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quantization effects in ZnO accumulation layers in contact with an electrolyte

D. Eger and Y. Goldstein
The Racah Institute of Physics, The Hebrew University of Jerusalem, 91000 Israel

(Received 2 June 1977)

Accumulation layers with excess surface-electron concentration 5Ã of 10" cm were produced on Zno
surfaces in contact with an electrolyte. Measurements of h, N as a function of the surface potential barrier
are presented, as well as detailed results of self-consistent quantum calculations. The self-consistent
calculations were carried out on the basis of the effective-mass approximation. They take into account the
exchange interaction and the penetration of the surface-electron wave functions into the electrolyte. The
agreement between theory and experiment is reasonably good.

I. INTRODUCTION

During the last years considerable attention was
paid to the so-called "quasi-two-dimensional elec-
tronic systems. " Most of these systems consisted
of quantized inversion layers on silicon surfaces
based on metal-oxide-semiconductor (MOS) struc-
tures. The highest carrier density obtained on
such surfaces approached 10 ' cm '. Using the
semiconductor-electrolyte system, we succeeded
to produce on the ZnQ surface extremely strong
accumulation layers, having electron surface con-
centrations &N up to10" cm . These are by far
the highest densities obtained on any semiconduc-
tor. Such strong accumulation layers are charac-
terized by a width of the order of 10 A and a nearly
metallic volume concentration (10'0 -10'~ cm '}.
Qur measurements yield directly the variation of
&N with the potential barrier height V, at the ZnQ
surface.

Some of our preliminary results were already
published. ~' The experimental results were com-
pared to numerical self-consistent calculations
which were obtained by us using the simple Hartree
method. It turns out, however, that for our strong
accumulation layers, exchange effects are no lon-
ger negligible. In addition, for such narrow lay-
ers the finite penetration of the electronic wave
function into the electrolyte has to be taken into
account as well. In this paper we present detailed
and improved experimental and theoretical results.

II. EXPERIMENTAL

The formation of a space-charge layer at a
semiconductor surface in contact with an electro-
lyte is based on the blocking characteristics of the
interface which prevent charge flow between the
two phases. '4 In an n-type semiconductor, such
blocking usually occurs when the electrolyte is
biased negatively with respect to the semiconduc-
tor, for which polarity a depletion layer (Schottky

barrier) is formed. In some cases, however,
there is sufficient blocking even when the electro-
lyte is biased positively, and it is in this manner
that strong accumulation layers could be produced
on the ZnQ surface. " Essentially, the equivalent
circuit representing the interface can be described
as a parallel combination of the space charge capa-
citance C, and a leak resistance Bi, both being
bias dependent. :B,i decreases rapidly with in-
creasing bias and it is for this reason that accumu-
lation layers of AN higher than 10" cm ' cannot be
maintained in practice under dc operation. ' In ad-
dition, prolonged application of the'dc bias pro-
duces surface damage by electrochemical pro-
cesses. The use of pulse techniques developed by
us, on the other hand, permits the attainment of
much stronger accumulation layers and, at the
same time, minimizes surface damage.

.The measurements were carried out in semi-
conducting ZnO samples of 10-20 0 cm resisti-
vity, using the "oxygen" (0001) surface. The sam-
ples were mechanically polished to a flatness of
1 JL(, and subsequently chemically etched. Usually
the etchant used was concentrated HC l which yielded
excellent blocking characteristics. Some other et-
chants like H,PO, were also tried, with similar re-
sults. Curiously enough, we were unable to obtain
blocking characteristics on the "zinc" (0001}face and
this surface was not investigated.

The cell used consisted of a platinum electrode,
the ZnQ sample under study, and a reference elec-
trode (Ag-AgC1) close to the ZnQ surface. The
electrolyte was generally KCl (2N), but other
electrolytes such as NaCl, CuSO4, NaHCO3
KBr gave similar results. The area of the ZnO
surface exposed to the electrolyte was about 0.1
cm', while the rest of the sample and Qhmic con-
tact were well insulated from the solution.

A current pulse of constant amplitude was ap-
plied across the Pt and the ZnQ electrodes, and the
voltage developed between the reference electrode
and the ZnQ bulk was displayed on a cathode-ray
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oscilloscope (CRO). This voltage represents to a
very good approximation" the change 5V, = V, —V„
in barrier height V, at the Znp space-charge layer
formed (V„being the initial barrier height). Since
the charging current is constant, the time axis is
directly proportional to the change 6Q, = Q, —q„
in the space-charge density at the Znp surface.
Hence, the CRp trace so obtained yields directly
the entire 6Q, vs 6V, curve. The only requirement
is that the leak current (through R~) be negligible
compared to the charging current. This can be
achieved by making the charging current suffici-
ently large so that the charging time (the pulse
duration) becomes small compared to R~C, .

In depletion layers (electrolyte negative with re-
spect to ZnO) there is execellent blocking so that

R~ is very high (-10' 0) and the above requirement
is easily satisfied. In accumulation layers (electro-
lyte positive), on the other hand, R~ decreases
with increasing applied voltage and care has to be
taken to ensure that there is no appreciable leakage
current.

In order to measure the leakage current I~ and
ensure that it does not affect our results, we varied
the time required to charge the space-charge ca-
pacitance C,. This was achieved by performing
measurements using current pulses of different
amplitudes. Typical charging times ranged between
10 and 100 p.sec. As the current pulse is applied
the reference electrode potential 5V, increases as
a function of time t due to the charging of the
space-charge capacitance C,. As long as I~ is
negligible compared to the charging current I„
the time axis is proportional to the change in the
space charge, 6Q, =I, t. However, as V, increases
with time (in accumulation layers), R~ decreases
and thus I~ increases and becomes comparable to
I,. Now the 5V, vs t curve starts to deviate from
6V, vs 6Q, curve; 6V, increases more slowly and
eventually reaches a steady value. Since this
steady value 5V,„corresponds to I~=I„ the leak-
age resistance can be calculated from R~=6V,„/I,.
If we repeat the measurement using a higher value
of the charging current I„ the 6V, vs t curve will
start deviating from the 6V, vs 6Q, curve at a high-
er voltage. This is illustrated in Fig. 1, where a
series of curves of 5V, in accumulation layer is
plotted as a function of the charge Q =I, t (in units
of the electronic charge e). The different curves
correspond to different charging currents I,. As
can be seen, as I, becomes larger, the deviation
from the true 6V, vs 6Q, curve occurs at a higher
5V, value. Pbviously, that part of the curve where
two measurements at different currents coincide
represents the true 6V, vs 6Q, curve.

A complete 5Q, vs 5V, curve is shown in Fig. 2.
Here 5Q, is expressed in terms of the change 5N
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FIG. 2. Change 6N in the surface-electron density
as a function of the reference electrode potential 6V,
for accumulation and depletion layers (full line). The
position of "flat bands" (&, =0) is shown by the arrow.
The dashed curve is a hundredfoM expansion of the de-
pletion layer and weak accumulation layer data. In the
insert the data at large negative values of V, (depletion
layer) are plotted as a function of jdV~ j

~2 for determin-
ing V„.

FIG. 1. Reference electrode potential 0V~ as a fgnction
of. the charge Q =I,t in units of the electronic charge e.
Different curves correspond to different charging cur.—.
rents I, as denoted in the figure.
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= bN —4N, (= 5Q, /e) in the surface-electron den-
sity. As will be discussed in a moment, the initial
condition of the surface on this sample, (with no
pulse applied) was characterized by V„=-0.18 V
and hN, = -10" em ' (weak depletion layer). Thus,
flat-band conditions (V, =0) are reached when 5V,
=+0.18 V. For higher positive 5V, values, an ac-
cumulation layer is formed and, as expected, ' 5N
increases very rapidly with 5V,. In the reverse
polarity, the weak depletion layer present initially
is being enhanced. In this range

l
6Nl is small and

varies slowly with 5V,. The 5N scale has been ex-
panded a hundredfold (dashed curve) in order to
display this variation. Extension of the measure-
ments to large negative values of 5V, (see insert in
Fig. 2) was used to determine V„and nN, . This
is a standard and mell-known procedure based on
the fact"' that in depletion layers 4N is given ap-
proximately by

v

For large values of
l
Ov, l,

~v.l" IV

Thus the intercept at ON =0 of the straight line at
large

l
5V,

l
yields V„. Using these initial condi-

tions, one can plot 4N as a function of V„with the
reference point now being flat-band conditions.
The initial condition of the ZnQ surface was al-
ways found to correspond to a weak depletion lay-
er, with V„ranging between -0.1 to -0.3 volts.

As explained above, one can derive the leakage.
resistance R~ from the steady value of the voltage
6V,„(see Fig. 1}. In Fig. 3, Rz is plotted (on a
logarithmic scale) as a function of the barrier

height V, in accumulation layer. As can be seen
the leakage resistance decreases exponentially with

V,. However, this decrease is slow enough to en-
able measurements up to about &N= 10"cm '.

III. THEORY

A theoretical derivation of the 4N vs V, curve
requires a self-consistent solution of Schrodinger's
and Poisson's equations. This kind of calculations
were made by many authors' ' but none of them
could be applied to ZnQ because of the different
band-structure parameters and dielectric con-
stant. Also, no calculations are available for the
4N range of 10"-10' cm ' encountered for the
first time in ZnQ. Therefore, the self-consistent
calculations had to be carried out anew. %'e follow
Stern' in using the effective-mass approximation
and characterize the electrons in the accumula-
tion layer by an envelope function

g„(x,y, z) = g,(z) exp(i k ~ R), (1)

where R is the two-dimensional position vector in
the plane of the interface, k is the two-dimensional
wave vector for motion parallel to the interface, z
is the distance from the interface into the ZnQ, and

i denotes the particular subband. The wave func-
tions f,( )zsatisfy the one-dimensional Schrodin-
ger's equation

d f]„,'+ [Eo —eV(z)]g,(z) =0.

Here e is the electronic charge, V(z} is the poten-
tial in the space-charge region, and the eigen-
value E', is the bottom level of the ith subband.
The effective mass m* is taken" as 0.25m, and
isotropic, where m, is the free-electron mass.
Each subband contains a continuum of levels, due
to the variation of the two-dimensional wave vec-
tor k:

C: 410 E) =Eq+h'k /2 (3)
CY
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FIG. 3. Sexnilogarithmic plot of the leakage resistance
R~ as a function of the potential barrier V~.

The boundary conditions usually used" in this
kind of calculation are l,(0) =0 and l,(~) =0. The
first equation implies an infinite potential barrier
at the interface and neglects the penetration of the
wave functions into the dielectric. However, as
was already pointed out by Stern" for similar cir-
cumstances, one cannot neglect the penetration of
the wave function into the electrolyte, especially
for the extremely high surface densities encoun-
tered here. This penetration was first included
in the calculations by Duke. ' For Si inversion
layers it was shown by Laur and Jayadevaiah, "
using approximate (Airy) functions, that this pene-
tration is of the order of a few angstroms. To
take it into account we proceeded similarly to
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these workers. In the electrolyte (z &0), we as-
sumed an exponentially decreasing wave function
A exp(z, z}where z, = [2m, (E,—E'}]'~'/k, E, is the
potential barrier in the electrolyte, and m, is the .

free-electron mass. As the boundary condition
we took the continuity of the logarithmic derivative
at the interface z=O

N, =(kzT/zk')m~ ln(I+exp[(E~ —E;,)/kzT] I. (g)

The Fermi level is calculated from the require-
ment that the integrated charge density equals
ehN. The integration of E(I. (8) yields

(10)

dV eAN

&ac&0
(6)

In calculating the charge density p(z) we took into
account only the negative charge of the electrons
in the accumulation layer and neglected the con-
tribution of the fixed impurity charges. This is
an excellent approximation for strong accumula-
tion layers (sN& 10" cm '), Thus,

p(z) = e g ( (I),~tI2/(I+ exp [(E+—Er)/kzT]),

where E~ is the Fermi level and k~ Boltzmann's
constant. Performing the summation (integration)
on k in E(I. (I) one obtains

After performing the calculations it was pointed
out to us that because of the variation of the ef-
fective mass, between the two materials we should
have used the boundary condition given by Daniel
and Duke' instead of E(I. (4). However, it turns
out that E, is not sensitive to the exact value of q
within reasonable limits. We varied 8, between
3-5 e7 with almost no effect. Thus we feel that
the change of the boundary condition would not af-
fect the results by more than a few percent. Since
neither the exact value of E, nor the effective mass
in the electrolyte are known anyhow, we did not
see any point in pepeating the calculations with a
different boundary condition.

The potential V(z) in the space-charge region is
found from Poisson's equation

-p(z)
dz' &se&0

where p is the charge density, q, the permitivity
of free space, and q„ the relative dielectric con-
stant in Zno whose value" was taken as 8.5. The
variation of the potential in the electrolyte was ne-
glected. The boundary conditions for V are V(0)
=0, i.e., the energy is measured from the bottom
of the conduction band at the interface, and

which through the Er dependence of N, [E(I. (g)]
serves for determining E~.

In the simple Hartree method these are the
coupled equations to be solved. The most straight-
forward method'4 of solution is to apply successive
approximations in the numerical computations.
One starts with a trial potential V(z) and derives
from Schrodinger's equation the energy levels and
wave functions. The electron-occupation of the
various subbands and hence the space-charge den-
sity p(z) are then calculated by the use of Fermi-
Dirac statistics. The pew potential obtained with
this charge distribution from Poisson's equation
is fed back to the next cycle of the successive
approximation. The cycles are repeated until self-
consistent solutions are obtained.

In the above calculations we did not take into ac-
count the exchange and correlation energies. The
correlatj. on energy for a quantized space-charge
layer was calculated mainly for Si inversion lay-
ers. ' The correction is important for low val-
ues of AN(=10" cm '}. In this range of aN, how-
ever, the zero-temperature (T= 0}approximation
used in the calculations is not valid for our system.
Estimation of the correlation energy for finite
temperature would be difficult and probably give a
lower value then that obtained for T=0. As the
density of the electrons is increased thp correla-
tion energy becomes less significant. For 4N in
the range 10"to 10" cm ' (which is the range we
are interested in) the correlation energy was esti-
mated using different approximations given by
Jonson" and found to change between millielectron
volts to tens of millielectron volts. Since these
values are much lower than the corresponding
j eV,

~

values we have omitted the correlation energy
from our calculations. The exchange energy, on
the other hand, is of the order of 100 meV (see
below) and cannot be neglected. In order to cor
rect for the exchange interaction, we add, follow-
ing Stern, "to the energy the term

p(z)=e PNg', (z), (8} x g&z(r')(1)z(r) urdar'.

where the occupation number N, of the ith sublevel
is given by

Here the summation is over allthe occupied states,
V(r, r') is given by
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[(2—2'l'+ (z+z )*}'")
(12)

6=(q„-z„}/(q„+z„),and q„ is the relative di-

electric constant of the electrolyte (water). The
second term in Eq. (12}arises from the image
charge induced in the electrolyte. To evaluate the
integral in Eq. (11)we proceed somewhat differ-
ently from Stern." %'e perform the integration in
Eq. (11) over the coordinates R and R' parallel
to the interface and change the Sum over k' into an
integral. After somewhat lengthy calculations we
obtain

xI, (e'l4=zz-4.&ffP(,(*&d,(z')(I(z)(I(z')[DI([ *'l, e)+-IID ([ Izz'[,ee)}dzdz;
f .

(13)

where

D,(z, e) = fe~( zl"'-"I)-

x e(k k„)d k /2v~r k~.

(14)

Here k»= (2'&}'~2 is the Permi wave number for
the jth subband and the e function is unity for k'
& k» and zero otherwise. The use of the e function
isvalidexactlyfor T=Owhile for T&0 it constitutes
a very good approximation for strong accumulation
layers in which E~ —E', is at least several k~ I'.
Actually, this condition is always satisfied for the
first subband and to a lesser extent for the second
subband. However, as we shaD see below, over
80% of the electrons are in the first subband and
almost all the rest in the second subband. Thus,
the higher subbands in which this condition is not
satisfied are of no interest.

The function D& can be expressed analytically
only for k=0

D~(z, 0) = [1—exp(-zk») ]/z .
For k IO we expand D~ into a Taylor series and
because of the weak dependence of D, on k retain
only the first two terms. From symmetry con-
sideratiops it is easy to see that the first derivative
of D~ is sero. The second derivative 82D, /Sk2, is.
obtained by first performing the integration in Eq.
(14) over the absolute value ~k'- k~. The resulting
integral is a regular function of k in the vicinity of
k = 0 and me can carry out the differentiation within
the integral. Next we set k =0 and integrate over
the angle of k'. The result can readily be shown
to be

82D~ g ].z+ exp(-zk») . (16)
8 k~ ~F

inserting D,(z., 0)+ 2'k2(S'D, /Sk')~. , f—or D&(z, k)
into Eq. (14) [and (13)]one obtains

k' O'Xgg
Xfy Xg+ 2

k-"0

where X, is the exchange energy for k =0 in the ith
subbed.

The corrected energy due to exchange interac-
tion can thus be expressed as

k~ O'Xg
E&~=)+X&+ 2 ~ k +

2 ek2 0=0
(18)

X, can be viewed as a correction term for E'„ the
bottom energy of subband i, and we redefine this
energy as E,=E',+X;. The other term originating
from the exchange energy [the last term in Eq.
(18)]is proportional to k' and can be looked upon
as a correction to the kinetic energy. Thus, if me

also redefine the effective mass in the ith subband
as

1 1 8 Xg~
m* m*+ k' 'ek2

Al= 0

we can write the energy as

E(2= Eg+ h k /2m f .

(19)

(20)

These corrected masses m~& were used in calculat-
ing the occupation numbers N& [see Eq. (9}]and
the Fermi level E~.

In order to illustrate how the exchange correc-
tion was introduced into the iterative calculation
discussed above, we shall describe one cycle of
the iteration. The potential V(z) obtained from the
previous iteration is fed into a subprogram for in-
tegrating Eq. (2}. This yields the subband energies
E;'and the normalised wave functions g;(z). Next,
me calculate the exchange energy g, by a numeric
two-variable integral and the effective-mass cor-
rection (82&,gbk2), ~ [see Eqs. (13)-(1V)]. The
corrected energies E,. and effective masses m*,

are inserted into Eq. (9), and Eq. (10) is solved
for the Fermi level E~. The occupation numbers
N, are then calculated from Eq. (9) and the charge
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density p(z) from Eq. (8). Finally, the new poten-
tial V(z) is derived by integrating Poisson's equa-
tion, Eq. (5). Usually not the entire new V(z) was
used for the next iteration but some average be-
tween the new and old one in order to avoid con-
vergence problems.
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FIG. 4. Calculated values of the potential V{z) in
accumulation layer as a function of the distance z from
the ZnO-electrolyte interface for a surface-electron
concentration of4¹5x 10 cm . The two horizontal
lines labeled Ep and E& show the positions of the bottom
edges of the first two subbands while the line labeled
Ez {dotted) shows the position of the Fermi level. The
envelope wave functions in the first two subbands fp
and &&, ar~ shown by the two dashed lines, using the
levels Ep and E& as the zero linea for the wave functions.
The upper part of the figure shows n {z) the electron
bulk concentration in the space-charge region. The
effective-charge distance L~ is also marked in the
figure.

IV. RESULTS OF CALCULATIONS AND COMPARISON
VGTH EXPERIMENT

Figure 4 depicts the calculated values of the
potential V(z) in the accumulation layer as a func-
tion of the distance z from the interface for the
case of a very strong accumulation layer (nN
= 5 x 10"cm '). As can be seen from the figure,
most of the potential drop occurs within 10 A of
the interface. The positions of the bottom edges
of the first two subbands are shown by the two full
horizontal lines labeled E, and Ey' and the Fermi
level E~ by the dotted line. The z dependence of
the envelope wave functions in these two subbands
is shown by the two dashed lines labeled &p and
using the levels Ep Rn'Q Ey as the zero lines for the
wave functions. Notice that the wave functions

start at the ZnO-electrolyte interface (z =0) with a
finite value. This is due to the assumption of a
finite potential barrier in the electrolyte. Because
of the penetration of the wave functions into the
electrolyte, the maxima of &p and &, are displaced
by 1-2 A to the left from their position for an
infinite barrier. The displacement affects some-
what the spatial distribution of the electrons in
the accumulation layer and brings them closer to
the interface. It also lowers to some extent the
energies of the subbands (E, and E,}. To the right,
the wave functions penetrate inside the ZnQ bulk
relatively far into the "negative kinetic energy"
region. This is due to the low effective potential
barrier for these states (about 0.5 volts for g, and
0.1 volts for g,). Itshouldbepointedout, however,
that the penetration of the wave functions (in both
directions) affects only slightly the electron con-
centration.

The total electron bulk density n(z} in the ac-
cumulation layer (summed over all the subbands)
is shown in the upper part of Fig. 4. As can be
seen, this density is of the order of 10" cm ', al-
most metallic. The maximum of n(z) is between
V and 8 A. The density of the electrons that pene-
trate into the electrolyte is very small, as can
be seen by the almost vanishing value of n(z) at
z =0. The penetration of the wave functions into
the ZnO bulk gives rise to a long tail in n(z) to-
wards large z. The amplitude of this tail is small and
relatively very few electrons are at appreciable
distances from the interface. Most of the excess
electrons are within 15 A of the interface as shown
also by the marked value of the effective charge
distance L,. This distance is defined as

L, = &.,&, I V, /e~N~, - (21)

i.e. , L, is the separation of an equivalent yarallel-
plate capacitor whose one plate is at the interface
and the other inside the ZnQ crystal. It is easy to
show that L, is the center of mass of n(z) and thus
can be looked upon as the effective wiCkh of the ac-
cumulation layer.

In Fig. 5 the various calculated energy levels
are shown as functions of ~N, in the accumulation
layer. The three solid curves depict the positions of
the bottom edges E„E„andE, of the first three sub-
bands, while the dotted line shows the position of
the Fermi level E~. All energy levels are mea-
sured from the bottom of the conduction band at
the surface. The separation between the energy
levels is seen to decrease with decreasing 4N, as
expected. The classical regime is reached when
these separations become comparable to kzT(AN
= 5 x 10" cm '). Also shown (dashed curves) are
the fractional occupations q„q„and q, of the first
three subbands. Qver most of the 4N range dis-
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played, q, is over 80gp while q, is 10-20/g and q, is
less than l%. Thus the majority of the electrons
occupy the first subband so that the accumulation
layer can be viewed as a two-dimensional electron
gas system (the so-called quantum limit' ).
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In Fig. 6 is shown the position of the Fermi
level, measured from the bottom of the first sub-
band E~- Eo as a function of b¹This dependence
is almost linear and the slight curvature is due

mainly to the presence of the other subbands. The
variation of m, , the effective mass in the first
subband, (due to'the exchange energy) is shown by
the upper line, where the ratio mo~/m* (m* being
the uncorrected effective mass) is plotted against
Ml. The value of the exchange energy at k =0 for
the first subband X, is shown at the bottom of the
figure. It is seen that X, rises monotonously with

4N and is close to 0.2 eV at LN = 10'4 cm '.
The experimental values of hN (full dots and

squares) are plotted in Fig. V as a function of V,
in the accumulation layer. The squares represent
data obtained by the method described above (Fig.
2). With this method it is possible to measure
reliably the charging process of the space charge
up to about bN=5 x 10" cm '. The dots. represent
data obtained by a different method which enables
the measurements to be extended up to hN =10'~
cm '. This method was developed in our laboratory
and will be described shortly in a separate publica-
tion." The rising solid curve is the result of the
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the barrier height V, in accumulation layer. The full
squares and dots represent data obtained with different
methods (see text). The calculated AN curves shown
were obtained using the semiclassical approximation
gong-dashed), the previous self-consistent calculation
(short-dashed), and the present improved self-consistent
calculation {full line). Also shown are the experimental
values of the effective-charge distance L ~ (empty
squares and circles) together with the calculated line.
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present self-consistent calculations and agrees
very'well with experiment. For comparison we
also show the results of previous self-consistent
calculations" (short-dashed line}, which neglected
the exchange interaction and assumed an infinite
barrier at the ZnO/electrolyte interface. As can
be seen, the difference between the two self-con-
sistent curves is not insignificant at high 4N val-
ues. The long-dashed curve represents the semi-
classical approximation. " It was obtained by a
solution of Poisson's equation, neglecting all quan-
tization effects other than those embodied in the
Fermi-Dirac distribution functi. on. Also shown
are the experimental values of L„ the effective-
charge distance, as obtained by the two methods
(circles and empty squares). Note that for strong
accumulation layers, L, becomes as small as 10
A. The solid curve labeled L, has been derived
from the theoretical AN vs V, curve by the-use of
Eq. (21).

V. DISCUSSION

The pulse techniques developed here, combined
with the excellent blocking characteristics of the
ZnQ-electrolyte interface, enabled us to attain
extremely strong accumulation layers. The range
of surface electron density hN investigated (between
10'3 to 10'' cm '}is more than one order of mag-
nitude higher than that encountered on silicon MQ3
structures. In fact, to the best of our knowledge,
this is the first time that accumulation layers with
a surface-electron density of 10"cm 'are reported.

There are no published theoretical calculations
available for the range of &N dealt with in this
paper. In addition, because of the material para-
meters which enter into the theory (q„,m*), the
calculations cannot be generalized and each cal-
culation is specific to the material considered.
Two important corrections were introduced in our
calculations. Qne, the wave-function penetration
into the electrolyte and two, the energy correction
due to the exchange interaction. Both of these cor-
rections reduce (for different reasons) the magni-
tude of the potential barrier V, and the effective
charge distance L, at any given value of 4N. The
penetration of the wave function into the electrolyte
increases the effective range of the wave function
and thus reduces the energy of the subband E;. The
exchange interaction, on the other hand, reduces
the energy of the system because it decreases the
probability of two electrons approaching each other
very closely.

Apart from the experimental point of view, the
choice of ZnQ for our experiments was fortunate
also from the theoretical point of view. To appre-
ciate this one has to consider the fact that our

self-consistent calculations were made without
any adjustable parameters. The effective mass
has been taken as isotropic and constant (apart from
the correction due to the exchange interaction) over
the entire V, range investigated. (This is known
to be the case" only for the bottom of the conduc-
tion band. } The magnitude of the errors in the
calculations caused by the different approxima-
tions used which neglected the correlation energy
and the fluctuations in the potential parallel to the
surface is not clear and more theoretical work has
to be done to estimate it. However, assuming that
these errors are small the agreement between the-
ory and experiment indicates that the ZnQ conduc-
tion band is indeed spherical up to at least 2 eV
above the bottom of the band. This kind of behavior
was predicted by band-structure calculations" but
never, to our knowledge, proved experimentally.
Indeed for other materials" the departure from
parabolity of the conduction band at high energies
is evident in the 4N vs V, curve. Theoretical cal-
culations for this case were made by Qhkawa and
Uemura. "

As expected the experimental data in Fig. V do
not follow the semiclassical curve (long-dashed},
except at low values of the barrier height V,. The
semiclassical approximation is meaningful only
when the separation between the subbands is less
than k~T or hE, the energy broadening due to col-
lision. hE is given by h/r, where v is the colli-
sion time which can be estimated from the mobility.
If we take the bulk value of the mobility (about
100 cm'/V sec) we obtain hE= 40 meV, while the
room-temperature value of k~T is about 25 me7.
Thus both energies are small compared with the
separation of the subbands over most of the range
studied (b¹10" cm ').

The corrections due to the exchange interaction
and the wave-function penetration into the electro-
lyte are not severe (less than 20%) but sufficiently
important to be incorporated in our calculations.
Small as the difference is between the uncorrected
(short-dashed) and corrected (full-line) curves, it
is seen that at low 4N values the experimental
points are closer to the former curve while for
high Mf values they definitely follow the latter.
The behavior at low &N values is as expected be-
cause in this range the T=0 approximation used
is not valid. Consequently, the exchange correc-
tion was overestimated (the correction due to
wave-function penetration is still negligible). For
the high 4N range, on the other hand, the T =0
approximation is very good and there is indeed
good agreement with the corrected, "improved
self-consistent" curve. The voltage drop across
the Helmholtz double layer in the electrolyte could,
in principle, affect our results. The exact width
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of this layer is notknownvery wellbut from the high
capacitances obtained in metal-electrolyte systems
one can estimate it to be less than 1 A. Thus it
cannot be appreciable compared to the widths of
our accumulation layers, which are not narrower
than 10 A.

In conclusion, then, this relatively simple ex-
periment provided very basic information on the
properties and quantization of quasi-two-dimen-
sional electronic gas, on the one hand, and on the
ZnQ band structure on the other hand.
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