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The dc ionic conductivity is calculated for one-dimensional (1-0) classical hopping with effects of nearest-
neighbor repulsion included. Repulsion between ions in different channels which leads to three-dimensional
ordering of the ions is accounted for in a mean-field manner. The intrachannel repulsion U is treated exactly
by using results for the equivalent Ising antiferromagnet in a staggered field. It is shown that several choices
can exist for the dependence of transition probabilities on nearest-neighbor occupation numbers and still
satisfy detailed balance. In almost any case, however, the activation energy increases by U/2 as the
temperature T goes through the ordering temperature T, from above. An appreciable change in activation
energy should then be observed in a 1-0 superionic conductor which undergoes an order-disorder transition,
provided this transition is triggered by interactions between the mobile ions. The dependerice of activation
energy upon U above T, depends on the range of the forces and whether the hopping is purely classical or
involves tunneling. We find that Kikuchi's result of a decrease in activation energy by U/2 from the
noninteracting value is reproduced if very-short-range forces and classical activation over a barrier are
assumed. On the other hand, we get Mahan s result of an increase by U/2 if the transition rate is governed
by tunneling through a barrier.

I. INTRODUCTION

The lattice-gas model has been used as a con-
venient starting point for describing the hopping
dynamics in superionic conductors. ' ' It con-
sists of pN particles constrained to reside on N
lattice sites such that no two particles occupy
the same site. Interactions are between nearest
neighbors only, whereby thermodynamics of the
system can be related to those of a nearest-
neighbor Ising model. Specific calculations have
been performed for pure one- and two-dimen-
sional (1-D and 2-D) systems. These are of more
than academic interest since a number of the
real compounds have layer or channel structures
which suggest that the conductivity should be con-
fined to one or two dimensions. An example of
note is 1-D P-eucryptite (LiAlsiO, ) where a highly
anisotropic conductivity has been confirmed. '

The ideal 1-D lattice gas, i.n common with all
j.-D systems with short-range interactions, does
not have a phase transition. Interactions between
ions in neighboring channels are present in real
systems and can trj.gger a 3-D order-d)tsorder
transition at a finite temperature T, . This paper
addresses the question of how the conductivity
in a quasi-1-D system is affected by weak inter-
channel interactions, particularly in the vicinity
of T, . A partial motivation for the work is the
observation' that the mobi. le I i ions in P-
eucryptite are 3-D ordered only below about 450'C,
although precise details of the apparent order-
disorder transition are unknown.

Although thermodynamics of the lattice gas are
straightforwardly related to those cf the Ising

model, dynamics which lead to ionic transport
require additional consideration. The high tem-
peratures and heavy (compared with electrons)
particles of interest should lead to incoherent
hopping processes with negligible quantum tun-
neling and coherence effects. In this case a
classical hopping formalism via rate equations
seems appropriate, as used for Kikuchi's pure
1-D calculation' and in the path-probability
method. '

An alternate approach was taken by Mahan'
who added a transfer term t,c~cz to the lattice-
gas Hamiltonian R, which moves an ion from site
' to i. (The unperturbed X, is of the form

„.U, ,P,P, , where P; =c; e; is the occupation-
number operator and c~ and t".; are fermion creation
and annihilation operators for an ion at site i.) He
then calculated the conductivity to lowest non-
vanishing order in to using the Kubo formalism. '
It is not at all clear that this represents an im-
provement over the rate equations used here to
describe ionic hopping at elevated temperatures.
For example, a first-principles t, would have no
explicit temperature dependence, and lead to
coherent processes in the absence of further in-
teraction terms in the Hamiltonian; but it was
necessary for Mahan to make the somewhat ad
hoc assumption t', ~ exp( V/ksT) in orde-r for his
results to produce activated hopping over a barrier
V at temperature T.

Even within the framework of classical hopping
the lattice-gas model can only be regarded as a
crude approximation to the realities of superionic
conductors. Effects such as lattice relaxation are
ignored by the assumption that the probability for
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a particular ion to hop depends only on the initial
configuration of its neighboring ions. As the ion
and its neighbors move the saddle-point energy
and phase-space volume' can be modified so as
to complicate the simple rate equations beyond
tractability. Nonetheless, ' the lattice-gas model
provides useful physical insight into the hopping
and ordering of interacting models even though
it may be risky to attempt detailed comparison
of |ts results with experiments on complex
structures.

The calculations of Kikuchi and Mahan which
show the effect of an interaction U on activation
energy are inadequate for the present purpose
since they do not allow for ordering in quasi-1-D
systems. Here we account for the possibility
of ordering by including interchannel interactions
which are approximated by mean-field theory
while the intrachannel ones are treated exactly
with well-known results of the 1-D Ising model
in an external field. Conductivity is calculated in
the same manner as presented in a previous
publication, ' referred to as I, for the noninteracting
system. An expression is obtained for the steady-
state current in a weak electric fieldby considering
the hopping-rate equations. This current depends
on static correlation functions which are evaluated
from known properties of the 1-D Ising model in
a mean field.

The dependence of the hopping transition prob-
ability W upon U is only partially fixed by re-
quirements of detailed balance for the dynamics
of the lattice-gas or equivalent Ising model. "
We show that above T, the activation energy can
either increase or decrease with U depending on
the particular form taken for W. In any event,
however, there is an abrupt increase in activation
energy by an amount of the order of & U as T goes
through T, from above. In fact the choice of W

which reproduces Kikuchi's result that the activation
energy is decreased by &U for T &T, leads to an
activation energy independent of U for T &T,. We
further demonstrate that the activation energy for
T «T, is greater than that for T just below T,
by an amount proportional to the interaction U'

between ions in different channels. This
latter effect is a result of correlations for in-
equivalent sites as discussed in I.

H. HOPPING EQUATIONS

If W; &
is the probability per unit time of an

ion jumping from site i to j in the absence of an
electric field, then as in I the rate equation is

5P]= ~ —W;»P»(1-P;)(1+ e»;6)

+ W»»P»(1 -P»)(l+ e»»h),

where P; is 1 or 0 according to whether site i is
occupied or unoccupied, respectively, 6
=2PeEa, (P = 1/I»»»T) describes the effect of a weak
electric field E in altering the rate at which a
particle of charge e hops a distance a„and ~,&

=+1 if site j is to the right of i and e;& = -1 if
j is to the left of i. Only nearest-neighbor hops
on a 1-D lattice are considered so that j = ia 1.
The quantity 6P; represents the average change
in P; during a small time interval 6t. The reader
is referred to I for a discussion of how Eq. (1)
is related to stochastic processes and a more-
detailed description of the meaning of 6P&. The
steady current is proportional to the net flow of
probability between i and i+ 1 given by

8 = (1+b gW»;+,P»(1 -P»+»)}
—(1 —&)I.W».», P»+»(1 -P»k (2)

wher e + ) '
y &] ] y is the transition rate used in I,

which for two inequivalent sites A and B per unit
cell, is either S» or +» depending on whether
i is anA or aB site.

Note that W; „,is always multiplied by P, (l
-P„,) in the rate equations, i.e., we demandtha, t
site i is occupied and, within the spirit of the
lattice-gas approximation that only the initial
configuration determines the rate, site i+ 1 is
unoccupied for the transition to occur. This
eliminates the need for including P, or P&„ in
Eq. (3) since they must have the values 1 and 0,
respectively. Jnterchannel repulsions are treated
by a mean-field approximation and may thus be
lumped into an effective S',

$ y The parameters
a, b, c depend on the particular dependence as-
sumed for transition rates on the intermediate
barrier and on the range of the repulsive force.
Detailed balance~'" requires only that a+b = 1.
These points are discussed more fully later. Since

where the curly brackets indicate a steady-state
average taken in the presence of the electric field.
The probability flow 8 is of course independent of
position in the steady state.

Equation (2) is used as in I to calculate the cori-
ductivity, proportional to 8/h, in terms of static
correlations which are in turn determined partly
from the steady-state values of Eq. (1) and similar
equations for 6(P;P„,), the correlated average
change in the product P&P;„. The difference
between here and I is that we now let +f j y in-
clude the effect of nearest-neighbor repulsion by
having it dependon the occupation of sites "' —1 and
i+2. Since P& =P& the most general form this
can take is

W»
~ »,=W»», exp[PU(aP, ,-bP», +cP»»P; 2)],
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exp(~& ) = 1 —P, + P1e

for any constant A, , we can rewrite Eq. (3) as

W, „,-% „(1+K,P, ,+KbP1„

+ +PI 1P1+2) r

and similarly

W;+1, = W;„;(1+K,P;„+KbP;

+ Kr,P1,Pl~2) r

where

(6a)

(6b)

&(I+K,)(WAB+ WBA)(1-g)

4nWAB[fAB fBAB fAA fABA

Krr(fAB fBAB fBAA fBABA)

+Kb( fAA+fABA+fBAA fBABA)] r (10)

where the correction g is defined as

1 Kb —Kb +Aa(VA Z)+ WBA(VB —Z)g'=
+K 8 „~+v~„

with

Z, =e~ —1,
Z, =e-~-1,
Z, =e~-1,
K, = K, (1+K, + K,) + K,K, .

The result of using Eqs. (5) in (2) is

(6a)

(6b)

(6c)

(6d)

WAB+[11A fAB + K (fAB fBAB) + Kb(fAA fABA)

+ fib (fBAA f BABA)]

+.(WaA-&Aa)l. (I+&b)x+Kz] r (7)

y = lPAPB —PB,P„j, (6)

and, as shown in I, has an important effect on the
conductivity when the sites are inequivalent (O'Aa

eWBA). The curly brackets stand for a steady-
state average in the presence of a field (b, W 0).
The additional correlation in Eq. (7) is

Z ].PA 8 A+ 1PB+lj 1PB-1PAPBPA+ lj ~

The coefficient of b, in Eq. (7) is explicitly for
i an A. site in Eq. (2). However, the steady-state
condition 5P, = 0 in Eq. (1) shows that the term
with A and B interchanged is identical. Use of (1)
has also been made in expressing the terms not
explicitly containing 6 in the manner shown.

An equation for y and z valid to first order in
A is obtained, as in I, by considering 5(P,P„,) = 0,
which yields

where nA =(P;A) is the average number of particles
on anA site, f„a=(P„PB)and fA„=(P„P„+,) are
two-particle correlations, and the higher cor-
relations are faAB =(PB,PAPB), f»A = (P„PBP„„),

faAA ( -1A A+1) fB.ABA ( 8-1PAPB A+)'
the above and following relations, sites are labeled
such that if i=A, theni+1=8, i -1=B—1, i+2
=4+1, etc. The triangular brackets indicate a
thermodynamic average in zero field and we have
noted that for a calculation of g to first order in
6, sufficient for the small-signal conductivity,
the averages contained as coefficients of A in (7)
may be calculated for b, =0. The quantity y is
the same as in I

VA —lPAPAr. 1PBr., —PB 1PAPA+ lj r (12a)

VB LPAPBPB+1 —PBPB+ 1PA+2j ~ (12b)

The presence of z in Eq. (7) and g in Eq. (10)
prevent an exact solution for g to first order in

This is no problem above T„where the sites
are equivalent, since y and z must be zero any-
way. Not too far below T„y and z are small and
do not affect the results much. But for very low
temperatures they can have a big effect and, in
certain cases, the activation energy can be in-
fluenced by the decoupling approximation employed
later.

A remark is in order regarding the difference
between Eq. (7) for WBA=W„B=W, and that derived
by Kikuchi' for equivalent sites and the case he
considered, which corresponds to a=1, b =c =0
=Kb= K, . In effect he made the substitution

Wf, &+1P (1-PI+1)=W11+1P1P, (1 PI+1)

WP;(I -P1„-), (13)

III. HAMILTONIAN AND CORRELATIONS

We consider a regular (nondimerized) chain with
two different types of sites, A and B. There is

and then replaced W' by its average value

W (W) = Wo([1+P1,(e —1)]P,)
= W. [e fAB+(p-f»)], (14)

where (P;)=p for a density p of particles dis-
tributed on equivalent sites. The first equality in

(13) is legitimate since P', =P, . Replacement of
W by (W) neglects certain correlations which are
included in Eq. (7). We show in Sec. III that,
nonetheless, Kikuchi's conductivity calculated from
Eq. (14) agrees with ours from Eq. (7) for the
case of p=2 and g=1, b =c=0 above T, .

The conductivity is completely determined by
using the appropriate static correlations in (7)
and (10), at least if z and g can be neglected,
together with a choice for the parameters a, b, c.
The correlations are treated in Sec. III in terms
of an equivalent Ising model, and the physical
basis for various values of a, b, c is discussed.
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+ Q U(; P( P( + Q U( (iP( P(i . (15)
il iB,i'

The last two terms in Eq. (15)express 3-D coupling
to ions in other channels whose sites are denoted
by i'. They are replaced in a mean-field approx-
imation by

UAA+A + UAB+Bi'
(16a)

Ui i P; UBAnA+ UBBnB,
il

(16b)

where U»=Z;„'U;„;g, etc. , and n& (n(() is the
probability that anA (B) site is occupied. Hence-
forth A is taken as the preferred site (n~ & n(().

Equation (15) can then be rewritten as purely
2-D:

K = U Q P,P;„V~Q P-(„—V(( Q P(, (17)

where

VA VA UAA+A UAB+8 &

VB VB UBA+A UBB+B

(18a)

(18b)

Relationships between the transition rates
W;;„and ~„,; and parameters of the Hamiltonian
are established in analogy with studies of the
time-dependent Ising model. ' Consider hopping
of a particle between i and i+ 2 with all other
particles fixed. Detailed balance requires

W, ,„/W;„;= exp(P4;)/exp(P4; »),
where

a nearest-neighbor repulsion U between sites i
and i+ l. If the site i is anA (B) type it is labeled
i„(i(() and has a well depth V& (V((). If no dis-
tinction need be made as to the type of site, it
is simply labeled i. The lattice-gas Hamiltonian
which describes interaction within the chain and

coupling with other chains is

K=UgP(P(+( —V~0 gP z
—V(( PP(((

iA

W'('I „~exp[-P[Q(~((,) —QO)]), (21)

where &p(x) is the energy of a particle at position
x. The sense of Eq. (21) is that enough energy
must bg supplied to move the particle over the
barrier, leading to an activated process, and that
the particle readily loses energy in getting from
2a, to a, so that the final-state energy Pa,) does
not appear in the expression. A second alternative
is that, assuming &gao) & &$0), as sketched in Fig.
2, the ion can tunnel once it is supplied with suf-
ficient energy to reach a level corresponding to
ga, ) . .In this mixed quantum-classical picture we
would have a temperature dependence

~

~

exp[-P[Q(ao) —&p(0)]) for Q(a,) & 9+)
(2') o:

independent of temperature for ga,)& y(0) .

(22)

Although it is unlikely for ionic mobility at the
temperatures of interest, we include the process
implicit in Eq. (22) for completeness. In the
expressions (21) and (22) for the classical (C) and
tunneling (T) rates we assume that the dominant
temperature dependence comes from the activated

occupied. Similar reasoning applies in Eq. (20b).
Use of Eqs. (20) in (19) together with considerations
of the symmetry of the situation —Pi,' must appear
in Wi „,in the same manner that P„,appears
in W;„,—leads to Eq (3.) with a+ b = 1, carbitrary,
andW«„ independent of U-. The activation energy of

is VA fori, inane site, and VB fori, a 8 site, if
classical hopping over a barrier is assumed. Note
from Eqs. (18)that this meansthatW( „,contains
interchannel interactions and depends on the average
occupations nA and nB.

The physical nature of the hopping process sheds
further light on a, b, c. Referring to Fig. 2, let
the positions of sites i and i+ 2 be 0 and a0,
respectively, where the potential has local minima.
The potential maximum is assumed to be at &a,.
Classical activated hopping assumes a temperature
dependence

and

4; = -Vi+ UP;, +4'

4 ~ +1 = -V.+ ~+ UP +2+ 4

(20a)

(20b)

are energies of the system with the iriterchannel
mean-field Hamiltonian (17) when the particle is
at site i or at site i+ 2, respectively. Here V;
= V„(V((), V;„=V(( (Vz) if i is an A (B) site and
4' does not depend on whether the particle is at
i or i+ 2. We have noted that since i+ 2 must be
vacant if the particle is at i, nearest-neighbor
repulsion in (20a) can occur only with site i —1

a1
.p 0

a
0

FIG. 1. Potential @, which includes ion-ion repulsion,
vs position x for a typical configuration.
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(23)

The term U(2a, ) must be neglected since its
presence would contradict the use of a nearest-
neighbor Hamiltonian. However, U(zao) can in
principle be retained. Comparison of (23) with

(3) shows that, for U(2a,)=0
a = 1 —U(2a,)lU(a, ),
h = U(-,'a, )jU(a,),

(24a)

(24b)

(24c)

In the limit of very-short-range forces, which
is the most likely case in which the Hamiltonian
(17) is justified, U(—,'ao) «U(ao), and we get a = 1,
b =0, corresponding to Kikuchi's model. In fact,
he presented an argument very similar to the
above in his detailed exposition of the path-prob-
ability method. " One can at least imagine other
situations, such as sketched in Fig. 2, where the
interaction falls off slowly between a, and 2a, and
then is abruptly cut off by screening. For example,
if U(x) decays as 1/x (unscreened Coulomb) before
being cut off, Eqs. (24a) and (24b) would give
a=3, b=~. The case a=b=~ is realizable with
an interaction which decays to 2U at 23a, before
being cut off. Thus it is possible to have any a:b

U(x)

terms; any weaker variations such as T' are taken
to be "independent of temperature. "

We treat first the classical rate (21) and show
how it depends on the range of the force. Let the
interaction part of the energy have a spatial vari-
ation U(x), where U(ao) = U to be consistent with
the Hamiltonian of Eq. (1V). We then have from
(21) and Fig. 1

W', '„,~ exp(-pV, ) exp[-pPg gU(-,'a, ) —U(a,)]

PP-„JU(,a,)——U(2a )]j.
- BtJ

gr(r) voe, Pj ) =0~ Pj+2=1j.j+ j.

v, otherwise,

where v, is an appropriate attempt frequency
which is only weakly dependent on temperature.
The above is equivalent to

&i",~. i =
&0 exit PU&-~+2(1 —&~-i)] (25)

which means a = O„b = c = 1. A wide variety of
choices thus exist for the parameters a, 6, c
in l4"j j y depending on the nature of the hopping
and details of the interaction range.

We next express the Hamiltonian (1V) as an
equivalent Ising model by the substitution P,

1= —;(1+v,), where o, = +1,

X=eTQ o)op+a —h Q (o2)+ g
—o2))

II Po,-+ const, (26)

where J =~U, h =~(V~ —Vs), 8 =4(V~+ Vs) -2Uy
and where we have takenA. sites to be odd num-
bered (2i+1) and B sites to be even numbered (2i).
With J& 0 the above is the Hamiltonian for a 1-D
Ising antiferromagnet in both a uniform fields
and a staggered field k. For a fixed number of
sites N and particles pN (canonical ensemble),
we have

ratio between ~ and & in the classical hopping
rate (21) for Coulomb repulsions with various forms
of screening and still preserve the nearest-neighbor
Hamiltonian (17). Note, however, that c = 0 always
in this model.

The tunneling rate (22) does not depend on U(~a, ).
If we take equivalent sites V~ = V~, then Eq. (22)
reduces to

(u, —1)=(2p —1)N. (27)

a
0 3a 2ao

2

FIG. 2. Distance dependence of repulsion U(x). Solid
curve: U(32 ao) «U and barrier height II'(~a&) is un-
affected by U(x). Dashed curve: U(~ao) is not negligible
so that ftI (2ao) is affected. Restriction to nearest-
neighbor interactions demands that U (2ao) be negligible
in any case.

In the special case of p=2 this is zero so that the
term inH is not present.

The study is henceforth restricted to the half-
filled lattice p= 2, where correlations are those
appropriate to an Ising antiferromagnet in a
staggered field h. Further, such correlations are
identical to those of an Ising ferromagnet in a
uniform field apart from a change of sign where
necessary to account for the antiferromagnetic
ordering, e.g. , ( , o)o= -v„where v, is the posi-
tive nearest-neighbor correlation for the ferro-
magnet. We then make the following identifications:
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nA = —', (I+(o')),

fAB =-'(1-&.)

f„„=—4'(I +2(o) +v, ),
fBAB 8 (1 -(o) —2v, +r, +(op'8o8) ),
f„„=—,'(I+(o) —2l., +v, -(a',o',o,)),
fAAB =8 (1 +(o) 1 +T T (o op' ))

fABAB —
18 (1 —3%1 + 2%8 —78 +(o(o8V8o4) ),

(28a)

(28b)

(28c)

(28(i)

(28e)

(28f)

(»g)

C, =1 —v, —2v8+v8 —2(o,o,o8)

+ 2(o(G8o4) +((T(08o8o4),

C8 = 1 +4(G) + 371 + 278+ T8 +2((T((7808)

+ 2((71(T8o4 ) +(o((T8o8G4 ) 1

and we have used the relation

(WB„—W„B)/(WB„+W„B)=tanh2ph,

(30b)

(30c)

(31)

which follows from (19), (20), and the definition
of h given under Eq. (26). The tanh2Ph terms in
Eq. (29) arise from the term on the right-hand
side of (7) proportional to WB„—WAB which does
not explicitly contain &. The quantity e is a cor-
rection resulting from z in Eq. (7) and g in Eq.
(10). It is evaluated by making the decoupling ap-
proximation

{PAPA+ 1PB+1
—PB 1 PA PA+ 1)

nA{PA PB PB I PA) + nA{PAPB+ 1 PB PA+ 1)

+nB{PAP„„PAP„„)-

where all correlations are positive for a ferro-
magnet in a uniform field h —the sign differences
as well as the assumption of preferred'-site
ordering (o) & 0 have been explicitly accounted
for. The quantity 7& is defined as v& =(o(o(,&).
Use of Eqs. (28) in (7) and (10) gives after some
algebra

8 =8W„B&({1+exp[pU(a—h+c)])C,
+exp(PUa)[1+(I+a) tanh2Ph] C,

+exp(-pUb)[1- (I + e) tanh2ph] C,),
(29)

where

C, =1+2(o) +q, —78 —2(o,o',o'4) —(o,o,o8o4),

(30a)

2 2fggtgg p

These approximations lead to

1+-,'(1-(o)')e B~'K

1 ——,'(1+(o)' —2(o)' tanh2tih')(I —e B")

(33)

(34)

+ 8 (U» + UBA UAA UBB)(o) =h 8+J (&) 1 (35)

since n„=—8'(1+(o)), nB = —,'(1 -(o)). If the potentials
V„' and V~ are -identical and the symmetry is such
that U„'„=U», U» =U~„, thenh, ,=0 andh be-
haves like a pure mean field proportional to (o)
with no "external" component. In this case there
is a sharp transition to 3-D ordering at a tem-
perature T, =1/hBp, such that"

P JI 8 28gJ (36)

The expression (36) is exact" to lowest order in

P,J' for the complete quasi-1-D Ising Hamiltonian,
which shows the validity of using a mean-field
approximation to treat the interchain couplings.
Another w@y of stating this is that any neglected
interchain short-range order is of the order of
P,Z'« I at T, and thus negligible. If h, is nonzero,
there will be rounding of the transition but the
basic features should remain the same as long
as hp+ J For the specific discussion which fol-
lows we take Ap=0, although some results are also
presented for finite h p.

IV. EXPRESSIONS FOR CONDUCTIVITY

We calculate the conductivity in three reg'ions
of interest.

A. T)T
Above T„(o)=(o,o8o8) =(o,o8o4) = 0, the two-

spin correlations are given by the mell-known
results'~ for h =0

The necessary correlations in Eqs. (30) may be
calculated by transfer-matrix methods as outlined
in the Appendix. Since they are rather cumber-
some except for Q =0, we do not give general re-
sults for the conductivity but rather focus on
specific regions of interest.

Comparison of Eqs. (18) with the definition of
h under (26) shows that

h —4(VA ~B) 8 (UAA UBB +U» —UBA)

2flAX ' (32)

The second approximate equality on the right-hand
side of (32) comes from assuming that the system
is strongly correlated below T, so that {P„PB+,)
={P„PB),etc. , and noting that the coefficient of
n~ is identically zero. Similarly we take

v„= (tanhP J)",
and (&x,o8o8o4) = v(8. Equations (30) reduce to

C, = (1+v,)8(1 —7,),
C, = (1 -7,)'(I +~,),
C, =(I+v, )8,

(38a)

(38b)

(38c)
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with v, =tanhp J=tanh —,'pU. In the activated region
we expect pJ» 1 so that v, =1-2e s"~', whereby
Eq. (29) becomes

g = W» b[ exp(- —,pU) + exp[pU(a —b + c ——,)]

+ 2 exp(-PUb)) (» T,), (39)

B. TgT

where we have noted that since 5 = 1 -a,
exp(PUa)C, =exp(-PUb)C, for PZ»1. The observed
activation energy will be V„+kU, where k is the
smallest of —,', -a+5-c+ —,', b, assuming that
one of the exponentials in (39) dominates. For the
models considered above, P =-—,

' for classical
hopping with U(~a, )«U(a, ) (a=1, b=c=0), while
4 =+—,

' for the others. The complete expression
for a=1, b=c=0 may be shown to agree exactly
with Kikuchi's, ' even though he neglected certain
correlations. The reason is that where our ex-
pression contains r, or (o,o,o,o4), his has v'„but
v, =(o,o,oso~) =r2, for the 1-D Ising model anyway.

the term in (pJ') is initially dominant and
4'=1 for T just below T, ; but once T decreases to
the point where (PJ') ' exp(-PU) «exp(--', PU), h'
changes to —', .

For all three of the models 0' —k = —,
' if k' is

taken as the value immediately below T, so that
there is an increase in activation energy by an
amount U/2 as T goes through T, from above. A
special case of note, however, is a = b = —,

' c =0
[classical hopping with U(—,'ag = —,'U(a, ) followed by
rapid cutoff beyond —,'a, ] for which h =h' = —,

'
and

there is no change in activation. energy at T,.

C. T~o

In the very-low-temperature limit, ph & 1 and
the tanh2Ph terms in Eq. (29) become important.
The quantity e also has a significant effect so that
quoted results depend on the validity of the de-
coupling approximation (32). To lowest order in
e 4~~ the expressions given in the Appendix reduce
to

This region is characterized by a nonzero (o),
but we assume that the temperature is sufficiently
high that PJ'(o) «1. This should be valid not too
far below T, since Eq. (36) shows that p,J'« I if
J'/Z«1 for a quasi-1-D system. For ph «1 the
"magnetization" is given by

(o) =1-5,
where

6 = —,'e-4 ~J'/ sinh'Ph,

(43)

(44)

(40)

and the quantity X =(sinh'Ph +e~8~)'~' is given
by X = p J' «1. With X«1 and cosh ph = 1 the re
suits of the Appendix may be used to show that

y =I 26(1 e-2"»)

(o,o o )=I 6(3 4e-'»+2e-4»)
(45a)

(45b)

(o o (7 ) =I 6(3 2e 2» 2e 4»+2e 8») (45c)

(o o o o ) =1 5{4 6e &»+4e ~» 2e 8»)
v„= 1 - 2nX(1 - ( )')oO+(X') = r", ,

(o,o,cr, ) =(o,o,a, ) =(o) +O(X'),

(4la)

(41b)
These lead to

(45d)

(o,o,o,o, ) =1 —4nX(1-(o)')+ O(X') =~', . (41c)

As a consequence Eqs. (38) still hold but with
r, =l —2PJ''(I -(o)') =1 —2e 8o/P~ so-that Eq.
(39) is replaced by

8 = W» b ((PJ') ' exp(-PU) + exp[ PU(2b —c)]-
+(PJ') 'exp[PU(a-2)] +exp(-PUb))

(T & T, PJ'« 1) . (42)

C, =85(1 —e. '»)

C, =O(6 ),
C, =16+O(5),

and, from Eq. (34)

1+s = 1/tanh2ph+ O(e 4~~ &, -

so that Eq. (29) becomes

(46a)

(46b)

(46c)

(46d)

The activation energy is now t/'„+O'U, wherek'=0
for the very-short-range case (a=1, b=c =0),
and h'=1 for the tunneling model (a=0, b =c =1).
For the classical hopping with a = —'„b =-'„c=0
corresponding to an initial I/x decay of the inter-
action out to x = &a, followed by a rapid cutoff,
some care must be used in examining Eq. (42)
because of the different powers of PZ'«1. Since
exp(- —,pU)/p J' = 1 at T„ the terms in (pZ)

(p J') ', and (p J')' in (42) are exp(- —,pU),
exp(-3 p U), and exp(--,'pU), respectively. Hence

8=W»h[e ~"(exp(-pU)+exp[pU( 2b+c)])-
+O(exp[PU(a- 2)]e '»)

+O(exp[ —PU(b+1)e '»)] . (47)

V~+ O'U+ 2h —V ~ —~U~~+ 2U~ + O'U )

where we have used Eqs. (18a) and (35) together

For the three models considered [a=1, b =c=0;
a= —', , b = —', , c=O; a=0, b =c=l] the activation en-
ergy is
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FIG. 3. Conductivity. o, relative site occupancy nz -n~,
and nearest-neighbor correlation ~~ (for hp =0 only).
Solid curves: J'/J =0.1, hp =0; dashed curves: J'/J
=0,1 hp =J . Both qonductivity curves are for a =1

~

b = c =0 [classical hopping with U(fao) «U].

V. SUMMARY AND CONCLUSIONS

The dc conductivity has been calculcated for a
1-D hopping model in which nearest-neighbor
repulsions within a conducting channel were treated
exactly with known results for the 1-D lattice gas
(equivalent to a 1-D Ising model). Interchannel re-
pulsions which allow for 3-D ordering were in-
cluded by a mean-field approximation. The same
hopping equations and methods were used as

with n~= (c}=1 in the low-temperature regime,
and where k'=0, 1,1 for the respective conditions
on a, b, c given in square brackets. The value for
1+a (46d} which results from the decoupling ap-
proximation has an important effect, particularly
for small nonzero values of b with c =0. If we
were to take e =0, the C, term in Eq. (29) would

give

4 (C,) = 4W~ 6 exp( —PUb)e-'s"

For b+4h & 2b+ 2h & b+1+2h, J(C,) is the dominant
term and the U part of the activation energy would
be reduced from 2bU in Eq. (47) to bU.

Some curves for the complete conductivity are
presented in Fig. 3 for values of the parameters
as given.

in I (Ref. 9) except that here the transition rate de-
pends on nearest-neighbor occupancy. The pre-
cise relation between transition rate and occupancy
depends on such considerations as range of the
interaction and whether the hopping is purely clas-
sical or tunneling.

A noteworthy feature is that the activation energy
for conductivity increases by an amount of the
order of ~U as T goes through T, from above.
This is in spite of the fact that the model contains
a good deal of short-range order above T,; so it is
not simply a matter of the mean field suddenly
switching on correlations below T,. If the nearest-
neighbor correlation Ty is written T, =1 —n,
then a major part of the conductivity near and
above T, is proportional to n. Since n changes
from 2e s" ' for T —T, =O+ to 2e s /PJ' for
T- T, =O, where e sc" '=P, g' at T, =1/hsP„
the activation energy shows the ~U increase. Al-
though this result for a discontinuous activation
energy is strictly valid only within the context of
the present model which treats the weak 3-D inter-
channel interactions by mean-field theory, it may
have more-general validity. One might argue that
as long as the conductivity 8/b is proportional to
the short-range correlation v', the activation en-
ergy Id'/dP will have an anomaly if the specific
heat, proportional to dr/dP, has an anomaly. In-
deed such a relation has been derived and verified
by others. "

Above T, the activation energy can either in-
crease or decrease with U, depending on details

' of the transition rates. The assumption of nearest-
neighbor interactions restricts us to taking U(2a, )
=0, where the repulsion varies with the distance
x as U(x) and U(a, ) = U. But we are at liberty to
have U(-,'a, ) e. 0 which affects the barrier height.
For U(sac) =0 Kikuchi's result of a decrease in
activation energy by an amount —,'U below its non-
interacting value is reproduced. On the other
hand, if U( —,'ac}= —',U corresponding to an un-
screened Coulomb decay of the interaction, the
activation energy is increased by —,U. A similar

. increase of —,U is obtained if the transition takes
place by tunneling through the barrier so that only
the energy difference between equilibrium sites
i+1 and i need be supplied by phonons. Mahan also
found an increase of —,'U. The fact that the depen-
dence of interaction upon distance appears to have
a major effect makes it desirable to have a cal-
culation employing other than a nearest~neighbor
lattice gas.

A motivation for this work was P-eucryptite
which is ordered below about 450'C and ap-
parently disordered above that temperature. The
dc conductivity' does not show any obvious change
in activation energy between the ordered and dis-
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ordered states, although data in the high-tempera-
ture phase are rather sparse. This is consistent
with the present calculation only if the nearest-
neighbor repulsion is too small to make a notice-
able effect, which would rule out a U comparable in
value to the observed activation energy' of O.V4 eV.
Since the order-disorder transition has a char-
acteristic energy k~T, =0.06 eV, it is quite pos-
sible that the differences between site energies
Y~-V~ could account for a gradual change from
n„-=n~ above T, to n~»n~ below T, with less than
a 10%%uo change in activation energy.

One problem with this interpretation concerns
the theory of Follstaedt and Richards" for the
NMR relaxation. There it was required to have
V„-2V~ to be of the order of +0.7 e7-in order to
explain the frequency-independerit low-temperature
relaxation, whereas here we seem to require V„
—2V~ --O.V eV to have no marked change in the
conductivity at T,. Careful conductivity and x-
ray structure determinations in the vicinity of T,
would clearly be helpful toward resolving these
difficulties. Ability of the lattice-gas model to
describe qualitative features of real quasi-1. -D
superionics must be regarded at the moment as
uncertain;
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APPENDIX: CORRELATIONS FOR 1-D ISING MODEL

IN A FIELD

Although zero-field correlations and the finite-
field partition function of the 1-D Ising model may
be found in several sources, ' calculations of
many-spin correlations in a field h are less readi-
ly available and thus are presented here.

The Hamiltonian is taken as

for a ferromagnetic (J'& 0) model. It gives the
same correlations apart from obvious sign changes
as the antiferromagnet in a staggered field only
(H=O) of Eq. (26). The transfer-matrix tech-
nique" may be generalized for arbitrary corx'e-
lations to

(cr,o, „~~ ~ o„„.& = S 'Trr" "orle ~ ~ ~ ro,
(A2)

in the representation where the spin operator o is
diagonal:

(A4)

In the above S =Trr" is the N-spin partition func-
tion, T appears. sandwiched between the e's a total
of

betimes,

and the total number of 0's may be
anywhere between 1 and 1+n. Equation (A2) is
evaluated in a new representation where T is dia-
gonal with eigenvalues ~, . In the thermodynamic
limit N-~ and for finite n the correlation reduces
to

&o,o„, o~„~ „~ & =(+(or o" ro(+&/x"„

where ~+ is the. larger of the two eigenvalues of T

A., =es~[coshph+(sinh2ph+e 's~)' 2],

and the eigenstates of r are denoted by (9. The
transformation 8 which diagonalizes T is given by

t' cos 8, cos 8 }s=(
( sin8, sin8

where

cot 8, = -e ~/(e s~e "-A, )

so that in the new representation we have

&tlol+& =-&-lol-& =sinhPh/K=- r,
(+(o( & =( (o(+& =e '"/X= s-, -

where

X=(sinh2Ph+e )' '

(A8)

(A9)

(A10)

(A11)

The particular correlations required for Eqs.
(20) and (21) are

(o) =r, (A12)

7„=&+(or"ol+&/~", =r'+s'R", (A13)

(o,o2o,& =(+(ororo(+&/X2 =r'+rs'(2R —R'),

(A14)

&op2og& =&+(or or&(+. /&X, =r +rs (R+R —R ),
(A15)

I

&op2o2o, &
= &+(o ro ro ro(+&/z', ,

=(z,&+(oro(+&'+x (+(oro(-&')/x',

where T is the transfer matrix, written

e"e" e '
i, e s~ es~e-s'/

(A2)

g2 +r2s 2R(1 R)2 (A16)

where R=A. /A,
Use of (A6) and (A9)-(A14) in (A12)-(A16) gives

the correlations in the text for the approximations
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described (X« 1 for T & T„X=sinhpk for T-O).
The "magnetization" (o) is determined from the
self-consistency condition

(A 1V)

which for h 0
= 0 and PJ' «1 reduces to (o') = 0 for

T & T„where T, is the temperature at which
pJ'=e 's~; and X= pJ' converts to p'J"(c')'
+ e ~8~ = P'J" as the equation for (o) below T, as
long as PJ'«1.
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