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An analysis is carried out of the effects produced by the possibly strong electric dipolar coupling between
intracell dielectric response and intercell hopping response in a simple model of thermally activated ionic
conductivity. The results suggest the presence of two marked effects. The first is an enhancement of the low-
frequency ionic conductivity over the noninteracting equivalent caused by the increase in effective local
perturbing field (over the applied field) which is produced by the local vibrational dipoles. The second is the
development of an inductive contribution to the real part of the dielectric constant which increases
exponentially with increasing temperature and which can easily dominate this reponse component at moderate
carrier concentrations. A diverging conductivity is predicted on approach to a second-order dielectric

instability.

I. INTRODUCTION

Theoretical approaches to the problem of par-
ticle kinetics in ionic conductors have been vig-
orously pursued in recent years and have prog-
ressed along two distinct paths using a model of
ionic motion in a periodic potential. One line of
approach' has been to concentrate on the motion
of noninteracting particles in a specific (say
sinusoidal) potential (a problem that has yet to
be exactly solved even in one dimension) to locate
the high-frequency oscillatory and the low-fre-
quency diffusive regions of dielectric response
and to examine the relations between them. The
high-frequency response corresponds to localized
motion within a single “cell” while the low-fre-
quency diffusive response describes the intercell
motion. A second approach? has been to neglect
high-frequency characteristics and to concentrate
on a more detailed discussion of intercell hopping
including hard-core interactions between the
hopping ions (i.e., not allowing any two particles
to simultaneously occupy the same site).

In real ionic and superionic conductors the it-
inerant particles are charged ions and must there-
fore interact strongly with each other through the
long-range electric force field in addition to the
short-range interactions which dictate the hard-
core repulsion. Their in-cell high-frequency
motion between “hops” therefore describes a
strong optically active local vibrational mode.

To date the only effort to discuss the importance
of the strong long-range electrical interactions
has been performed in a static (domain) context.?

In this paper we attempt to wed the two approaches
discussed above and to include the important elec-
tric dipole interactions to boot. Obviously such
an ambitious project can be initiated only at a
comparatively low level of theoretical sophistication
and we perform essentially a random-phase an-
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alysis incorporating the electric dipole forces in
the form of local fields that couple the oscillatory
and hopping characteristics of the total dielectric
response. The model, which is set out in detail
below, has some relevance for the very active
field of superionic conductivity but will be dis-
cussed here with an eye on potential dielectric
instabilities that might result from the ordering
effects of interacting lattice dipoles.

We address then the question of what interplay
might be expected between in-cell dielectric
characteristics and ionic conductivity in dielec-
trically soft ionic conductors via the strong elec-
tric dipole forces that couple them. The question
is pertinent in the light of the recent preparation
of dielectrically soft glasses® and of the observation
of significant ionic conductivity at and above room
temperature in those containing alkali-metal
cations.’ It is also a rather general question not
necessarily restricted to crystalline or to am-
orphous materials and we shall attack it by utilizing
a simple model that glosses over the details of
structure and topology but which is sufficient for
determining the fundamentals. Although we lay
accent on systems for which the optically active
mode associated with the conductivity is fairly
soft (and possibly critically soft), since the local-
field effects are most dramatic in this context, the
results are applicable in a wider sphere of in-
terest.

In order to demonstrate the typical relevance
of the simple model to be studied, we first give
a little thought to the relationship between the
dominant polar mode and the microscopic con-
duction mechanism in a specific class of materials
for which the model might be of some semiquan-
titative value. Consider, for example, an ABO,’
system made up of dielectrically soft oxygen-
octahedral or quasioctahedral units, associated
with the B cation, coupled to itinerant alkali-
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metal A ions. The “hopping” A cation is, during
its in-cell motion, strongly ionically bound to its
associated B cation group to give the chemical
characterization A*(BO,)” with each A ion carrying
a unit positive charge e. The soft dielectric mode

for such a system (e.g., the perovskite and pseudo-

perovskite ferroelectrics) consists of an in-phase
motion of the cations against the oxygen frame-
work.® For systems where the A cation is very
light and the B cation heavy the “soft-mode” am-
plitude of the A ion becomes large and that of the
B jon small (e.g., in LiTaO, the relative Li to
O to Ta soft-mode amplitudes are in the ratios”
15:-6:1) so that the mode that dominates the
dielectric response approximates that of the A
cations vibrating against the anion framework.
But this mode is of just the right character to
contribute significantly to an attempt motion for
A cation hopping in cases for which structural
imperfections or lack of stoichiometry allow for
such an event. _

In the simple model to be examined in this paper,
we assume that for an ionic conductor involving
a hopping cation A, the A-ion motion between
hops is dominated by a single optically active
vibrational mode. The important consequence
is that the electric field perturbation then ex-
perienced by the A ion on application of an external
field E j(w) is not E ,(w) itself but an internal effective
field which is directly proportional to that E(w) ex-
perienced by this mode. In general, the strong
dipolar interactions involved in this motion make
E(w) larger than E (w) and shift its phase. The
effects are particularly pronounced for a di-
electrically soft attempt motion and result in
an enhanced ionic conductivity and a contribution
to the permittivity which is negative (i.e., in-
ductive) in sign from the hopping motion itself.
The latter is proportional to the ionic conductivity
and is therefore likely to dominate the in-phase
response for systems with high conductivity. It
would appear to have already been observed
experimentally®® in some superionic conductors.

II. MODEL

As set out in Sec. I, we adopt a model for which
both dielectric response and thermally activated
hopping conductivity are describable in terms of
a single potential function V(x). The variable x
is a configurational coordinate which, in the sim-
plest physical situation, can be taken to be es-
sentially that describing a soft-mode motion of
the hopping cation against the anion framework.
The in-celldimensionis 2x , withpotential barriers
of height V,, peaking at x =+ x,. The precise form
of the potential function within the cell “barriers”
need not be specified in detail but might be any-
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FIG. 1. Local potential function V(x) for (a) a quasi-
harmonic vibrational response and (b) a double-well
oscillator. The potential amplitude V), at the cell bound-
aries +x, denotes the barrier energy for thermally
activated intercell hopping.

thing from quasiharmonic [Fig. 1(a)], through
grossly anharmonic, to double well [Fig. 1(b)]
in shape.

If the barrier height V,, is large compared to
thermal energies kT, then the physical system
represented by Fig. 1 has two characteristic
frequency regions. One is associated with the
intracell motion and we shall for definiteness
term-it “vibrational.” The other is given by the
inverse relaxation time associated with thermally
activated hopping over the V, barrier. Corre-
spondingly, a contribution to the dielectric res-
ponse function may be expected from each of these
terms and, if the two frequency regions are well
separated (which we shall assume), interference
will be small and the two contributions can be
treated independently and added in simple fashion.

Our detailed model will now consist of an as-
sembly of N such “cells,” randomly occupied with
a probability 1 — ¢ (where ¢ < 1) and interacting
via electric dipolar interactions. Neglecting boun-
dary effects (i.e., assuming the presence of Ohmic
contacts or working at frequencies high enough to
obscure electrode blocking effects!®) the macvo-
scopic concentration distribution of mobile ions
is unaffected by the application of a perturbing
field. Coupled with the long-range nature of the
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electric dipole force field this assures that no
significant dipole field is induced at a particular cell
site by the hopping conductivity itself. Such, of
course, would not necessarily be the case for a
finite sample in the presence of a static field,

for which a concentration gradient would develop
in the presence of electrodes with blocking or
partially blocking characteristics.!’ The induced
dipole field will therefore result, in our approxi-
mation, entirely from the vibrational motion which
is perturbed within each occupied cell by the field.

III. ISOLATED-CELL RESPONSE

Let us consider first the response of a repre-
sentative jth cell to an “applied” field E e ¢ in
the absence of any intercell coupling. We shall
refer to this as “isolated-cell” response and denote
it by a subscript s. As discussed earlier, the
response X, can be separated into vibrational and
hopping components, x, , and X, 5 respectively,
such that

XS(w) =Xs, v(w) +Xs, h(w) . (1)

The vibrational contribution can be expressed in
a damped harmonic oscillator formalism?!?

Xs, (@) =X, ,(0)Q2/(Q2 - iTw — w?), (2)

for V(x) of a quasiharmonic form, where x; ,(0)
is the corresponding static response, and 2, and
T are, respectively, the frequency and the (posi-
tive) damping parameter of the relevant os-
cillator. On the other hand, if V(x) is of the
double-well form of Fig. 1(b), then a Debye rep-
resentation is more appropriate,’? viz.,

Xs, o{@) =X, »(0)/(1 = iwTy) | 3

in which 7 is a relaxation time characterizing the
intracell double-well hopping. For a grossly
overdamped vibrational motion (I'> ), corre-
sponding perhaps to a very anharmonic or shallow
double-well intracell motion, the vibrational
response (2) goes over to the Debye form (3) where
Tg= 1"/9;.

The hopping response g »(w) can be calculated
in a mean-field approximation by assuming that
the dominant effect on conductivity of the existence
of an occupational probability 1 — ¢ per site on the
potential hopping sites j £1 is the reduction of the
hopping probability W by a factor of 1 — (1 —¢)=c
from the value W, which would pertain if adjacent
hopping sites were empty.!® In the absence of a
perturbing field, W, is expressible as the product
of an attempt frequency v and a Boltzmann factor
of exp(-V,/kT), i.e.,

W=cvexp(=Vy/kT). 4)

For damped harmonic response the attempt fre-
quency is of the order of Qs/21r and values ~10'2
are considered typical.

For isolated response, in the presence of a
perturbing field E,e~“*, we must include the field
energy in the potential function in the form V(x)
~V(x) —SxE,e"*“*, where S is an effective-charge
parameter. It follows that hopping probabilities
W* and W~ parallel and contrary to the field di-
rection respectively now differ such that

Wi=cv eXp[—(l/kT)(VM:FSxMEOe-iwt)]
W12 xa RDE ] o

Consider now the rate equation governing hopping
into the cells j+1. In the mean field approximation
it is

Edt" ("I,}Q = Wi("l;) ) (6)

where (n;) is the occupat'ional probability of site
j at time £. In particular,

j—t<nm =Ny =@ Wx,{n;)S/RT)E, e, )

The mean-field solution of (7) is obtained directly
by putting (n;) equal to its unperturbed equilibrium
value 1 —c and integrating. We find

-2W(1 -c)Sx,, EO gmivt
iwkT

<ni+1 - 77]-1> = (8)
Writing (n;,, = 1;.,) =Ane **f we can define an
electric dipole moment Ap associated with the

A ion hopping in the form

Ap=2aeAn, (9)

where we have taken the A ion charge to be +e

and the hopping distance to be 2a (i.e., a is the
relative displacement of the A ion with respect

to the anion framework when the collective dis-
placement variable ¥ has its maximum value x,,).
Using Eqgs. (8) and (9) we can now define the hopping
response

Xs, W) =28p/E =i4W(1 —c) ax ,; Se /wkT (10)

and writing Sx,, =Xae (where X is a simple scalar
quantity) and using Eq. (4) we obtain a final form

i(2a)®re?c(1 —c)ve-" M/ T

wkT (11)

Xs, n(@) =

Any dielectric response x; produces a contribution
to dielectric constant € =€’ +i€” of the form ¢;
~4my,;V, where V is the volume of the relevant
cell. It follows that X, ,(w) contributes only to the
imaginary part of the dielectric constant (i.e., to
the conductivity o =we”/47).
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IV. COLLECTIVE RESPONSE

Within mean-field theory the effect of intercell
interactions is included as an effective field E(w)
at the particular reference cell site. As discussed
earlier, for our case the induced component E(w)
— E () of effective field [where E (w)=E, f]
results solely from the vibrational component.

The induced polarization P(w) is therefore made
up of the sum of vibrational and hopping com-
ponents as follows

VP(w) = V[P, (w) + Py(w)]
=[Xs, (@) +Xg, s(W)]E(w), (12)
where
Xs, o @)E(0) =x,(@) Eo() (13)

and y,(w) is the collective response of the en-
semble of vibrational oscillators interacting via
the electric dipole field.

In a random-phase approximation the collective
response ¥,(w) can be formally calculated as a
function of the isolated-cell response ¥, ,(w) and
takes the form?!?

Xv(w) =Xs, v(w)/[l - 'U(O) Xs, v(w)] 4 (14)
where v(0)=23,v,, and v;,,x, is the dipolar in-

teraction operator between cells at sites j and
k. Combining Eqs. (13) and (14) enables us to

Using the damped harmonic oscillator form of
Eq. (2) for the isolated-cell vibrational response,
Eq. (15) transforms to

E(w)=E (w)(Q2 - w? —iTw)/(Q% - w?—iTw),  (16)
in which
22=0Z[1-2v(0)x,, ,(0)]. (17)
The collective response y,(w) also follows as
_ Xgu0002  x,(0)92
%(@)= g7 e iTe C e =T (18)

indicating that the frequency @ is just the re-
normalized frequency of the collective vibrational
oscillators.

We note that E(w) is in general not in phase with
Ey(w). This has the important consequence that
the hopping response can now contribute to the
real and imaginary parts of the dielectric con-
stant. Also, since 22/Q2 is in general larger
than unity, the low-frequency response is pos-
sibly considerably enhanced by the presence of
the dipolar interactions. This implies an enhanced
ionic conductivity as well as a perturbed per-
mittivity.

Substituting (16) in (12) and using the isolated
response forms of Eqs. (2) and (11) we can now
write explicit forms for the vibrational and hopping
contributions to the collective frequency-dependent
polarization. They are

express the effective field E(w) in terms of the _ [ x£0)2%(Q2 - w2+iI‘w)>
applied field in the form Pyfw)= < M@ = o] ) Fo) (19)
E(w)=E(w)/[1-0v(0) x4, ,(w)]. (15) and
2 2 T (Q2 2)(0)2 2 2,2
P,(w) =Ah(_(ns_sz )T w + (2 - w?)(Q2 ~ w?) + T2w?] >Eo(w) ’ (20)

Vol @2 = 0?4 T207]

in which
A,=[(2a)2e% (1 —c) vexp(-V,/kT)/RT, (21)
and we have used the fact (Eq. 18) that

xm(o)ﬂﬁ =x,(0)Q2. (22)
The resulting dielectric constant follows from
€(w)=1+[41/E(0)][P () + Pi(w)] . (23)

Writing €(w) =1 + €,(w) + €,(w) to define the vi-
brational and hopping contributions to dielectric
constant, and separating each into real and im-
aginary parts according to €;=¢€} +i€? (i=v,h),

we obtain the final explicit forms for vibrational
and hopping contributions to the real and imaginary
parts of the dielectric constant as follows:

ef(w) = -41A,T(Q2-Q2)/VD(w), (24)

L

€7 (w)=4mA,[(Q2 - w?) (22 - w?) + T%w?]/VwD(w) (25)

e/(w)=4my, (0)Q%(Q2 - w?)/VD(w), (26)
€2(w) =41y, (0)2*Tw/VD(w), 27
in which

D(w) = (02 - w?)? 4 T2w?, (28)

The equivalent calculation for the order disorder
situation expressed by the isolated response of
Eq. (3) follows in an analogous fashion from Egs.
(14) and (15). We find in particular the effective
field

E(w)=E (0)1(1 - iwT,)/T4(1 —iwT), (29)
where

T=74/[1-v(0)x,,,(0)], (30)
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is the relaxation time for the collective diffusive
motion within the cells. Thus, for example,

Xo(@) =%,(0)/(1 - iwT), (31)
where l
Xo(0)/%4,,(0) =7/7,. (32)

The explicit order-disorder forms for “vibrational”
and hopping contributions to dielectric constant
follow from Eq. (12) as

€)(w)=—41A (T - TIT/V(1 + w2771, (33)

€/(w) =41A (1 + w277 )T/V(l + 0337, (34)

€)(w) =41y, (0)/V(1 +w?r?), (35)

€2(w) =4ry,(0)wT/V(1 + wr?). (36)
V. ANALYSIS

Let us consider first the static limit for the
damped oscillator case. From Egs. (24)-(28)
we find

€1(0)=-47A, TQ2/VQ%, 0,(0)=4,02/VQ?, (37)
€2(0)=41%,(0)/V, 0,0=0, (38)

where we have assumed Q2/Q2> 1 (which is
essentially the definition of a dielectrically soft
material) and have transformed the imaginary
contributions to conductivities using o =we”/4x.
The vibrational contributions of Eq. (38) are just
those expected for a soft dielectric in the absence
of ionic conductivity. On the other hand, the
hopping contributions to conductivity and per-
mittivity are both very different from what one
would calculate in the absence of coupling to a
vibrational mode. In the latter case we would

have €4(0)=0 and 0,(0)=A,/V. The ionic con-
ductivity in the static limit is therefore enhanced by a
factor of (§2,/2)2. Inthe limit of approaching a second -
order dielectric instability at say T',, the ionic con-
ductivity of Eq. (37) actually diverges as |T - T,|™!
in the mean-field approximation since

27 _ %0 1

@O~ TT-T. (39)

as T—~T,. In this same limit €}(0)<|T - T,|"% and
€/(0)<|T = T,|™* so that hopping activity dominates
the permittivity also, and is negative (i.e., in-
ductive).

At finite frequencies and in the overdamped
limit %> Q2> Q% where the latter inequality
defines a soft dielectric, we can make contact
with the double well format. If we write

-r=1"/92, (40)

the equations (24) to (28) appear as

€)(w) =41 A,7(R2/9%)/V(1 + w37?) (41)
0,(w) =A,[(R2/9%) + w?7?]/V(1 + w?7?), (42)
€(w) =4m%,(0)/V(1 + w?T?), (43)
0,() =%, (0)Tw?/V(1 + w?r?), (44)

These equations, as may be seen by inspection,
are just those which follow from the double-well
response of Egs. (33)-(36) if we associate 7, with
T'/QZ and take 7> 7, to define a soft dielectric.
The only difference is the fact that for the double
well format the characteristic times 7 and 7,
both contain an exponential temperature factor
exp(V,/kT) where V, [Fig. 1(b)] is the height of
the intracell energy barrier at x =0.

Except for temperatures pathologically close
to a sharp second order dielectric instability,

. the applied frequency w «< @ if w is less than ~108

Hz. It follows that at these frequencies the under-
damped vibrational equations reduce to their
static counterparts. For overdamped vibrational
modes or double-well situations, however, cross-
over from low-frequency (w7 < 1) to high-frequency
(wT>1) regimes can occur at frequencies w << .
In the high-frequency region (assuming a fre-
quency-independent damping factor or relaxation
time) both contributions to permittivity decrease
in magnitude with frequency as 1/w? while both
contributions to conductivity attain frequency-
independent values. In particular, the high-fre-
quency hopping conductivity is simply A,/V,

which is the value expected in the absence. of any
coupling to the vibrational mode.

Away from any dielectric instability €/ and o, are
not markedly temperature dependent. On the other
hand €; and o, both possess an exponential tem-
perature factor of exp(-V,/kT) coming from the
factor of A, of Eq. (21) which will dominate the
hopping response. The exponent is slightly modi-
fied for the case of double-well vibrational motion
by the exponents also appearing in T and 7,. Using
Eqs. (33) and (34) we find for the low and high-
frequency regions, respectively,

~€] <0, exp(V,/kT) xexp[(V,-V,)/kT], wT<«1,
(45)

-}, exp(-Vo/kT)xcexp[-(Vy+V,)/kT], wr>1.
(46)

The major conclusion is that the interaction
between hopping response and localized vibrational
response produces two marked effects. The first
is an enhanced ionic conductivity at low fre-
quencies due to the increase in effective local
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field (over the applied field) produced by the’in-
teracting vibrational dipoles. The second is the
development of a contribution to permittivity which
is negative in sign and proportional to the con-

=]

centration of carriers. This inductive response
may easily dominate the real component of di-
electric constant particularly at high tempera-
tures.
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