Nowhere have we found in

, the literature complete data in this respect for any
ionic conductor. Nevertheless, limited data are
available for several materials, enough to examine
briefly a few of the broader consequences of the
equations, and we set out below a few findings for
the three ionic conductors Ag, RbI„Li4Si04, and
vitreous LiNbO, .

fl/21 +11/2 1 2 Q 108
V

(5.1}
I

and hence, from (4.6), (4.10) and (4.11), predict
values

log„(sr, ) = 3.8, log„(&u,.„~)=log«(&u, ) =5.6, (5.2)

with all frequencies in Hz, assuming
I &ff~ =2 &10'

A. Ag4Rb15

Armstrong and Taylor' have measured room-
temperature dielectric response q~ and o~ for this
conductor between frequencies of 1 and 10' Hz, us-
ing Pt electrodes for blocking the itinerant silver
cations. Their capacitance measurements (Fig.
3D of Ref. 2) bear a striking resemblance to Fig. 2

of this paper, exhibiting an excellent (u 2 variance
between ~, and co„and undergoing a sudden induc-
tive transition at ~~&=~, =-9x10' Hz. Material dis-
persion, following Eq. (4.1), is observed above 10
MHz enabling a direct (i.e., nonblocking) evaluation
of T to be obtained directly from the data. Arm-
strong and Taylor find the value T =7&10 ' sec.
The resistance measurement is frequency indepen-
dent with os =cr =0.23 (0 cm) ' below material dis-
persion until blocking takes over at +,. Below &,
the measured conductivity o~ varies closer to ~'
than the &u' form of (4.8), and this may indicate the
breakdown of the theory for surface layer domin-
ated resistive response alluded to earlier.

From the experimental capacitance observation
es(v-0) =6&&10 we estimate, from Eq. (4.7), that

to be large compared with e„'. Experimentally,
from the capacitance scan of Fig. 3D of Ref. 2, we
have log«(&u, ) =3.6, and log«(&u, ) =log«(v, ) =5.9,
in good agreement with theory. Values for &„' and

po cannot be deduced from the room-temperature
data alone.

o =5&10 ~ (0 cm) ', e~(a)-0) =10',

(u)„~=8xlO' Hz, (a)i=10 -10 Hz.
(5.3)

From the appropriate equations of Sec. III we eval-
uate

y~/~g~~~/2 =2xlp8 v =gpp Hz,

~ =2&&10 ' sec,
~

e„'(=10'.
(5.4)

The estimate for relaxation time r (deduced from
the observed &u. ~) is several times larger than that
for Ag, RbI, above. The larger value is supported
by the conductance dispersion which is observed at
frequencies above w ~ and which suggests a value
7 =5x10 ' sec. However, Hodge et al. also ob-
serve the inductive transition at 488't, where 0
=o(488) =3 &&10 s (0 cm) ' and find it at a frequency

(488) which is slightly greater than &u. ~(623).
Theoretically, as long as

~
~„'(»e„', we expect from

(4.11) that

~ a(488) o'/'(488}
(u;na(623) o' '(623) (5.5).

if q„' and 7 are not temperature dependent [in which
case e„'(488) =700J. For an oxygen tetrahedral net-
work we do not anticipate a marked temperature de-
pendence for dielectric constant ~„', and the data
therefore suggest that the relaxation time T may
well be a strongly increasing function of tempera-

B. Li4Si04

Hodge eg al.' have measured e~ and o~ for
Li48iO4 as a function of frequency between a few
hundred cycles and a few megacycles at several
different temperatures (using gold electrodes to
block the itinerant Li'). Unfortunately, however,
none of the frequency scans covers a full range &

«~, to +»(u2, w3, so that again only a partial
analysis is possible. At the lower temperatures,
for which conductivity is small Ilp '(0 cm) ' at
153'6], the material dielectric constant c„ is di-
rectly measureable above &, and is of order 10.
However, conductivity rises exponentially with
temperature and inductive transitions are seen on
the frequency scans at 488 and 623. The 623
scan is most complete, although full blocking. is
never attained and Hodge eg gl.' do not give the full
details of the inductive response magnitude.
Nevertheless, at 623'C we observe directly from
the data the experimental values
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ture (or perhaps more significantly of conductiv-
ity). The fact that the conductivity dispersion above
v. d is not seen at 488'C in the available frequency
range (to 3 &&10' Hz) as it is at 623'C is a possible
confirmation of this effect.

C. Vitreous LiN103

Vitreous LiwbO, has been prepared in the form
of wafer samples and has a limiting low-tempera-
ture dielectric constant of e~= ~„'=25."""Ex-
periments have been performed with both face elec-
trodes (L=L&=1.5 gm) and edge electrodes
(L = L, = 7.5 gm) the different configurations giving
qualitatively different measurements for e~ at high
temperatures. At an applied frequency of 1 kHz,
using blocking gold facial electrodes, the T depen-
dence of e~ was reported in Ref, 7. This in-phase
response rises to =60 at room temperature~ and
then very rapidly to a peak' &~ =4 &10' at 650'K
followed by a second peak of roughly equal magni-
tude at the crystallization temperature T„y f
=770'K. It has been conjectured' that the lower
peak may represent a diffuse dielectric instability
(i.e. , large values of e„').

The situation is complicated, however, by the
fact that vitreous LiwbO, becomes an increasingly
good ionic conductor as T rises with conductivity
(above &, ) about 5 &&10 ' (0 cm) ' at room temper-
ature and close to 10 ' (0 cm} ' at 500'K." Un-
fortunately, conductivity measurements in the
peaked e~ region are not yet available. However,
it is clear that a quantitative description of these
peaks must take into account the conductivity and
the possibility of a development of interfacial po-
larization.

At room temperature, with edge electrodes, the
value of v, (from resistivity data") is =3 Hz. If es
= e„' at room temperature (see below) with a value
60, then we calculate from (4.6), (4.7), and (4.10)

p0=2x10'0 cm ', (5.7)

which implies that only about 1%of the available Li
ions are actually participating in the macroscopic
ionic motion at these temperatures.

As T rises, the frequencies v, and &o, (being
dominated by a) increase rapidly so that at higher
temperatures all data taken at 1 kHz (or below) are
undoubtedly influenced strongly by interfacial po-
larization. Though a detailed analysis of the high-
temperature peaks in e~ must await further con-
ductivity measurementp, one observation from
Ref. 7 is highly informative. It is that the change
from face to edge electrodes increases the T„y
peak by a factor of 5 (to -2 &&10') while leaving the
650'K peak unchanged or decreased (it becomes a
shoulder on the higher T peak). This implies that
es at 770'K is fully blocked [with a magnitude ~L
from (4.7)]. It follows from the room-temperature
data (5.6) that e8(~-0) at T, is close to its value
at 300'K and that accordingly the value of e„' at
T „„,is not significantly greater than 60. At the
lower peak, however, e~ is obviously not fully
blocked. A large. value of e„' in this region, which
would decrease ru, of (4.6), would be in accord with
this observation and an explanation in terms of a
diffuse dielectric instability near 650'K remains an
intriguing possibility.

the theoretical estimates

f' 'I,,=BX10', (ma=660 Hz, g~((u-0) =3X108,

(5.6}

at this temperature, assuming ) e„'
~
«e„' (which cor-

responds to 7 «10 6 sec). The value (un = 660 Hz
implies that the greater part of the increase in ob-
served dielectric constant between 0 and 300'K is
indeed a true material effect and not due to inter-
facial polarization. From (5.6) and (2.12) we now
find a mobile ion density
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