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Longitudinal magneto-Seebeck coefficient in a polar semiconductor
in quantizing magnetic fields
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The magneto-Seebeck coefficient (Q„) in InSb is calculated in a quantizing magnetic field. The effect of
polar-optical-phonon scattering is incorporated by an iterative solution of the Boltzmann equation
abandoning the concept of the relaxation time. Results in the extreme quantum limit show that

~ Q„~
increases with magnetic field. Band nonparabolicity and elastic scattering mechanisms are found to enhance

~ Q„~ for a particular high magnetic field. The rise in the lattice temperature, however, reduces
~ Q„~

in conformity with experiments. The magnetophonon structure of
~ Q„~ when several Landau levels are

occupied, is also studied in the no-broadening limit. The Pavlov and Firsov maxima are obtained at higher
magnetic fields than those corresponding to the cyclotron resonance frequency (co,) equal to the integral
multiple of polar-optical-phonon frequency (coo). A prominant pseudoresonance peak is observed at
co, /coo ——0.5 which is somewhat lower than for the nonpolar case.

I. INTRODUCTION

Any transport coefficient governed by inelastic
optical-phonon scattering is expected to show an
oscillatory structure in a quantizing magnetic
field. Investigation of these oscillations in the
longitudinal magneto-Seebeck coefficient for non-
polar semiconductors has been reported by Arora
and Peterson. ' Similar studies for polar semi-
conductors were made by Pavlov'and Firsov' on
the basis of a relaxation-time formalism. How-
ever, the relaxation-time concept is, in general,
not applicable for polar-optical-phonon scattering.
Experiments on the magnetothermal emf in the
longitudinal quantizing magnetic fields for polar
semiconductors have been performed. " Hence
it would be worthwhile to establish the magneto-
phonon effect in the longitudinal Seebeck coef-
ficient for polar. -mode scattering in an exact man-
ner, abandoning the relaxation-time formalism.
An attempt in this direction has been made in the
present paper. The longitudinal magneto-Seebeck
coefficient is calculated here by an iterative solu-
tion of the Boltzmann equation. The general theory
is developed-in the Sec. II. The computed results
in the extreme quantum limit, when only the low-
est Landau level is occupied, are presented in
Sec. III. The effect of the scattering mechanisms
other than the polar-optical mode, and the influ-
ence of the band nonparabolicity are also quanta-
tively assessed in Sec. III. Finally, in Sec. IV
the magnetophonon structure of the Seebeck coef-
ficient for polar-mode scattering is given and dis-
cussed.

II. GENERAL THEORY

We assume an isotropic parabolic-band semi-
conductor subjected to a quantizing magnetic field

B and an electric field S, applied along the z dir-
ection. The kinetic energy of the conduction elec-
trons may then be written'

Sk
E„(k,)= '„+ (n+ s)htc, ,m g

where h is Plank's constant divided by 2m, m~ is
the carrier effective mass, k, is the component
of the Bloch vector in the z direction, n is the
Landau quantum number, and +, is the cyclotron
frequency.

In the presence of a temperature gradient dT/dz
along the z direction, the momentum-distribution
function f„(k,) for each level obeys the Boltzmann
equation

„~f. g dr &~'8E„dz T
z,)-I sf

where

= L„f„(k,) -f„(k,)/~„(k,),
cell

L„f„(k,)=Q tc(tx, tx')f„,(k,') (4)

and

I/v. „(k,)= Q to(n, tr ') .
In the above expressions to(a, rx') is the transition
probability from state n to n'. Explicit expres-
sions for r„(k,) and L„f„(k,) for polar-mode scat-
tering are given in Ref. 5. We expand the distri- .

where v, is velocity in the z direction, e is the
electron charge, T is the lattice temperature. E„
is the Fermi energy, and (ef /Bt)

~ „» is the rate
of change of f„due to collisions. We have'
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bution function for the nth subband as

y„(u, ) =g„(f,)+ y„(a,), (6)

where g„(k,) is the equilibrium distribution func-
tion in the nondegenerate limit given by"

r, = '„p(p.(a, -E )) (14)

To evaluate y„and o„, one has to determine the
heat current and the electric current. Denoting
the electron concentration by n„and Ik, by p„
these are expressed as

@97 I kx exp -n (7)

and

(15)

E~ denoting the Boltzmann Constant. The function

g„ is so normalized that
where H, is electron Hamiltonian and ( ) denote
the average given by

Q fd dk)„. ,= (d&= fdd„(k, ) dk, . (16)

Using Eqs. (3), (6), and (7), Eq. (2) reduces to Using Eq. (16) in Eqs. (14}and (15) and compa, r-
ing these with Eqs. (9) and (10}we obtain for the
coefficients O„and y„

rr„= - '„gf(rr) "'(k)dk, „, (17)

%hen n number of Landau levels are considered,
we obtain n number of coupled equations of the
form Eq. (8), the coupling occurring through the
term L„Q„. Each of these equations is solved for
Q„by an iterative method similar to that suggest-
ed by Bode.' In a particular step of iteration,
(t)„ is calculated using the result of the last previ-
ous iteration in the term L„Q„. In the first step
of iteration L„g„is taken to be zero. The con-
vergence of the scheme is rapid and accurate re-
sults are obtained in four to five iterations. A
similar method was used by Magnusson' in mag-
netoresistance calculations.

For an evaluation of the magnetothermal emf, we
note that the heat and electric currents are given,
respectively, by'

4TJ,= o„E*-P„—.
dz

where

' and

y„= ', Q fd (k)k(rr„'„r (k,)d,k+ rr,r rr, — (18)

where (t)'„0) is the coefficient of E* in (t)„.
Finding the values of Q„ from the iterative solu-

tion discussed, earlier, we ean evaluate o„and y„
from Eqs. (1V) and (18), respectively, and hence

Q„ from Eq. (13).

III. EXTREME QUANTUM LIMIT CASE

We shall assume here the extreme quantum limit
(EQL) case, i.e. , the magnetic field is so large
that the electrons occupy only the lowest Landau
level. The Boltzmann equation for the problem
becomes

Bgo dT E() d EJ) I QOv ' eS+——'+7' —=L P ——'. (19)'aE, dz T dT T

We shall consider scattering by polar-optical
phonons, the acoustical phonons via both deforma-
tion potential and piezoelectric coupling, and by
ionized centers. 411 these scattering mechanisms
other than the polar-mode scattering are elastic
and do not contribute to L,P,. They only affect 7,
in the manner

The thermo-emf is defined by the relation I/~, = 1/7, +I/~. ,+ Ilr,„,+ I/~„.„ (20)

dTE*=Q —with 4 =0."dz g ~

Using the Onsagar relations we have'

(12) the abbreviations indicatjng the particular scat-
tering processes. The expressions for L,dt), and
7 p 7 p rp +g and Tp g y are given in the Refs.
5 and V. Equation (19) is solved for (t), by the it-
erative method described earlier.

We have computed the magneto-Seebeck coef-
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FIG. 1. Variation of the Seebeck coefficients with magnetic field in InSb in EQL. The solid curves are for a parabol-

ic band and the broken curve is for a nonparabolic band. A and A' —polar optical scattering; B—polar optical, defor-
mation-potential acoustic, and piezoelectric scattering; C—polar optical, deformation-potential acoustic, piezoelectric,
and ionized-impurity scattering.

ficient from Eqs. (17) and (18), assuming the para-
meter values of InSb. ' The effect of different
scattering mechanisms on the Seebeck coefficient
in the EQL is depicted in Fig. 1 for a lattice tem-
perature of 77K. It is found that the scattering
mechanisms other than polar-mode scattering
enhance the thermo-emf, the increase being sig-
nificant at higher magnetic fields. In Fig. 2 the
effect of the temperature on the thermo-emf is
exhibited. It is found that with rise in temperature
the magnitude of the thermo-emf decreases. This
result is corrobrated by experimental results of
Puri and Geballe. '

We shall now examine the effect of the band non-
parabolicity on the magneto-Seebeck coefficient
in EQL. The nonparabolic E @relation i-s given
by

by

(28)

It may be noted that as E~-, a,- 1, and we have
the classical parabolic band. The expressions for
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E,»==,'E, + ,'E a, +h'k,'/2m-*a, , (21)

a =(1+2hco /E )' ' (22)

The effective mass for nonparabolic band is given

where E~ is direct band gap and m~* is band-edge
effective mass. The main contribution to trans-
port parameters comes from small values of k, .
Hence we shall put k, =0 in the expression for a,
given by Sharma and Phadke. ' In this approxima-
tion a, becomes
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FIG. 2. Variation of the Seebeck coefficient with
magnetic field for three different lattice temperature.
Curves marked A, 8, and C are for the ratios of 2.6,
3.6, and 9.2, respectively, between the polar-phonon
Debye temperature and the lattice temperature.
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the Fermi energies are different for parabolic and
nonparabolic bands and are given in Refs. 1 and 10,
respectively. Our results for the nonparabolic
band are obtained by replacing m* by m* and using
the appropriate expression for the Fermi energy
in our previous calculations.

The Seebeck coefficient for the nonparabolic
band and polar-mode scattering is shown in Fig.
1. It is found that band nonparabolicity enhances
the magnitude of the thermopower particularly at
very high magnetic fields.
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IV. MAGNETOPHONON STRUCTURE

In this section we shall present the computed
results for the longitudinal magneto-Seebeck co-
efficients for parabolic band when several Landau
levels are occupied. The general theory and for-
mula are given in Sec. II. Figure 3 shows the
magnetophonon structure at 77 K for polar-opti-
cal-phonon scattering, assuming parameter values
of InSb. ' It is observed that the Pavlov and Firsov
maxima dominate and they occur near co, pl40p,

where n is an integer. However the peaks are
somewhat shifted to higher-magnetic fields due
to finite temperature. This feature of Pavlov-
Firsov maxima is also observed for nonpolar scat-
tering. "'" The shift is also revealed in the ex-
periments of Shalyt et al. ' on the longitudinal See-
beck coefficients in InSb.

There are, some additional peaks in the magneto-
phonon structure. These may be identified with
the pseudoresonanee peaks discussed by Peter-
son"" for nonpolar semiconductors. This effect
arises when different electrons from different
Landau levels are scattered with the same momen-
tum k, to infinite density of states. A prominent,
pseudoresonance peak in our case is observed at
co, = 0.5(dp. This corresponds to a somewhat low-
er-magnetic field than predicted for nonpolar
case.""' It may Qe mentioned here that the pseud-
oresonance structure is not revealed in the mag-
netothermopower calculations of Pavlov and
Firsov. ' These authors considered only two Land-
au levels, while the pseudoresonance structure
originates from the consideration of a number of
Landau levels, as revealed in the present investi-
gation.

It should be further noted that Puri and Geballe'
have experimentally observed in InSb some kinks
in addition to the Pavlov and Firsov maxima.
These kinks may be identified with the pseudores-
onance structure theoretically demonstrated here.

We would point out that the effects of elastic
scattering, level broadening, and nonparabolicity
are not included in the present calculations. It is

FIG. 3. Magnetophonon structure showing the varia-
tion of the Seebeck coefficient with g(= co,/uo) in InSb
at 77 K for polar-optical scattering.

found from the EQL results that the effects of
nonparabolicity and elastic scattering would be
significant only at very high magnetic fields. Since
the magnetophonon structure is associated with
lower-magnetic fields, the influences of nonpara-
bolicity and elastic scattering are expected to be
small. The effects caused by these factors will,
however, be qualitatively discussed below.

As the effect of inelastic scattering is somewhat
masked by elastic scattering, the inclusion of
elastic scattering reduces the sharpness of the
peaks and displaces them to higher fields. ' The
effect of the band nonparabolicity is to displace
the main maxima and it will also split the pseud-
oresonance peaks due to unequal spacing of Landau
levels. '

The effect of Landau-level broadening was ex-
amined by Barker. "'" It was found that tbisbroad-
ening also shifts the maxima to higher-magnetic
fields. The present results in the limit of zero-
level broadening coupled with Barker's results
indicate that the shifts of peaks to the high-field
side observed experimentally arises from the
following factors: (i) finite lattice temperature,
(ii) elastic scattering, and (iii) level broadening.

V. CONCLUSIONS

'The longitudinal magneto-Seebeck coefficients
are calculated for polar-optical-phonon scattering
abandoning the concept of relaxation time. The
effects of the band nonparabolicity and of the elas-
tic-scattering processes on the coefficient in the
EQL have been investigated. It is found that the
band nonparabolicity and elastic scattering enhance
the Seebeck coefficient particularly at high-mag-
netic fields. Increase of lattice temperature, on
the contrary, decreases this coefficient for a
given magnetic field.
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The magnetophonon structure of the Seebeck co-
efficient for polar-optical-phonon-scattering
shows that the Pavlov and Firsov maxima are
somewhat shifted to higher fields. The pseudores-
onance structure is also observed in addition to
Pavlov and Firsov maxima. But these peaks are

found to occur at somewhat lower-magnetic fields
than those obtained in the nonpolar case.
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