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Small-polaron theory of phonon-assisted defect tunneling
with quadratic defect-lattice coupling
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The usual polaronlike treatment of phonon-assisted tunneling of lattice defects is a linear-coupling theory in
which the defect-lattice interaction is linear in lattice displacements. We extend the treatment to include
coupling terms quadratic in lattice displacements and momenta. Both the linear and the quadratic coupling
are treated to all orders in the interaction so that the resulting theory is a union of small-polaron theory with
Lifshitz perturbed phonon theory. Our formal results are presented in diagramatic series form and in terms
of integral equations. Approximations suitable for high- and low-temperature ranges are discussed.

I. INTRODUCTION

In a recent paper' one of us discussed a heuristic
model of the effects of in-band defect-induced
phonon resonant modes on phonon-assisted defect
tunneling. The reader is referred to that paper
and the references therein for a general discus-
sion of this problem. It is the purpose of the pres-
ent paper to develop a proper theory of these ef-
fects: i.e. , those effects arising from the inclu-
sion of terms quadratic in lattice coordinates and
momenta in the defect-lattice Hamiltonian. These
quadratic defect-lattice coupling terms are terms
additional to the usual linear-coupling terms which
are responsible for the well-known polaron aspects
of defect tunneling. ' The theory we develop here
is not a perturbation treatment of either the linear
(polaron) or the quadratic (perturbed phonon)
terms in the defect-lattice interaction. It is known
that low-order perturbation treatment of these ef-
fects is typically inadequate. " Both terms are
tre~d, in effect, to all orders in the interactions;
and the resulting theory may be regarded as a sort
of wedding between, small-polaron theory and Lif-
shitz perturbed-phonon theory, neither one a per-
turbation theory. O' Rourke and Kubo and Toyo-
zawa' have also investigated closely related prob-
lems. We vill mention the relation to our work
at appropriate places below.

In the following paper' we apply the theoretical
developments of this paper to a specific defect
system, RbCl:Ag'. The present paper is devoted

to the formal development of the theory. Section
II presents the Hamiltonian we will use. In Sec.
III an expression for the transition rate of interest
is developed and in Sec. IV this transition rate is
developed in terms of diagrammatic series. These
series are formally summed in terms of integral
equations in Sec. V. Sections VI-VIII discuss ap-
proximate forms of the theory which should be
valid at sufficiently high and low temperatures.

Two appendices discuss certain limiting forms of
the diagrammatic series sums which are useful
in developing the low-temperature approximation
of Sec. VII

II. HAMILTONIAN

The Hamiltonian of the defect-lattice system is
written'

H =Hn + H~ + H~~ (1) +H~(2) + H~ + Hq .
Here H~ is the Hamiltonian of a single defect in

a rigid lattice,

(2)H = &,, i j
f,j

where the
l
i) are directed or pocket states for the

defect and &,.~ is a tunneling Hamiltonian matrix
element between directed states.

H~ is the Hamiltonian of the ideal host lattice:

1 P~X~= — ~' +X,~...X g~. ..)M~

afa

(4)

in terms, alternatively, of lattice displacements
and momenta or phonon creation and annihilation
operators. L is a site index, e a Cartesian com-
ponent label, and f is a phonon normal mode in-
dex

H~~(1) and H~~(2) are defect-lattice interaction
terms linear and quadratic, respectively, in X~
and X~~, I'~~. The Condon approximation is as-
sumed so that Hn~(1) and Hn~(2) are diagonal in
the directed-state representation, that is,

1/36 1979 The American Physical Society



SMALL-POLARON THEORY OF PHONON-ASSISTED DEFECT. . .

and

H (2) = Q H z(2), ~
i)(i ~, (6)

where

Hnz(1)q —Q Lzi X~

L~&X& =L' 'X. (6)

Here the L~ are linear-coupling coefficients for
the defect-lattice interaction when the defect is in
directed state ~i) In. practice we will assume

that the defect couples only to nearest-neighbor
displacements. This is indicated in the t) sum in
(6). 6 will be used as a convenient abbreviation
for those Lz in the defect space, that is, -those
I n which correspond to the defect and its nearest
neighbors. (For a defect with six nearest neigh-
bors the defect space has dimension 21).

We will frequently write vectors with components
corresponding to Lz in the notation appearing in

the last equality in (6). L' is the transpose (row
vector) of L' and L' 'X is a vector inner product.
Note that L' has nonzero components only in the
defect space.

Similarly, again limiting interaction to the near-
est-neighbor defect space,

1 2 1 1
Hnr (2) ( ———Q Pq ——5~~i + 5 V @'.X~ Xs,

gg - 8 ™8 8

where 5M~ is the mass increment of the defect
which is nonzero when 8 corresponds to the defect
itself and 5V~~. is the potential energy matrix in-
crement introduced by the defect in directed state

Phonon-assisted tunneling (and polaron) theory
is usually studied in the approximation in which

Hn~(2) is assumed to be zero, an approximation
which we will refer to as the linear-coupling the-
ory. Inclusion of both Hn~(1) and H~~(2) will be
called the quadratic-coupling theory.

H~ and H~ are interactions of the defect with
electric or stress bias fields and are given by

III. TRANSITION RATES

As discussed in Ref. 1 a quantity of interest in
describing phonon-assisted defect tunneling is the
temperature-dependent transition rate for defect
reorientation among directed states. The devel-
opment of a theoretical expression for this quan-
tity is the goal of this paper.

We consider transitions produced between eigen-
states of K+ H~ by the perturbation H~, H~ being
zero. Suppose the applied electric bias field is
so oriented as to remove all tunneling degeneracy
and make the directed states i) eigenstates of H~
with eigenvalues E,. We then have

H~= — P,. '
) i i, (6} (ii+iiz) in, )= ( g Ktdimig+Eg ) in~'i (13)

f

and

H)=—Hq+ Hnq(2)( (10)

x, i)(i,

where

H~+ Hn~(1), + H-~~(2), . (12)

H, is the lattice Hamiltonian without linear-cou-
pling terms and is thus a harmonic-lattice Hamil-
tonian, the phonons of which can be calculated
from those of H~ by standard Lifshitz theory.
Note that the total Hamiltonian (1) can be written
as H=&+ Ha +Hz+Hs ~

H, = g S, ~i)(i, (9)

in notation given in Ref. 1.
It will be convenient to introduce the following

notation

where

(14)
f

the ~n«) being f-mode eigenstates of H~. As is
well known, the effect of HD~(1), in H,. is to relax
the equilibrium positions of the lattice atoms about
the defect and that of Hn~(2), to produce per-
turbed phonons. Thus the ~n«) involve lattice
relaxations and perturbed phonons suitable to de-
fect orientation i.

Suppose that at t = 0 the lattice-defect system is
in state ~in,). The probability that the system will
be in state jn&g after time t, due to the perturbing
action of the tunneling term HD is given by

J'(in, —jny) = )(jny) U(t, o) (in, ) (', (15)

where, to first order in Hl„

(16)
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H, (i')= exp[i!r[.+H, )t'/n]

xHn exp[-i(X+H~)t'/I].

Summing (15) over final phonon states and ther-
mally averaging over initial phonon states, taking
its ti~e derivative and letting t go to infinity so a,s
to get a temperature-dependent transition rate zv, ~,
one gets

hij
u)„= ds exp(ie„s)

~ OO

I

x {(exp(i'[C,s /8) exp(-i"[C,s /I'))) .
(18)

Jn (18) we have introduced the notation

e„=(E, -E,)/h

so that le,&
is the bias-produced energy difference

between states i) and j). Further (( )),. indi-
cates a thermal average using the nonharmonic
Hamiltonian in the ensemble weighting factor
exp(-'[0&/H'). Equation (18) can be written in a
more convenient form by use of the operator
identity

exp[s (pe Q)] = exp( p)ps, e p(xf ()(x)'ex)
0

(20)

where Q(X) = exp(-XP)@exp(XP) and T~ is the time
ordering operator (later left) to be applied on the
A. parameter in the terms in the expansion of the
second exponential on the right-hand side of (20).
Using (20), (18) becomes

ds exp ie,.~s &„exp (21)

where

AK Cf Vlf (22)

6R'~ ((u) ),. =- exp(iuÃ, ./I') 4X'~ exp (—iuX, /8) . (23)

Here, as in the double-bracket notation for the
thermal average, the double parenthesis notation
for Hei. senberg-picture time dependence is used
to emphasize that the Harniltonian $C,. producing
this time dependence includes the linear term
Hnz, (1), and so is not harmonic.

Notice that in ~5C" the kinetic energy part of
HD~(2), which is orientation independent, drops
out leaving

r

tential energy V+ 5V'. In this case the vector
notation is not confined to the defect space but in-
cludes Cartesian component elements for all ions
in the crystal. The X(f) are orthonormal with re-
spect to M+5M'

x((f) ~ (M+ m') ~ x'(f')= s,~ . (27)

G'(~') = [&' —(~'+ i~)(M + m*)]-'

(28)=»m Q X'(f)x'(f)[~g —((u'+i~)] '.
f

We note two useful facts which follow from (28):

It will later be useful to have the harmonic Lif-
,shitz-Green s-function matrix which is defined as

b, g'&=- Q LNe&X~+ —Q hVq~~. X~X~.
gg

=ZL X+-,'X.aV g. (24)

G'(0)= Q x'(f)x*(f)/,'=(r ') '
f

(28)

Here bL&~=L& -L~z and bVB~& =—Vzz. —V~zz, . %e
will frequency drop the ij subscript or superscript,
as in the last equation of (24), when no confusion
can arise.

In what follows we will need to use phonon crea-
tion and annihilation operators as well as Carte-
sian components of lattice displacements. The
connection between them is given for i phonons by'

Im G'((o') = )) Q X'(f)X'(f)5 ((o' - (u,') .
f

Using (25), Eq. (6) becomes

H~r, (1),=Q D~(a~ -a~"), .

where

(3o)

(31)

X~ = Q X~ (f)i( '/ I(o2~)'~'(aq a), -

where the eigenvector x'.(f) is defined by

(25)

[v*' —,'(M + 8M*)] 'x'(f) = o,
where it is to be recalled that V' is the full H, po-

(32)Dq QL,' X,'(f)i(fr—/2(dq)'~'.

To make progress in evaluating the thermal
average in (21) and the Heisenberg-picture opera-
tor in (23) it is useful to eliminate Hn~(1),. from
X, by a unitary transformation. The thermal
average of (21) being a trace is, of course, unal-
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tered by this transformation. This is the polaron
transformation which introduces i-dependent static
relaxations into the lattice. The required unitary
transformation is generated by exp(U,.) where

and

or

Q b, V ~~~, 5,.X~ 5,. X8, + Q &L'8' 5,X()

88' 8

(41)

U,. = Q &~((a~+a,")/h(d~
f

which has the effects

iX8 g & =X8 + g,.X8,

(33)

(34)

8c= ~ 5. X' &V'5. X+ b L '5. X.i i (41')

In terms of these quantities the thermal average
in (21) can be written

the static displacement of lattice coordinates just
mentioned, and

g
——H -E (35)

in which the linear term is absent and an orienta-
tion-independent relaxation or self-trapping ener-
gy appears. Here

T„exp — du &"C" u

8
= exp(iee, ,)'(T„exp — de eX"(e)

0

where

~H" =
2 X' 4V'X+ hD 'X)

(42)

(43)

a/2
iD$~ /

f
and the i -independent

(36)

6, X= (V')-'L~. (36)

Applying the polaron unitary transformation to
the thermal average in (21) does several things:
It removes the Hn~(1), term from R. ,. according to
(35) allowing standard methods to be used on the
thermal average trace. The relaxation energy
(37) drops out of the thermal average since such
an average is independent of energy zero choice.
Further the time-ordered exponential in (21) be-
comes

~„=P~D;~ /I, . (37)
f

Note that by use of (29) and (32) we can write a
useful alternative form for (36):

r H"(u),. =—exp(iH, .u/h) 4 H'~ exp(-iH, .u/I') (44)

ds e xp[i(e,
&

+ c,~)s]

x T„exp — du ~H" u,

and ( ),. indicates a thermal average using the har-
monic but quadratically perturbed Hamiltonian H,

Note one of the effects of the polaron transfor-
mation: the hL of (24) has been replaced by the
hD, given by (40), in (43). There has been, so
to speak, a renormalization of the linear-coupling
constant due to the presence of Hn~(2) and linear
terms in lattice displacements that come from it
in the process of the lattice relaxation produced
by the polaron transformation.

Thus by use of identity (20) and the polaron
transformation (33)-(35), we can write the transi-
tion rate (18) in the form

Z

T„exp du exp(iuH, /h)[EL ' (X+ 5,X) (45)

+-', (x+e x) ep (xee, x)]exp(-ieiiip) )

(39)

in which we see the harmonic H, generating the
Heisenberg-picture time dependence and the ap-
pearance of static relaxations 5,.X in 4'C'~. De-
fine the notation

IV. DIAGRAMS

In this section we shall produce a way of handling
the thermal average in (45). For this purpose it
is easier to work in terms of phonon creation and
annihilation operators than in terms of Cartesian
components of lattice displacements. Accordingly
we rewrite (43) with the help of (25) as

(46)

n, D&& —n, Lq&+ Q &V8(8~ 5, Xp

or

(40)
where

«,'~p =- Q «J~g X~(f)Xg (f')@/2((d, (dp )'", (47)

aD= aL+ 4V ~ 5X, (40') ~D,'~ -=P ~D,'~)f,'(f)(e/2(d )' ' (46}
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and

Af =i(a-' - af") . (49)

We employ a cumulant expansion to simplify the
thermal average in (45) which can be written,
dropping the ij superscripts, as

exp ln T exp — dl 4H u,.

i' i'
=exp iM +—M +—M ''' 502t 2 3f 3

where

8 2

du, du, 13 H(u, )b, H(u2) — du ~H(u)
0 0 0

8 8

dÃg dQ2
0

du, ug(u, )ug(u, )ug(u, ))

8 8 8 8 3

du, du, &H(u, )b.H(u2) du (glH(u) +2 du aH(u)
0 0 0

:6ffu gf(u —u ) (52)

In working out the expressions in (51) the general
term arising is (T„Af,(u, )Af, (u, ) ' ' 'Af„(u„)),. which
can be written in terms of "pairings" with the help
of Wick's theorem' in a way that involves only
products of harmonic Green's functions,

(T,Af(u, )Af. (u, )),. = 6ff, [(nf+ 1)exp(-i(uf ~u, -u, ~)

+ nf exp(i~ f u 1 u2 )]

where n& is the thermal equilibrium occupation
number of the phonon state f and it is to be em-
phasized that these are phonons associated with
the initial-state perturbed-phonon Hamiltonian H,

Consider one example of the application of
Wick' " theorem and the effect of the cumulant ex-
pansion, that of M, . Using (46) in M, from (51),
noting that thermal averages of products of odd
numbers of A.f operators vanish, and using Wick's
theorem and (52) one gets

1
M =—

2 2I'
I

du2 4 g +~flf2 +~f3f4
f f ~ ~ ~ f f

[6flf2g f1(0)6f3fggf3(0) 6flf3gf1( 1 u2)6f2f4tuf2( 1 u2)

+ llf f gy (u u )lip j gp (u, —u, )] + Q DDf uDf ll/ ( gf (u, —u, ))
f~f2

1 22du 1 Q 'f 1f2 f lf2 gf1(
f j-f2

(53)

We associate a diagram with the integrand of
each term in (53). This is shown in Fig. 1 where
a circle with two points of attachment corresponds
to a ++fIf g

factor, a line to a harmonic Green's
function (52), and a dot with only a single point of
attachment to a factor &a&. One notices that the
fifth term in (53) cancels the term corresponding

to the first unconnected diagram, Fig. 1(a). This
is a general feature of the diagrams coming from
the cumulant expansion (50), (51); only the linked
diagrams survive.

The nonzero linked nth-order diagrams are of
two types, called circle and dot diagrams, shown
in Pig. 2. Each must be given a combinatorial
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Up

f2 fL (s

l„(u,,...u„)

(b)

U) n ~ ~ ~ ~ ~ ~ ~ Aq{UI ) ...U!i)

n-2

FIG. 2. Nonzero linked nth-order circle and dot dia-
grams.

Q (()(,us)

Qp(U„Up )

f~

FIG. 1. Second-order diagrams associated vritb M2,
Eq. (53). (a}=(c) are diagrams associated vrith terms
in the same sequence as those appearing in Eq. (53).

weighting factor according to the number of times
it or a permutation of it with the same integral oc-
curs in M„. For the circle diagrams this weighting
factor is (n —1)!2" ' and for the dot diagrams it is
nt2" '.

We introduce the following notation for dot-dia-
gram integrands including combinatorial factors
and the cumulant expansion factors of (50):

g
tf

&„(u,~. . . ~ u„)= — Q AD~, g~, , —,) y))2g), ( 2 3)
~ ~ ~

) (~,)) (~ ()g),(„,)( ~, -u }gD),
f] ~ ~ o f (flag)

(54)

and similarly, for the circle-diagram integrands

Z hV g (u —u )'''
f] ~ ~ o ff1

X AV~ ~) g~) (u —u)) .

and the circle-diagram series is

1 1E (s)= — du I' +-
C

0
1 1

0
du) du2 I 2(u) u~)

0

8 8 8
+ du) du2 du3 I3(ug)u2)u3)

0 0 0

We can, using (54) and (55) in (50) substituted into
(45), write

(58)

xexp[E, (s) + E,(s)],

where the dot-diagram series is

1
E,(s)=

2
du,

0
du2 62(u)) u2)

eo

u), , = " ds exp[i(e, , + c„)sjI m (O

(56)

Thus we have changed the thermal average of the
time-ordered exponential of (45) into the diagram-
matic expansion of (56)-(58), and (56) is the main
result of this paper. Figure 3 shows a. pictorial
representation of E~(s) and F,(s). Notice that if
Hn~(2) = 0, all the circle diagrams disappear and
the only surviving term is the first one of E~(s) in
(5V), the term corresponding to the diagram Fig.
1(d). In this case F,(s) = 0. Thus the linear-the-
ory is recovered by suppressing all circle dia-
grams ~

+f du

+ ~ ~ ~

du, du, a,(u„u„u,)
0

(5V}

V. INTEGRAL EQUATIONS

Because the defect space has a low dimensional-
ity (21 for defect plus 6 nearest neighbors} com-
pared with the very large dimensionality of the f
space (=10"},it is more convenient in actual cal-
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Fd(s) = — du~ d~~
0 0

s 8
du( du

S
up~

Using (59) we can express n„Eq. (54) and I'„
Eq. (55) in alternative form

S
du

S S S
d s" ss~

0

~ ~ ~ ~
()s

Z- n

R( ld ' ' ' 1 R) Q 81 ()182(u 1 u2)
al. ..a &2„-2&

x &V22()3h23()4(u3 —u, )

XrhV~~, ' b, D~(~ 2)

s S - S
F, (2) = —, du)ZP' 2 du) dup ~

0

S S
+— dui du

0 0

FIG. 3. Pictorial representations o& the diagrammatic
expansions of F&(s), Eq. (57): and F,(s), Eq. (58).

and

flr„(u„.. . ,u )= — g ~V„„h„„(u,u, )
8 l ~ ~ 48ll

X /IIV()3()4 hg3()4(u2 u3)

Xh, („,)„(u„,-u, ) .

(61)

culations to work in terms of the Cartesian com-
ponents P rather than in the normal-mode space.
We define

h, 3, (u, -u, ) =-i2 Qy, (fQ(), (f)gq(u, -u, )/2(oq.
f

(59)

This function h~. can be expressed in terms of the
imaginary part of a Lifshitz-Green's-function ma-
trix element. Using (30) we see that

(62)

In this I3-Cartesian-component representation
we gain the advantage of having sums restricted to
the relatively small defect space but pay the price
of having nondiagonal k». in place of the diagonal

g&& functions.
The sum Ed(s) Eo. (57) can be expressed in

terms of the solution of an integral equation using
(61) for h„and defining the generalized matrix

h23, (u, -u, ) = — d(o'Im " g„(u,-u, ) . (60)

u lu2—
M()1()2 Q ISIV3Q3 h3322(u1 u2)

g3

and the generalized matrix product,

(63)

This form of h2(). is useful since G313 (ar') for per-
turbed phonons is a readily calculated quantity and
the h matrix is only needed in the defect space.

(M )3122——Q du3M()213'M)13'()2.
g3 0

We note that we can write

(64)

R, ( )=S (2~s) f ds, f ds, du 3 Q n. D2, h2 ~2(u, —u2)(1 +M +M + ' ' '
)322323 n. D33,

8 %283

where

1s2()3= 5()2()363(u1-u2) 1 (66)

Multiplying (67) by AD (s)ummi gonver 8„inte-
grating over u„and using (63) we get an integral
equation for the 8 of (68):

5, being a Dirac delta function over the finite in-
terval 0 to s.

The generalized matrix 1+M +M'+ ' ' ' in (65)
is formally the same as 8=- (1 -M) '. The gen-
eralized matrix is thus defined by the requirement
B(1 -M) = 1 or

Q f ds, ()gg —Mss', )Rgg= )s)g.
0

The quantity we actually need in (65) is

iP1(s)=- du2aV h(u -u ) 8"2(s)+ n. D
0

(69)

which is confined to the defect space. In terms
of the solution of (69),

1 z 2 8

E,(s)= —
h

du, du, hD'h(u, -u, ) s e"2(s) .
0

Hg(s) -=Q f d R; saD„lg.
0

(es) (70)
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The u, integration can be done by use of (69) to
give

iF,(e)=— d, ~D ~V-'[e ~(e)-~D]. (Vl)

Thus solution of'the integral equation (69}and per-
formance of the integral (VI) would be equivalent
to summation of the series (5V).

E,(e }can be found in a similar way with the
complication of the I/n factors in the series (58).
Using the generalized matrix M, Eq. (62}, one
finds

I( )s= —I f ds (M +-'M'+ -'M'+ )"" (Is
g 0

Put a factor $ into n V so that M has a factor of g

in it. Then'
I

d, (s)=~ I f de f —Isss((, s),1 ' 'dg
e 2 ) N

where

Z»(~, e) =- (ye+ ~'M'+. . . )g

which is given by the integral equation

ICss(((, s)= ( P J ds ICss( ((,s)Ms/, + (Ms'e'.
0

(VS)

The summation (58) is thus equivalent to the solu-
tion of (VS) and the use of (VS).

The matrix-integral equations (69) and (VS) are
confined to the defect space and it is conceivable
that they could be solved numerically, used in
(Vl) and (VS) and eventually in the numerical eval-
uation of the Fourier integral of (56). If such a
program could be carried out it mould constitute
a solution of the quadratic-coupling phonon-as-
sisted tunnelihg px"oblem; it has not, however,
been undertaken as yet in the general case. For
the special case in which EVE& is diagonal in f and
fd a solution of the integral equations is possible
and the results achieved are those of O'Rouke.
Kubo and Toyamawa's' solution of the general quad-
ratic-coupling problem requires taking the square
root of the complete perturbed-lattice potential
energy matrix, an object that does not appear to
be readily ca,lculable.

In the next sections we discuss approximations
for F~(e }and E,(e) which are useful at appropriate-
ly high and low temperatures.

VI. HIGH-TEMPERATURE APPROXIMATION

%e wiQ use the Holstein methdd of steepest
descents to get an approximation of Eq. (56)
which is suitable at sufficiently high temperatures.

For the linear-coupling theory in the long-wave
Debye approxiMation' this approximation turns
out to be a good one for temperatures above about

of the Debye tempex'ature. The steepest descents
approximation replaces E~(s) +E,(s) by its Taylor's
expansion about s = 0 up to second order. The
Fourier integral in (56} can then be performed
analytically leading to an Arrhenius-like form for
the dependence of sv, ~ on &.

Using (54), (55), (56), and (SV) one finds that
E„(0)and E,'(0}are zero and

Eg (0) = ——,Q &D~(2n~+ 1)b, D~

doP hD Im6'(~') b, D(2s„+I)/~,

Similarly, using (58), E,(0)=0 and

(V6)

F,'(0)=2—~ Q AVg~(2n~+ 1)
f

d(u'Tr b, VIm 6'((d)'}(2n„+I)/(d

and

EM(0) =—,Q AV~~n, V~y(2m~+ 1)(2np +1)2l'

Trh, VImG~ ~ h, VImG~ w'

av„=(a/8')' de exp[i(e + c)s]
m QQ

xexp[E(0) +E'(0)s +-'F"( )s0']

= (d/d)' f ds e"*e'*

= (&/ff)' (v/b)"'exp(-a'/45), (V9)

where E=Ed +E„cis given by (41'), e by (19),
and

a=-e+ c+a, ,
b=-bq+ b

(80}

(81}

Although zj subscripts have been omitted from
the quantities in (V9) for brevity we must remem-
ber that they do depend on the initial and final d@-

x(2n„+1)(2s„,+ 1)/((d)u')

—= -2b, . (V8)

Using these quantities we have the high-tempera-
ture approximation
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feet states and will differ for nonequivalent defect
orientation transitions.

Note how the high-temperature approximate zo,
&

(79) differs in the quadratic-coupling case from
the linear-coupling case. If H»(2) is set equal
to zero, a number of things occur: first, the
temperature-dependent circle-diagram terms a,
and b, drop out of a and b. This leaves the tem-
perature-independent a = e+ c which is character-
istic of the linear-coupling theory. Second, the
constant c is altered by the loss of the first term
in (41'). Third, the term b„in (81), defined in
(76), becomes altered by the fact that dD loses
its second term in (40') and the Liftshitz-Green's-
function matrix 6'(+') loses its i dependence, that
is, becomes that of the ideal host lattice rather
tha, n the defect-perturbed lattice.

For this linear-coupling case it is known that for
sufficiently high T the exponent a'/4b in (79) be-
comes proportional to T ' and the rate zv,

&
in this

hopping regime shows Arrhenius or activated T
behavior. Due to the presence of the tempera-
ture-dependent terms a, and b, in the quadratic-
coupling case it is not immediately obvious that
the Arrhenius behavior will survive when H»(2)
is introduced into the problem. We will investi-
gate this question in connection with a specific
system in the following paper. '

VII. ONE-PHONON F APPROXIMATION

I,(s) = du~ «2'(u~ —u2) j
0 (82)

It is not as easy to find a low-temperature ap-
proximation to (56) as it is to find a high-tempera-
ture approximation. In Sec. VI the process of
making a Taylor's expansion of F(s) to O(s')
automatically truncated the infinite series (57)
and (58). At low temperatures the steepest-de-
scents approximation ceases to be valid and this
truncation does not occur. We have seen in Sec.
IV how the presence of the circle vertices coming
from H»(2) produce very considerable complica-
tions of the form of the exponent F=F~+F,. In
the absence of H»(2) E comes froin the single dot
diagram of Fig. 1(d), a diagram which involves a
single harmonic Green's-function factor g&.
Higher-order diagrams, which occur in the quad-
ratic-coupling theory involve more and more g&
factors indicating the participation of more and
more phonons. At sufficiently low temperatures
we shall suppose that the "one phonon part" of
E(s) is most important part. We now explain what
we mean by this.

Consider successively the terms in the series
(57) for F~. The first terms involve the integrals

I,(s) = du,
0

d"2 «3g'j( i- 2)a'y ( 2- s) ~

0

(as)

In evaluating these integrals we define the notation

j&(u) =——(n&+ 1)e '"s"+n e'"s", (84)

h~(s) -= du jq(u)

= (i/(d&)[(2n&+ 1) —(n&+ 1)e '"j' —n&e'"s'], (85)

and note tha. t

«,gy(u, -u, )= (1 /i~~)[2+j~(u, )+j (s u, )].

It then follows that

I,(s) = (2/2M')[s + ky(s)],

(86)

(87)

s
s +h&(s) +h&, (s)+ — du j&(u)j&(u)

0

1+
2

S

dsj, (s) jS (s -s) ) . (88)

We note from (84) that the last two terms of (88)
involve products of one-phonon functions j& and j&..
We eliminate such contributions in our one-phonon
selection process and write

I,'(s)=( ) (, ) [s +hs(s) sh&(s)), (89)

x [s +a~(s)+a~, (s) +a~. (s)]. (90)

The emerging pattern is clear from inspection
of (87), (89), and (90). Keeping just one-phonon
parts'of the terms we have as E~(s), the one-
phonon version of E,(s),

where the prime indicates that we have eliminated
all except the one-phonon terms. By eliminating
terms which involve products of n's and (n+ 1)'s
we are eliminating all terms corresponding to
omission and or absorption of more than one
phonon. Note that I,'= I,. Continuing this process,
one finds
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2 2 2
E~(s)=— Q hD~hD~ [s+gy(s)]+ Q Kgb, V~~ED~,

[ ~ ( ) ( )]- f

+g aa, a)'«. av, , aa, .( ]
(s+h, (s)+a,.(s)+n«(s)]+2. '2 t 2

I cog @(oy i) Icoy ~
'

—=icy —2R~+ G~(s), (91)

so that

I cq ——~ 6D ' V,.' ' r D. (94)

We have changed the superscript on V' to a sub-
script to simplify the notation. Now, use (38) in
(41'). Using (40') and (38) in (94) one finds that
c„'=-c,, which accomplishes the cancellation men-
tioned.

The next part of E,'(s) to be considered is that
part -2R,', independent of s. The notation is dic-
tated by the fact that R~ becomes a dressing expo-
nent analogous to the exponent R of Hef. 1, Eq.
(23) . .This s-independent part of E,'(s) comes from
the 2n&+ 1 terms of the hz(s) functions. Collecting
these parts of (91), using (47), (48), and (29) and
summing the series as in (92) one finds1,2n„+1

4gh

x Im G'(&o')~V V~' &D.

It remains to collect and sum those parts of E"(e)
which come from the s-dependent parts of the hz
functions, the parts proportional to

y~(s)
-=(n~+ 1.)e '" +)gn'"~'. (96)

Denoting this part as G,'(s) and proceeding as be-
fore one finds

where c~, R,', and G„'(s}will be defined presently.
Consider first the sum coming from the terms

s which occur at the beginning of the square brack-
ets in (91}and call this part of the sum icy. It
turns out that this sum exactly cancels the pre-
factor exp(ic, ,s) in (56). This can be seen as fol-
lows. First collect the terms in (91) which come
from the s in. the square brackets, reexpress the
&D& and &V&&, using (47) and (48), eliminate the
y's by use of (29) and one finds

kc~'= —,
' &D ' V, '[1+ V,. 'r V+ (V, 'hV}'+ ] ' hD.

(92)

The sum in (92)is recognized to be

(1 —&VV-') '= V V '

l,y„(s)

ximG'((v') V V ' ' hD. (97)

E,'(s) = QVqq(2nq—+ 1)

d&o' Tr b,VIm G'(~')(2n„+I)/~

= ia,s,
where in the last line we note that the coefficient
a, is the same as the quantity a, arising in the
high-temperature approximation in (77).

By using (91) and (99) one finds that the transi-

If Hn~(2) = 0, V, becomes equal to V& and the po-
tential energy matrices drop out of (95). Also the
hD revert to their linear-coupling form and G'(~')
becomes the unperturbed G(&o') leaving exactly the
linear-coupling case result which is presented in
Ref. 1.

Some insight into the meaning of the i and j po-
tential energy matrices in (95) and (97) can be
gained by using (40') for hD and remembering (38)
for 5,X along with the analogous expression for
5&X to write

r).D ' V j'~V Im G' ((u') ~V V j ' '
CL D

= (6)X —6~X) '~V Im 6'((u') ~V '(6)X —5~X}. (98)

Thus, one can see that the role of the V'&'V, and
V, V~' factors is to introduce the difference of 2-
relaxed initial and j-relaxed final lattice configur-
ations into the displaced-harmonic-oscillator over-
lap integral, which is responsible' .for the dressing
factor exp(-R). It is interesting to see the for-
malism producing a statically relaxed final j state.
This result, though certainly plausible, is not en-
tirely obvious in our treatment since the final
phonon states drop out of the formalism in the
summation which produces Eq. (18).

We still have toextract the one-phonon part from
the circle diagrams. .Using the same procedure
as we did in getting E~(s) we did find that only the
first term in the series (58) contributes with the
result
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xexp[G,'(s )] (loo)

with a, given by (99), R,' by (95), and G,'(s) by (9&).
We will now argue that the term a, in this expres-
sion should be omitted.

The term a, in (100) plays the role of a tempera-
ture-dependent biaslike term added to the true bias
term e. Its presence would imply that the energy
difference between the initial and final defect
states would be h(e+ a, ) rather than the bias ffe.
The term Ia, would thus be an additional initial-
final state transition energy difference beyond that
produced by the applied bias. Since a, depends on

Hn~(2) but not on Hnz(l) its presence cannot indi-
cate some nonadiabatic time dependence of the
dressing relaxations since these are determined
by Hn~(1) and not Hn~(2). In any ease the form of
(98) suggests that the final j state is indeed a j-
relaxed state. These observations arouse sus-
picion concerning the circle-diagram contribution
to the one-phonon E approximation. We will, in
fact, reject the ia, s term in (100}on the ground
that ia, s does not correctly represent the large-s
behavior of E,(s). This is discussed in Appendix
A. The long-time nonoseillatory behavior of E,(s),
on the other hand, is correctly given by ie„'sas in
(91) and we retain it. This is discussed in Appen-
dix B.

VIII. FIRSTWRDER APPROXIMATION

tion rate m,'& in the one-phonon I' approximation is
OO—exp(-R,'} ds exp[i(e + a, )s]

a OO

APPENDIX A: ASYMPTOTIC BEHAVIOR OF I', (s)

There is a subset of terms in (58), the circle-
diagram series for E,(s), which can be summed.
The one-phonon term E,'(s) given by (99}is among
the.se terms. We mill show in this Appendix that
the sum of the subset of terms vanishes as s —~.

Consider a Taylor's expansion of F,(s) about
s = O. The nth-order term in this series will have
a contribution which comes from the n derivatives
with respect to the upper integration limits of the
nth term in series (58}. These n derivatives can
be taken in n! sequences so the n! Taylor's-series
denominator will be cancelled by this factor.
Many other terms, i.e. , those involving deriva-
tives of the integrands, contribute to the nth Taylor
coefficient. We limit ourselves to the subset which
excludes these other terms and call this partial
summation of the terms of the E,(s) series E~(s):

E,~( )s= —Q- aVqq(2nq+1)s=1 i

1 i 2

+ — — Q 0 V~~ (2n~ + 1)
2 I

x hV~ ~(2' + 1)s'+ ' ' '

(Al)

or, symbolically in an obvious notation,

E, (s) =-,' Tr[s(i &VN/8') + ,'s'(id'-/5)'+ ~ "]
(A2)

where the N matrix ha, s elements

In the usual linear-coupling theory with H~z (2)
= 0 it is customary to expand the analog of exp
[G,'(s)] in powers of Gn(s) at'low temperatures
thereby getting a series which describes phonon-
assisted tunneling processes which involve zero,
one, two, . . . phonons to conserve energy. This
approximation, which is of questionable validity'
when Hs~(2) 40, would be yet another stage of ap-
proximation beyond that of the one-phonon version
of E„+E,. We will list the first-order term m,'z'
in the exp[G~(s)] expansion here for completeness.

zo,'~"'= —exp -8,'
@ 2 n, +1

N~~, ——5~~, (2ny + 1) . (As)

j 2 . 2n~+1EVE= hl d~ ImG

(A4)

which is a matrix of smaQ dimension. In these
terms

E„(S)= -,' Tr [is SVF + (-', is)'(SV F)'+ " ]

In the defect space one finds, using (47) and (30),

xhD'V~'~V ImG'(e')~V V~' aD. (101) = --', Trln(l -is a'VE) . (As)

If we set Hz, ~(2) = 0 and use Debye phonons to cal-
culate Im G'(e') we ean recover from (101}the
linear-coupled Debye one-phonon rate Eq. (30) of
Ref. 1.

Suppose the eigenvalues of the matrix AVE are
Xz

—0.~ + if~. Then the argument of the logarithm,
in the representation which diagonalizes dV E is
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diagonal and the trace becomes a sum: where we have used (29) and E"(s) is given by

E.,(S) = --', g in[1 -is((],, +i(8,)]

21n 1+g&s + Q&s

&'(s)=-u)' Jd ts)tG«'{ u)Ij (u)+j„(s—u)]

—i

actus

'[u, sl(( s{),s)]) . (A6) The j functions are defined by (84).
The constant parts of (B4) cancel if we set

As s —~ the real part of F,~ goes to -~. The
imaginary part becomes a finite constant unlike
E,'(s) of Eq. (99) which is ia,s, imaginary and
proportional to s. Since F,~(s) is a more com-
plete partial summation of F,(s) than is E,'(s)
we have rejected the a, term in (100).

c= V) V 'AD.

This leaves as the equation for f"(s):

f"(s)= E"(s) + du, K(u -u, )f"'(s)
0

(B6)

(B7)

APPENDIX B: ASYMPTOTIC BEHAVIOR OF F„(s)
We start from (71) for Ed(s) and notice that if

e"(s) had a part which was independent of u and s
then this would contribute a term in E,(s }which
would be proportional to s. With this in mind,
write

(Bl)P(s) = c+f"(s)
and substitute this trial solution into (69) to get

c+f"(s)=nD+ du, K(u -u, )[c+L"'(s)],
0

where we have used the notation

K(u -u, ) = ihVh-(u —u, )/h.

(B2)

(Bs)

The first term in the integration in (B2) can be
evaluated using (86) to give

-=E"(s) + Xg"(s), (B7'}

where X is a matrix integral operator.
Notice that (Bl) in (71) using (B6) gives

8
F (s ) = ic's +— du 6 D ' hV ' 'f" (s ), (B8)2I

where cd is that given in (94). We have seen that
this term in Ed(s) cancels with the prefactor
exp(ic„s)in (56).

We need to examine the second term in (B8).
We will show that it becomes negligible compared
with icy as s becomes large.

By iteration of (B7) we can write

c+g"(s)= h, D+ &V V 'c+E"(s). f"(s)+ (1 +K+K'+ ~ ~ ~ )E"(s) . (B9}

+ dgg+ g —Qg S- (B4)
The quantity of interest for use in (B8) is the inte-
gral of (B9):

dg "s = duE" s + du
0 0 0

du, (((u-u, )E (s)+ du "J du, d Z«( -u)u()tu«, ) (s)+)t. . .
0 0

(B10)

Consider, as an example of a general term, the absolute value of the third term on the right-hand side of
(B10). Using (60) and (86) the u integration can be performed to give

A, -=du du, du, K(u -u, ) K(u, -u, ) .E"&(s)
0 0 0

dg, dg, —~V der' MQ v 2&' 2+j„g,+j„s-g, g g g, 'Z"& s (B11)
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Using the fact that ~j„(u)~&2n +1we have

8 S

A3~ ~ du' dun~(ug —u ) 'g2(~)
0 0

where

d(o'[un G'((o')/(o'](n„+ 1)=2

(812)

(812)

8
A &8' du, z"2(s) .

0

Using a similar result for the general term in
(810) we have

8
duf"(s) ~ (1+8+B'+' ~ ~ ) duE"(8)

0 0

(814)

is an upper bound on f;du K(u -u, ). Treating the

u, integration as we did the u integration in (811)
we have

8
= (1 -8) ' duE"(s)

0

which an s -independent upper bound since

(815)

u Ed(s) ="—.f d~'ImG'(~')c
0

8

du[j„(u)+j„(s-u)]/(2(u')'

d(u' Im 6'((u')[(2n„+1)/(u']c.aV
(816)

E,(8) ic,'8-, (81&)

. a general result and not one limited in validity to
the one-phonon F approximation where it first
arose in (91).

As a consequence (815) and (816), the second term
on the right-hand side of (88) is seen to have an s-
independent upper bound so that for large s
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