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Interaction between local phonon modes and plasmons in n-type semiconductors
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We present a theory of the interaction between plasmons and electric-dipole-active local phonon modes in
an n-type semiconductor, when the impurities that produce the local phonon modes are present at finite
concentration. Our theory is based on the observation that the equations satisfied by the relevant response
functions are, within the random-phase approximation, close in form to a well-known model of a random
alloy. A simple form of the coherent-potential approximation may then be used to explore the dynamical
response of the plasmon-local-mode system. We explore a number of features of the response and illustrate
how particular aspects may be probed through light-scattering studies.

I. INTRODUCTION

The interaction between electron plasma oscilla-
tions in n-type semiconductors and long-wave-
length optical phonons has been the topic of con-
siderable theoretical and experimental study. ' One
finds strong coupling between the plasmon and the
longitudinal-optical phonon in polar materi-
als, since the LO phonon sets up a, macroscopic
electric field.

Some years ago, Maradudin and Sham' inquired
if a similar strong interaction results between an
electric-dipole-active local phonon mode of fre-
quency (d„and electron-plasma oscillations with
frequency ~~ adjusted near +0 by appropriate dop-
ing of a semiconducting material. Through exam-
ination of the interaction between an isolated im-
purity and the electron plasma, they concluded the
intera, ction was extra, ordinarily weak, with little
chance of experimental detection.

It is not hard to appreciate the physical reason
that led to this conclusion. As the (electric-dipole-
active) local mode is excited, an oscillating elec-
tric field drives the electron plasma in the near
vicinity of the impurity. The disturbance in the
electron gas is not localized near the impurity,
but has a radius equal to the Thomas-Fermi
screening length, which is large compared to a
lattice constant in typical semiconductors. Most
of the oscillating charge density associated with
the "local plasmon" thus lies far from the impur-
ity where the oscillating electric field set up by
its motion is very weak. Even though (o~ and &0

may differ only slightly, the interaction between
the two excitations is thus very weak.

On the other hand, in ref lectivity studies of n-
type GaAs doped with small concentrations of
phosphorous, Spitzer finds strong coupling between
the plasmon and the local modes associated with
the phosphorous impurity. ' This has prompted us
to reexamine the question raised by Maradudin
and Sham.

While we believe the Maradudin-Sham calculation
to be correct in all essential features, qualitative-
ly new features enter when the impurities are
present with finite concentration, even though this
concentration is small. One may then have long-
wavelength collective excitations of the impurity
array which generate a macroscopic electric field.
This macroscopic electric field may couple to the
plasmon in the same manner as that associated
with an LO phonon in a pure matrix.

The long-wavelength collective excitations of the
local-mode-electron-plasma system mentioned in
the preceding paragraph may be described readily
by replacing the disordered array of impurities by
an averaged uniform distribution of oscillator
strength, in a spirit similar to the "virtual crys-
tal" approximation employed in the theory of al-
loys. 4 Such an approach has proved simple and
useful in theories of the collective motion of im-
purities, in models of undoped materials. " If
applied to the present problem, however, this
procedure has the disadvantage that it does not re-
produce the results of Maradudin and Sham, in the
one-impurity limit.

In the present paper, we present a theory of the
coupling between electric-dipole-active local pho-
non modes and plasmons which incorporates the
collective modes present at long wavelength and
finite concentration, but which reproduces results
equivalent to those of Maradudin and Sham in the
one-impurity limit. %e find that in experiments
which probe the long-wavelength response of the
system, the collective modes of the system can
provide the dominant features one observes. %e
show this through theoretical analysis of the spec-
trum of light scattered inelastically from the sys-
tem.

If the impurities are embedded in a lattice of
zinc-blende material (an example is the GaAs,„j'„
system), then we show that. through light scattering
experiments the selection rules allow one to probe
either the collective response of the system, the
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local mode described by Maradudin and Sham, or
have both simultaneously present in the same spec-
trum. Crudely speaking, whil, e collective modes
analogous to the L, and J modes in pure materi-
als' dominate the long-wavelength response, at
short wavelengths it is in essence the Maradudin-
Sham mode one excites, i.e., an experiment which
probes the loca/ response in the near vicinity of
the impurity sees not the collective moPes (present
in a limited volume of phase space near k=0), but
rather the local phonon mode shifted very slightly
in frequency by coupling to the electron plasma,
as described in Ref. (2). As pointed out in an
earlier paper, when one examines the scattering
of light from a disordered system, as in neutron .
scattering, one finds both incoherent and coherent
contributions to the cross section. The incoherent
contributions to the cross section, which describe
wave-vector nonconserving scetterings, allow the
light to probe the short-wavelength response and
hence the near vicinity of the impurity.

The outline of this paper is as follows. Section
II sets up our basic model, and derives the equa-
tions satisfied by the basic response functions of
the theory. We also explore special limits here,
and then develop and explor e an application of the co-
herent potential approximation to the problem. In
Sec. III we turn to a discussion of Raman scatter-
ing from the excitations of the plasmon-impurity-
local-mode system.

II. MODEL AND RESPONSE FUNt TIONS OF THE SYSTEM

We consider a host lattice, later presumed to
have the zinc-blende structure, within which a
small concentration of ionic impurities is distri-
buted on one sublattice. The impurities occupy
equivalent sites, and have mass substantially
smaller than the host ions they replace. They thus
give rise to phonon modes with frequency higher
than that characteristic of the host-lattice phonons.
The displacement field of these modes, which has
frequency co» is localized very near a given im-
purity.

The material is doped with electrons that move
in a parabolic conduction band of mass nz*, and
our interest is in carrier concentrations where
the plasma frequency co~= (4wne'/m*c„)'~' is com-
parable to ~0. Here n is the carrier concentration,
and e„the dielectric constant characteristic of
frequencies high compared to host-lattice frequen-
cies, but well below the band gap.

We write the Hamiltonian of our system in the
form

H =H~+H +H~ +H

where H~ and H, describe the noninteracting im-
l

purity local modes and noninteracting conduction
electrons, respectively. The last two terms de-
scribe the local-mode-conduction-electron inter-
action and the electron-electron interaction, re-
spectively.

We ignore the lattice vibrations of the host 13t-
tice in the present discussion, under the presump-
tion that the frequencies of interest here are high
compared to the frequencies of the host matrix.
Since the impurity local modes will be presumed
infrared active, with an electric dipole moment
proportional to the displacement u of the impurity,
a complete description will include the dipole-di-
pole interaction between impurities. We ignore
this coupling here, and we point. out the conse-
quences of this oversight as we proceed. At low
impurity concentrations, the influence of the di-
polar coupling between impurities will have no
quantitative effect on our results.

The terms H~ and H, in Eq. (1) are written

(2)

H, = Q etc ==Q e(k)etc
k

In Eq. (2) a", (a~I„)is the boson annihilation
(creation) operator associated with the local mode
on lattice site 1. ' The local mode is threefold de-
generate, with p, a polarization index. The sum on
1 ranges over all sites of the sublattice, and c(l)
is unity if a given site is occupied by an impurity
and zero otherwise. Thus, if by (c(1))we mean
the average of c(1) over all sites on the sublattice,
we have (c(1))= (c(1)')=c, where c is the impurity
concentration. We work in units with N =1.

In Eq. (3), c~ and c~f are the electron creation
and annihilation operators. We ignore explicit
reference to spin, but include the relevant factors
of two later.

The electron-electron interaction H„is given by

(4)

where V, (q) =4me'/e„q'. We have assumed a unit
volume.

If e* is the dipole-moment effective charge of
the impurity ions, then H«may be written

1@

where u„(1)is the pth Cartesian component of the
local-mode displacement, which can be written

u„(1) = (1/2M, (u,)'~'(af, +a;„),
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a„=iy,Q Q c(l)(a;, +at )+c~ -c
7p kq,

x exp(-iq '1),
with the coupling constant yo= (4)(ee*/e„)
x (I/2MI(() o)'~ ',

To examine the dynamical properties of our sys-
tem, we use the temperature Green's-function
formalism, which through its extension to real
time Green's functions allows us to examine the
linear response of the system to an external probe.
Since this formalism is by now standard, ' we only
sketch the derivation of the Dyson equations that
form the basis of the present analysis. However,
it proves useful to set down the definitions of the
Green's functions we analyze.

A fundamental Green's function is the electron
density fluctuation propagator defined by

X(xT, x 'r') = &&,[f)-n(xr)f)n(x T )]) ~

Here w is an imaginary time, T, the Wick time-
ordering operator, 6n(xv) = exp(&7')%(x)exp(-&r),
with 6n(x) the density fluctuation operator

&n (x) = (1)~(x)g(x) —&gt(x})1)(x)) . (1O)

We also have an impurity local-mode propagator
which we write

D(1 V~, I'p'~') = &7',[q I„(&)q;.„.(~')l&c(I)c(I'),

with p» (v') = exp(Hr)y» exp(-fix) and (((';„=a,
„

+Q~
1g

In the absence of both electron-electron interac-
tions and the electron impurity interaction, simple
standard forms obtain for both propagators de-
fined above. For the density fluctuation propaga-
tor, in this limit

X(x7', x'v')

e()7 (x-x')e-(&u~(vm')X (k i& ) (12)

where P = (ksT) ' with ks Boltzmann's constant and
& the absolute temperature, and (d =2)(m/(0. In
Eq. (12),

X,(k, i&@„)=—g G,(q, i(d„)GO(q+k, i(d„+i~„),(13)

with M» the reduced mass of the impurity. The
electric field E (1) is that set up by a density fluc-
tuation in the electron gas. In terms of the opera-
tor g(x) =Z)-, c~ exp(ik 'x) we have

e &

t
„,g'(x)g(x)~„»,J ix-Ri *

The results above combine to give

where G, (q, i~„)= [i(()„—a (q)] ' and (()„=m(2n+1)/P.
For the impurity-local-mode propagator, in the

absence of coupling between the impurities and
the electrons we have, noting that c'(1)=c(1),

D(l p7', 1'i('r', ) =c(1)5",;.&

xg e (" (' ')D,(i~„)

where again (()„=2wm/P is the "boson frequency"
of the imaginary time propagator formalism, and

D,(i(o„)=
(()() + (d + 2(()OII ((() )

where II((0„)is the proper self-energy associated
with the local-mode Green's function in the absence
of coupling to electrons. The proper self-energy
is presumed nonzero by virtue of anharmonic
terms present in the phonon Hamiltonian of the
disordered crystal. In the dilute limit, II((d ) may
be presumed independent of impurity concentration.
We do not examine the structure of II(ru„)explicitly
here, but acknowledge its presence to introduce
the damping of the local mode produced by anhar-
monicity. In the end, when we continue D(i (d}off
the imaginary to the real. axis of the complex fre-
quency plane, 2&soll(u& ) will be replaced by a phe-

. nomenological damping constant. Note that we
presume here that II((d„)is unaffected by the elec-
tron-local-mode coupling. We believe this quite
a reasonable presumption.

In the presence of both H», and H„,through use
of diagrammatic methods, we next proceed to de-
rive a set of Dyson equations satisfied by the two
basic propagators introduced above. To do this,
it is useful to introduce the Fourier transform
X(H';i+ ) of X(x, x', i(o„)defined by

X(x, x';i()0=/ O'" " '"""'X()(,K', i&d„). (16)

We first set down the Dyson equation satisfied by
X(Pcfc'; i&@„)for the case where the electron-electron
interaction H„may be set to zero. The Dyson
equation is illustrated in Fig. 1 [within the frame-
work of a random-phase approximation (RPA) de-
scription], and becomes

X((()(;i&„)=X,()(;i(0„)&„-„--yoDO(i~ )Xo()(;i& )

x gg c(1) " " exp(iT("'1-i)( '1)
K K

lu

xX()( Ic ' i(() )

If electron-electron interactions are included
(again in the RPA), Eq. (IV) is left unchanged in
structure, except that the free density fluctuation
propagator X,()(,i(d„)is replaced by X(~)(((,i~„)
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X(~ ~; iw„)
Xo( ~, in„)8

1

2(-i ~ .k) &

. ~ll ~ II
'fo exp ( i v ~ g. ) K+ /

'I

X(z Ic; iQJq)

FIG. 1. illustration of the Dyson equation satisfied by the electron density fluctuation propagator.

=X.r. , i~„V[1—V, (a)X,(Z, Au )]. In what follows,
we presume this replacement has been made
everywhere.

Again within the RPA, the Dyson equation for
D(1 p, 1'p, '; i~„)may be written

D(1 p, , 1'p', i&a„)=c(1)5;;,5„,,D, (i&o„)-yo2D, (i&a„)

x g P c(1") '," X"'(Pr, i~„)
K . ]HpN

We thus encounter a new propagator X„(11'; v ).
&rom Eq. (I'I) a closed equation for this function
is generated, through use of the same procedure
used to obtain Eq. (19). We have

X„(I1'; iu)„)= X„'~'(1—1,'; i(o„)—y20D (i(o„)

xQ c(I")X,"„'.(I -I";i~ )
$N if I

x exp[inc (I - I")]

&'D(l p, ",1'p. ';i&@„}.

(18)

xx„.(I,I;i& ),
where we introduce, in analogy with Eq. (18b),

l

(20)

X'~'(1 —1'; i~ ) =g X'~'(~; i~„)exp[inc ' (1 -1')],
k

(18a)

X„'~(1 —I'i(o„)=Q 2 X'~'(z, ia)„)exp[inc (1 -1')],

(18b)
and

X„(1,1', i&@„)= g ——~ X(mt''; i+„)
K

KK

the r elation
x exp(i' 1 iP(' ~ 1'), - (1Sc)

X(1 1';i~ ) =X ~'(1 -1', i~„)
—yoD.(i~„)P c(1")X„"'(1-1;i~„)

x X„(I',I'; ~„). (19)

Our principal task is to develop approximate
solutions to the equations derived above, with at-
tention to the physical' considerations of Sec. I.

It is useful to begin by multiplying Eq. (17) by
exp(iZ' .1 —iZ' '1'), then sum on Tc and Tr' to form an
equation for X(xx', iar } One h.as, .with

X'~' (1 -I'i~„)=P " "
X (Pc, i&a„)

~Q

x exp[inc (1 -1'}].
I

It is the approximate solution of Eq. (20) that will
concern us later. Note that Eq. (18) is readily cast
into a form very similar in structure to Eq. (20}:

D(1 g, 1'p', i&a„)= 511,6„,„,D,(i&a„)c(l) - y', D,(i&@„}

&& g c(f )X„'~' (1 -T;i(o„)
gftIf N

xD(1 "p"1'p,', iv) ) . (22)

The only difference between the structure of Eq.
(22) and that of Eq. (20} is the form of the inhomo-
geneous term.

If for the moment, we ignore the technical com-
plication introduced by the Cartesian subscript p,

in Eq. (21) or (22), then these equations have a
structure identical to those encountered in the
analysis of a simple model in the theory of random
alloys. ' This is the equation satisfied by the one-
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electron Green s function in the tight-binding de-
scription of a, binary alloy, mith one orbital on
each site and "diagonal disorder" (i.e., all transfer
integrals are assumed identical, and only the en-
ergy of each orbital varies from site to site}.
This model has been extensively studied, and the
coherent-potential approximation (CPA) appears
to describe its one electron properties well. ~'

Thus, since our equations are isomorphic to those
which describe a binary alloy with three orbitals
per site and "diagonal disorder, ""me shall ana-
lyze Eqs. (21) and (22) within the coherent poten-
tial approximation. Before we do this, we examine
the solution of Eqs. (21) and (22) in two simple
limits.

A. Single-impurity limit

If only a single isolated impurity is present,
then Eq. (18), and Eq. (19) in combination with
Eq. (20}, may be solved in closed form. The solu-
tion is easily obtained after noting that as x- 0,
)f».(x, iv)„)becomes diagonal in p, and p', with
the diagonal elements independent of p, . After pre-
suming the single impurity is located at the origin,
we find from Eq. (18):

presence of the electron plasma, the impurity mo-
tion is Landau damped by'coupling to the particle-

, hole excitations in the electron gas.
It is straightforward to demonstrate that the fre-

quency shift of the local mode produced by coupling
including -y', X'~'(O, i&@„)in the proper self energy
is identical to the frequency shift calculated by
Maradudin and Sham. ~ Their treatment of the fre-
quency shift is equivalent to use of a rather sche-
matic expression for X'~'(O, i&u ) in evaluating the
proper self-energy contributed by the electron
plasma. The present theory combined with a more
realistic form for X'~'(O, i&a ) describes the Landau
damping as well, and produces complete formulas
for all of the response functions of the system.

For the physical reason discussed in Sec. I,
Maradudin and Sham estimate the frequency shift
from coupling to the electron plasma is unobserva-
bly small, since it is a small fraction- of the shift
produced by the anharmonicity always present.
Thus, ee do not explore the behavior of the iso-
lated impurity in any quantitative fashion here,
although the small contribution -y', y,'~„'(O,i&o„)to
the local-mode proper self-energy is inclnded in
the numerical mork discussed in Sec. III.

B. Virtual-crystal approximation

+
1+y20Do(i(o )y'"(0, i(o„)

X x~8(d X~ x ~ 240 ~ (24)

To obtain Eq. (24), we have noted that y',~'(x,i~„)is
an odd function of the spatial coordinate x.

The response functions displayed in Eq. (23) and
(24) describe the dynamics of an isolated impurity
coupled to the electron plasma, . A comparison of
Eq. (23) with Eq. (15) shows that in Eq. (23), the
combination -yoX'„'(0,iu&„)is the contribution to
the (proper) self-energy of the local phonon mode
from coupling to the ele'ctron plasma. When
D(1 p. , f' p, ';i~„)is analytically continued in the
standard fashion to the near vicinity of the real
axis in the frequency plane, the real part of
-y', y~~„'(O,iu& ) describes a shift in the local-mode
frequency from coupling to the electron plasma,
mhil'e the imaginary part gives damping in addition
to thatprovided by anharmonicity alone. In the

while Eq. (20) in combination with Eq. (19) gives
for the density fluctuation propagator a form very
similar to that encountered in a, rather different
context":

X(x, x'; i &@„)= y. '~'(x —x'; iv„)

In Sec. I we stressed that for finite concentra-
tion, the impurity-electron-plasma system pos-
sesses long-wavelength excitations of collective
character. Quite clearly, no description of these
collective modes can, emerge from a theory which
examines the response with only a single isolated
impurity present. We turn to a simple approxi-
mate solution of the equations at finite concentra-
tion. This approximation procedure, which me
call the virtual-crystal approximation following
terminology employed elsewhere, ' leads to a de-
scription of the collective motions of the system.
However, in the limit of vanishing concentration,
it fails to reproduce the one-impurity limit proper-
ly. We shortly turn to a more sophisticated-
scheme which produces both a description of the
collective modes of the system and the one-impur-
ity limit. That discussion mill prove more com-
prehensible if we pause to examine the virtual-
crystal approximation explicitly before proceeding
to the full theory.

The virtual-crystal approximation is generated
by replacing the factor c(1) wherever it appears
in Eqs. (18)-(20) by its average over all sites
(c(l))=c, with c the impurity concentration. Thus,
the disordered crystal is replaced by a spatially
homogeneous "virtual crystal, " with the local-
mode oscillator strength distributed over all sites
in a manner that preserves its integrated strength.
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Within the virtual crystal approximation, the re-
sponse functions y(x, x';i(d ) and D(1I(,, 1'p', i&a )

become functions of the differencesx —x'andi- I',
r espectively. We write

It(x, x'; i(d„)= g II(k, i&d„)e'"

and

D(lI(, , I'I(, ';i(o )=QD .(k, i(u„)e'""'',
(26b)

to find, with n, the number of unit cells per unit
volume

X"'(k, ~~„)
I((k, t(d

I+cnoy2ok 'D, (i(o )X(~!(k,i(d )
'

B,(k, (al ) = (Il .— B, (k, (fd )
k2

+ ~ ~' D, (k, i&a„)k„k,— (26b)

D,(i(d„)
D, (k, i(u„)=

1+en,y', k 'D, (i(o ) It~()(kin) )

and

D, (k, i&u„)=-D,(i(d„). (27b)

From Eqs. (26) and (27), we see that the impur-
ity array has excitations of transverse character
unshifted in frequency from the isolated local-
mode frequency (d„while the longitudinal normal
modes couple to the electron plasma. The fre-
quencies of the longitudinal normal modes are
found by repla, cing iw by Q+ig, then seeking the
zeros of the denominator in Eq. (27b) or equiva-
lently in Eq. (26a). To explore the properties oI
these collective modes, the long-wavelength k- 0
is particularly simple. We have

((d', —Q' —iQy) ((o2~ —Q') —cQ~2(d2~ = 0, (29)

where we introduce the ion plasma frequency 0&
= 4',e*'/Mp „.

The roots that emerge from Eq. (29) describe
coupled, collective motions of the local-mode-

Upon letting i(()„,- Q+iq, and replacing 2(doll(Q+i)I)
by a phenomenological damping constant iQy with
origin in anharmonicity, we find the frequency of
the long-wavelength collective modes is found from

I

electron-plasma system that are the analog of
the J, and L modes of the pure system. '

There is one simplification in our. model Hamil-
tonian that introduces an error in Eq. (29) that for
our purposes is quantitatively unimportant. If we
had included dipolar coupling between the local
modes associated with the impurities, then as in
the treatmentof Maradudin and Gitmaa'we would find
that the transverse normal modes of the impurity
array occur not at the frequency e2, = ep as found
above, but rather at the frequency v~ = +2p 3cQp,
where 3cO~~ is a downward shift from local fields
of dipolar origin. Then in Eq. (27), we would find
the frequency (d20 replaced by a longitudinal fre-
quency ((P, = &u,'+cQ2~. If we replace (()2o in Eq. (27)
by &()2&, then Eq. (29) may be rearranged to read

e „+c [Q~2/(e,' —Q' —iQy)] —~JQ' = 0 .
Thus, the longitudinal normal modes are seen to
occur at the zeros of the (spatially averaged) di-
electric constant of the combined local-mode-
electron-plasma system, as one would expect from
elementary considerations.

The error introduced by the appearance of &',

rather than (()', in Eq. (29) is quantitatively negligi-
ble for our purposes, since the small shifts intro-
duced by the factor cQ~ for low concentrations are
obscured by the effect of damping described phe-
nomenologically by the factor i'. Indeed, the
I yddane-Sachs- Teller splitting of the local-mode
frequencies predicted by Maradudin and Gitmaa'
has proved difficult to observe for precisely this
reason. '3 We are presently extending the full de-
scription of the model and the discussion of Sec. III
to mixed crystals where the minority constituent
concentration is not small. For this extension, it
is necessary to include the dipolar coupling fully.

At this point, we see that we have generated a
set of equations for our system which properly
yields the Maradudin and Sham description of the
isolated impurity problem, while .at finite concen-
trations a description of the collective excitations
of the system emerges from the same equations.
Gur task is to build up a solution to the equations
which incorporates both features.

As already remarked, the Dyson equations for
the Green's functions, Eqs. (20) and (22) have a
structure similar to the equation satisfied by the
one electron Green'8 function in a random binary
alloy. Specifically, except for the Cartesian sub-
scripts, our equations are identical in structure
to that of the one-electron Green's function in the
tight-binding description of a binary alloy with one
orbital on each site and "diagonal disorder, " i.e.,
all transfer integrals are assumed identical and

only the energy of the orbital varies from site to
site. This model has been extensively studied, and
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the CPA appears to describe its one-electron
properties well. Since our equations are isomor-
phic to those which describe a binary alloy with
three orbitals per site and "diagonal disorder, "
we analyze Eqs. (20) and (22) within the CPA.
Since an extensive literature exists oh this topic,
our discussion of the CPA will be quite brief. In
what follows we shall outline only ihe CPA calcu-
lation for X,(l 1'; (d) since the procedure for obtain-
ing L&(l p, l 'p, '; (d) is identical.

%'e begin our CPA calculation by adding and sub-
tracting an effective potential o((d) (yet to be deter-
mined) at each site 1 in Eq. (20), to get

x, (1 1';~) = x„(1—1'; (d)

+o g x„(f'(1-1";~) x„(1"1', (d)

Transforming Eq. (3.4) ba.ck to real space, we get

x„(11', ~) = xp'(1 —1 ', (0)

+ X„'~' I-l"; co X„l" l', (o v;-.

We now discuss how o is to be chosen. While
Eq. (36) is still exact and depends in detail upon
the configuration of host and impurity sites, we go
over directly to an effective medium by allowing
v;„to be zero, which corresponds to having only
the coherent potential 0 at each site l ". The
Green's function for this effective medium is sim-
ply X„(~&(1—1 '; ~). We now consider a single im-
purity embedded in this effective medium. We note
from Eq. (36) that the Green's function X™des-
cribing this system satisfies

}(N(] 1 I ~ ~) —
X (gl&(] ] I ~ (g)

v —o=vr,' l an impurity site
v)=

~

~

~

-o'=v; 1 a host site,
and v=-iy, i' f&,((d).

(32)

X Q X„& (K~ R)x (K&(' &d)

X (i& & (&(. (d )~ ~- i I-TP &
~ i "

1)t
)t Tc"

Expressing this equation in terms of the Fourier
transforms of the quantities involved yields,

X„(KK';(d)= X„"&(&(;(d)o-„-„,+n, a

+ Q X(~&(1 (d)x "(01'(u)v

cx'"(l l ' (d)+ (1 —c)X'"'(l l ' &) = X "'(ll ' ~)

or equivalently,

cv, P X„((,'&(l; ((&) XI"(01 'u&)

(38)

If we consider a single host atom embedded in
the effective medium, we get a similar equation
for the Green's function & with vr replaced by vH.
The CPA prescription for determining o. is that the
single-site configuration average of the exact
Green's function p be equal to the effective medi-
um Green's function:

x v,„x,(&("&(', (u). (33)

We rearrange this equation by transferring the
second term to the left-hand side to obtain

X, (&o(', ~) = X "&(&(;~) 6r&„

Kq(d 8

+ (1 —c)vz g X'~'(1' e)X„"(01' &u) = 0 (39)

We now solve for X~~(01', (d) from Eq. (37) by
noting that X„((„'&(1=0;e) is diagonal in the compo-
nents v and p, as pointed out previously. Obtaining
X "(01 ', e) in a similar fashion, we substitute these
quantities into Eq. (39) to get

x v;„X,((("&(';&u), (34)
c(v —c) (1 —c)(- (r)

1 —(v —v) X„"„&(0;~) 1+v X„",'(0; (d)
(40)

and

X(»(&(;(d) = Q [6„,—n,oxo,'&(&(;(u)] '

x X(,('&(k; ~),

(35)

X"'(0. )=
1 —(n, o/&(') X "&(&(;(u)

(41)

We observe that the quantity X(('„&(0;(d) itself de-
pends on o through the relation

X„((„'&(&(;(d) = P [6„,—n, o X„",&(&(. &u) j '
)t

x X~(('&(&( e)

Equations (40) and (41) represent the principal re-
sult of this section, which enable us to solve for
the coherent potential o.
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Having determined 0 we obtain an expression for
X(~)(Pc, &u), the average Green's function in the CPA,
from Eq. (35a),

i ((u) = — dt e'"'
oyygX 2g

&~x d'x'

Here we have expressed X'(')(~; cu) in terms of the
bare electron-hole propagator as described in
Sec. II. Note that the virtual-crystal approxima-
tion discussed in Sec. II is obtained from Eq. (42)
by replacing o by cv.

In addition to the electron density propagator
given by Eq. (42), snd the coherent potential o,
which is obtained by solving Eq. (40), we also re-.

quire the D'e(l p, , 1 1).', (d), the impurity displace-
ment Green's function for a single impurity em-
bedded in the medium of coherent potentials. This
term will be used to describe light-scattering ef-
fects which are essentially due to individual scat-
tering sites.

%hen one carries out the same calculations for
D(1 i(, , 1'p'; &u) starting from Eq. (22) that were
presented for X„(ll'; &u), one finds

D'"(0~ 0~' M)=6..D(~)l 5 g'X--'O.
M

(42)

It is trivial to show that for c-0 this result re-
duces to the Sham-Maradudin propagator already
derived as a special case.

Having now presented an approximation scheme
that enables us to solve for the relevant Green's
functions describing the impurity-electron system;
we now turn to a description of light scattering as
a probe of the system.

III. LIGHT-SCATTERING SPECTRA FOR THE SYSTEM

In this section, we turn to an analysis of the
spectrum of light scattered inelastically from the
model system. We shall see that a number of im-
portant features of the dynamics may be probed by
such an experiment. The intensity of Raman scat-
tering per unit solid angle in the frequency range
from ~, to ~, +d~, is

(44)

where v,. is the frequency of incident light, &= &,.
—(d, is the shift in the frequency of light on scat-
tering, n is a unit vector describing the polariza-
tion of the scattered light and E' and E [= (E') ~]
are the amplitudes of the positive and negative
frequency components of the incident light. The
tensor i „8~(e)is

+I) „„(1)Z"„(1)]

+ 6 —6n(x).
&X

~~ ~n
(46)

Here & „„(1)is the first derivative of the elec-
tronic polarizibility with respect to the displace-
ment amplitude u„(l),and f) „„(1) is an electro-
optical coefficient. For simplicity, we do not dif-
ferentiate between host and impurity electro-op-
tical coefficients. 8"(1) is the macroscopic elec-
tri.c field at the site l, which is given by

Ee(x, t) = E,(x, f)+ E,(x, t),

where E, and EI are the induced fields from the
electgon gas fluctuations and impurity displace-
ments, respectively.

Coulomb's law provides directly an expression
for the electric field due to the electron density
fluctua, tions

E (x 7)= P —f d x'x'"x"'I!'(xx' l) (47)
Q

To compute the contr ibution to the macroscopic
field from the impurities we use the Hertz vector,
Z(x, t), which for our system satisfies

&„82Z 4mV' Z (x, t) ——", —,(x, f) = ——P, (x, f), (46)

where the impurity polarization density at x and t
ls

p, (x, t) =-e* Q c(l) u(lt)6(x-x(1)).

The solution to Eq. (48) is

(49)

x }

x e '~'~ +)(6X~,(xt) 6X,„(x'0)),
(45)

where 6X 8(x) is the change in the electronic con-
tribution to the dielectric susceptibility of the
crystal at the point x produced by the excitations
of interest. The wave vector q=~& —t&, is the dif-
ference between the incident and scattered wave
vectors.

We take the fluctuating part of the dielectric
susceptibility for the system we have described
to ha.ve the form

~X „(x)=n,g (x-x(l )) [c(l)P „,(I)~ (l, )
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from which we obtain the field due to the impuri-
ties according to

82
E,(x, t) =@[V Z(x, t)] ——,—,Z(x, t). (50)c' 8t'

%e require the field at lattice site l due to all im-
purities except the one that may exist at site l.
Thus, from Eqs. (49) and (50) we obtain

r.„(x(I),f)
(Q, Q, . —5„.)

1'~1

&& e' ' 'c(l')u (1'f) (51)

where p, and LU,

' are Cartesian component indices
d Q =+I@I, ~~~~~ the propagation effects (

tardation effects) have been safely ignored for our
purposes.

Vlith the above expressions for the electric field
we now express the electronic susceptibility fluc-
tuation in terms of the impurity displacernents and
the electron density deviation:

OX.e(x()= —„PO(*-x(T))e(T)&.„,„x,(T()eg e(x x(T))O-(.„,)Q, -„,J d xe'e'" 'Ox'("x"'1)

7p 4 Q

e Q o(%-x(T))o.„.(, )p e(T) g p (r[.r). —o„.)e"""x.(Tr)

+ 5.„—"5n(xt) .
I

Thus, we can express the Baman scattering inten-
sity, which from Eq. (45) depends on the suscepti-
bility-susceptibility correlations, in terms of cor-
relations between electron density fluctuations and
impurity ion displacements. Specifically when the
expressions are written out in full, we encounter
four correlation functions (&n(xt)6n(x'0)),
(u(lt)u(l'0)), (5n(xt) u„(1',0)), and (u, (1[)) n(x'0)).
These are each related to their corresponding re-
tarded Green's functions according to

(A(f)B(0)) = — &fur e "'[n((o)+ 1]imG„"s(co),
2

where n(&0) = (e~" —1) '. Gsz(v) is the Fourier
transform of G"„s(f),which is defined by

K„,(f) = -ze(f)([u(Tf), 5n(x 0)]),

we obtain after two time differentiations, applica-
tion of the equations of motion, and transforining
the time variable

QB (&&
+o(~)yoc(I) ~ q Q. &%e f) R( (54)

The other retarded Green's functions can be re-
la, ted to y in the sa.me fa,shion. In addition, a
formal identity between the retarded Green's func-
tion, and the imaginary time Green's function stu-
died in the previous sections enables us to write

(f) = -fe(f)([&(f),&(0)]) (53) y (q, ur ) = Bey(q, &d+ iq)+ (sgnm) Imp(q, (d+ iTI) .

Each of the retarded Green's functions which we
require can be related to the Green's functions
presented in Sec. II. For example, starting with

r

%e express each of the correlation functions in
terms of the effective medium Green's functions
we solved for in Sec. II, and find

(ox(x))ox(x o)) =-1f dre'e'"[x(re)+(] 1 ere'reer[rmx" (irre')]
K

(Tr)o (*'o))=- " ~ —""'""'fd '"'[ ( ) ([[1~'( ')x(-o, ')],
IP

(55b)

(Ox(xr).„.(TO))--,'„",, g '; e' ' '' f dme' '[-'x(e")+*(][rmD (m )X(qm')]'

(x
„

(Tr)x„.(T' O)) = — rr e (T ) f dre e r r"[x"—'(re ) e 1][rmD' ( r r' )]

" "'e&"'&I" d(o 8 '"'[n((d)+ I)[imD'(&d')]T([&, &o')].
M& ~0

k

(55d)
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TABLE I. Numerical values of parameters used in computations.

High-frequency dielectric constant. &„
Electron effective mass m*
Ion effective charge e*
Local-mode phonon frequency &p
Electro-optical coefficient

~
b j

EIasto op-tical coefficient
~ P((P x i)l(P xb(=-1)

Damping of:local-mode phonon &
Electron density n

Classical electron-plasma. frequency (one /&„m*)
Impurity concentra. tion c
Temperature T
Incident wavelength
Refractive index n~

10.9 (Ref. 16)
0.0775mp
2.0e ef. 17)
350 cm ~

8.4 x10 ~ esu/dyn (Ref. 18)
6.4 x 107 cm ~ (Ref. 18)
0.03 x ~p
1.1x 10~8. cm 3

347 cm
0.05
300 'K
6228 A
3.78 (Ref. 19)

Here ~'=.~+ig.
By choosing the effective medium approximation

for j as given by Eq. (42), one can obtain a general
form for the Raman- scattering intensity by using
the above expressions for the correlation functions
that contribute to (5)f5)f) in Eq. (45). This is the
procedure we follow with one qualification: The
auto correlations at a given site l, should reduce

to the single-impurity limit when the impurity con-
centration goes to zero. We build this limit into
our description of the Haman scattering by ex-
pressing (ti„(1f)g„.(10)), the diagonal impurity
correl. ation function, in terms of the Green's func-
tion given by Eq. (23). This is the impurity Green's
function for a real. impurity embedded in the effec-'
tive medium of coherent potentials. We thus have

(& ()(lu (T ))o= —„""- ' due ~" [n(w)+lj tmD (e'}, ~"" '.
)I

5 .c(T) ~ 1 -&» 0 c)
Mia)o ~ 1 —(v —o)PJ&'„&(0;&u)

(56)

Rather than present the general expression for
the Raman-scattering efficiency, we restrict our
attention in what follows to a few special'geome-
tries, each of which illustrates different aspects
of the scattering processes. Our computations are
based on numbers appropriate to GaAs, „P„,and
we choose parameters appropriate to GaAs is
shown in Table I. For simplicity the phosphorus
is taken to represent only an isotopic impurity in
the host lattice. The single parameter that could
depend strongly on whether the lattice site is a
host or impurity is the ion effective charge, and
its vg, lue in the literature is the same for both
GaP and GaAs. '

All CPA computations required first an evalua-
tion of o(o)) from Eq. (40). Using the numerical
values of the parameters as displayed in Table I, -

we find that o(&u) is remarkably close to the vir-
tual- crystal approximation over the entire frequen-
cy and composition range of interest here. The
deviation was less than l% for

~
a) —&o, ~/&os&0. 001,

and much less for frequencies away form cu,. Bas-
ically, this is a consequence of the long wavelength
of the plasma excitation compared to the typical
impurity spacing. Clearly, at 5% impurity concen-
tration, the value used in our computations, and
at wave vectors appropriate to the light-scattering
experiment, the system is well described as a uni-

form effective medium, and, as displayed below,
the predominant features in the spectrum are the
collective excitations of the system.

In all computations the I indhard expression" for
the real part of )f, (q, &u) was taken, while the exact
expression for the imaginary part was used. " In
this way the finite wave-vector behavior of the
electron gas, including the breakup of the plasmon
into single particle excitations, is built into the
computations.

%e now turn to an analysis of these specific ge-
ometries.

(a) In this case E, and'E„ the incident and scat-
tered electric- fields, respectively, are parallel
and along a principal axis of the crystal. Only a
single term contributes to the scattering efficiency.
This follows from utilizing the relations P (a, =P

~

e„a„~and b~()„=b Ic,s„I,where a @, is the I evi-
Civita tensor, appropriate for crystals of the zinc-
blende structure, and we find

I'eyp )(a) )d(() = i
~ ~E ~'[)t((c)+ l][Im)f(q, (o') jda), .

(57)
In Fig. 2 is a plot of the frequency dependence of
Ii')(a), )da), for several values of a, the dimension-
less wave vector defined by tc =Iq/(2m*lsT)'~'.

in turn can be related to the scattering angle, 8,
from the kinematic restriction
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V)

K
K
I-
Q3
Cf

dence of the average value of z((d).
From Fig. 3 we note that & takes on a maximuni

value of about 0.32 for backscattering, which in

Fig. 2 corresponds to the region where the higher-
frequency resonance begins to become heavily
damped. This is strictly an effect of the electron
gas and is due to the Landau da.mping of the plas-
mon contribution to the collective mode. In fact,
within the range of attainable wave vectors one

notes the presence of two modes which occur at
approximatel. y

td, (q) =-',[~, + ~, (q)] s lI[td, + ~~(q)j'

-4c(oj(q)G](m~/m, )I
'~',

0.90 (.00 i.i0
cU/(do

) 0.05
2.00

This expression is obtained from Eq. (42) by taking
the sma. ll q limit

jf, (q-0, (o) = (n, /m')(q'/(c').

FIG. 2. Frequency variation of the Raman scattering
intensity for several values of v, the dimensionless
wave-vector transfer defined by r =

~
fi~- q; ( .(S /

2~*&~&),for geometry (a) described in the text, and pa-
rameters listed in Table I.

e'q' = n', &,'+ n,'&,' —2n, n, ~,~, cose,

where n& and n, are the refractive indices at the
incident and scattered frequencies, respectively.
For example, for the 6228 A He-Ne line one finds
the relation between w and 8 as shown in Fig. 3.
Since the frequency shift is small, we have expan-
ded. the refractive index about its value at the in-
cident frequency and plotted the angular depen-

In Eq. (59), (dp ((I) l.s given by

(dp(q -0) = (4&ne'/e„m*)'~ '[ I+ ,', (q/qT r—)'],

where q» is the Thomas-Fermi wavenumber qTF
= (6wne'/ez)'~ ', with er the Fermi energy ez --(Sj['
n)'~'/2m*. In obtaining the approxima. tion given in

Eq. (59) we have simply replaced o with cv the vir-
tual crystal effective potential.

(b) A particularly simple form for the Raman
scattering efficiency results by taking E, and E,
to be orthogonal and along principal axes of the

crystal, while q lies in the plane defined by E& and

E,. Then one obtains simply

Q Q
- [ ~ I [ I ) & I

(
I I f I & I & I

(60)

0.2

O. i

0.0
QO 30 60 90

8

I i i I

I 20' l 50 I 80'

FIG. 3. Relation of ff; to the scattering angle, for the
6328-A He-Ne line.

Here w'e h@ve denoted the impurity concentration
by f and the speed of light by c.

The effective medium correction in Eq. (60) is
very minor for the frequency range and impurity
concentration chosen here, and one finds in Fig. 4

a single peak in the frequency dependence of the
scattering efficiency at the nearly unshifted local
mode frequency. The lack of coupled collective
modes in this particular geometry is a conse-
quence of the fact that it is the transverse local
mode that produces this effect.

(c) If one chooses E„E„andq to be mutually
perpendicular and to lie along the principal axes
of the crystal the form of the scattering intensity
is seen to be
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Summarizing the results ofs o our computations, we

see that the inellastlc scattering of lio lght by the sys-
escribed provides a mes b ' a means of detect-
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ec lve excitations due to th

nearly unshif ted
o e electronon gas, and the

i e transverse exci
subject of the work of

citation that was the
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