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A detailed investigation of optical transitions via the deep 0 donor state in GaP is presented, with
emphasis on evaluation of the influence of phonons (lattice relaxation) on the spectral behavior of cross
sections. Very sensitive purely optical techniques, such as photoluminescence-excitation (PLE) or -quenching
(PL@) measurements on bulk material provide data on optical cross sections which are accurate enough to
allow an unambigous evaluation of parameters for phonon interaction in optical transitions. The near-edge
part of cr~, (h v) shows clear phonon structure due to two phonon modes A'equi —19 meV and fico, -4& meV
with linear coupling strengths X, = 1.65+0.15 and X2 = 'l. l +0.1, respectively, giving a Franck-Condon
shift h„c = &5+5 meV for the 0 donor in GaP. These values are found to be the same in the 0+ state

(cr~, spectra) and in the 0 state (radiative emission), which justifies the use of a linear model for the electron-
phonon interaction. Further, the detailed agreement with the experimental spectra justifies a simple
theoretical treatment within the framework of the adiabatic and Condon approximations. A method to
separate out the electronic part o.„(hv) of the optical cross section using the knowledge of the phonon line-

shape function has been developed, involving a simple deconvolution procedure of low-temperature
experimental data. This electronic spectrum cr„(hv) is the appropriate one for comparison with theoretical
models for photoionization cross sections. A simple efFective-mass treatment of such cross sections is
developed including efFects of wave-function symmetry as well as the real band structure. A fit of this
theoretical model to the electronic part of cr~, (hv) gives a threshold energy 1.453+0.002 eV at 1.5 K,
which implies a band gap for GaP —14 rneV higher than previously established. The spectral behavior of
o„&(hv) at low temperature indicates strong efFects of excited states on the 0 center, extending & 35 meV
below the continuum threshold.

I. INTRODUCTION

The detailed physical mechanisms for excitation
and recombination of charge ca,rriers via deep
impurity levels in the forbidden gap still present
one of the major unsolved problems in semicon-
ductor physics. This is in contrast to the rela-
tively good understanding of properties of shallow
impurity levels, which has been possible mainly
due to the very detailed information available from
experiments on, e.g. , optical absorption and radia-
tive recombination. ' ' Such accurate experimental
data are to a large extent absent for deep states.
I'urther, for the majority of deep levels recom-
bination of excess carriers is nonradiative. There-
fore for the III-V compounds, only in a few cases,
such as the Gap, ' "and QaAs, " "has some in-
formation on electronic states or phononinterac-
tion in transitions via such states been provided
from purely optical measurements.

To encourage a proper theoretical description
of deep states, considerably more accurate ex-
perimental data than have hitherto been available
are necessary. One important piece of information
to be extracted experimentally is the amount of
interaction with phonons (lattice relaxation) in
electronic transitions via these deep states. A
knowledge of the details in this phonon interaction

(which we believe is important for most deep
levels in semiconductors} is necessary for the ex-
traction of data for the eleetronie properties of
the center, such as optical cross sections. These
in turn give the background for comparison with
theoretical models for the potential and wave func-
tion for a charge carrier bound in such a. state.

In this paper we present a method to evaluate
details of the electron-phonon interaction involved
in optical transitions via deep centers in the con-
figuration coordinate (CC} approach. It is also
shown, that the electronic part of the cross sec-
tion in optical transitions between a continuum
state and a localized deep state in this case can be
uniquely extracted from experimental data once
the details of the CC phonon contribution is known.
The condition for a simple treatment of both these
problems is the validity of the adiabatic and Con-
don approximations and, further, a predominantly
linear coupling in the electron-phonon interaction.
As an example for experimental data we have
chosen the deep GaP:0 donor state, for the simple
reason that this is one of the few deep levels a-
mong the III-V compounds where the identity of
the defect is well known (isolated 0 atom sub-
stitutional on P site').

Our low-temperature experimental data for 0 in
P-type 0'aP clear'ly show structure due to phonon-
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assisted processes in absorption close to the
edge. This makes an analysis of the phonon line-
shape function for the phonons interacting'in the
CC mode possible, independent of the lumines-
cence data for the radiative reverse transition
from the 0 level down to the valence band. We
find that these two independent experimental
determinations of the line-shape function are in
excellent agreement. Knowing the details of the
CC phonon interaction, it is possible to deduce
separately' the spectral distribution for the elec-
tronic part of the optical cross section by a
simple deconvolution of the experimentally mea-
sured spectrum. We have derived a simple model
within the effective'-mass approximation which
describes the behavior of the electronic parts of
optical cross sections explicitly (using the proper
symmetry for impurity and band states). The ex-
perimentally deduced electronic spectrum for
o~, in GaP:0 is in fair agreement with this simple
theory, if details in the real band structure are
taken into account. These deconvoluted electronic
spectra also serve as an independent test of the
strength of the CC phonon coupling, since un-
realistic fluctuations in o„(hv) are induced by an
excessive CC phonon coupling strength. Further,
the proper ere& (hv) curve deduced at low tempera-
ture serves as a sound basis for the theoretical
prediction of the spectral dependence of the total
cross section at higher temperatures, which is
thus not dependent on any simplified theoretical
treatment of o',~(he)."" A complication dis-
covered in the course of our detailed experi-
mental investigations is that cr', for GaP:0 is com-

. posed of two parts, one of which is temperature
dependent.

In the following, we will first (Sec. II) describe
the theoretical framework used in the interpreta-
tion of experimental data on phonon-assisted deep-
level transitions. In Sec. III, there follows a
description of the experimental methods used
here, with emphasis on reliability of the data ob-
tained. Section IV displays experimental data on

0~~ and o'„~ for GaP:0 at different temperatures
below 80 K, and the results are discussed and
compared with theoretical calculations. In Sec. V,
we discuss some of these new and important ob-
servations in somewhat more detail. Section VI
gathers some important conclusions arrived at in
the Previous sections, and outlines future work.

A theoretical derivation of the spectral behavior
of the electronic matrix element o„ in the simple
effective-mass approximation is presented in
Appendix A. In Appendix 8 is given an example of
the deconvolution treatment used to arrive at the
actual spectral distribution of the electronic part
of the optical cross section. Numerical esti-

mates Of different parameters for carrier excita-
tion and recombination process in the GaP:0 sys-
tem, which are crucial to the proper application
of the PLE and PLQ methods, are collected in
Appendix C.

II. THEORETICAL MODEL FOR OPTICAL PROCESSES
. PIA DEFP STATES INCLUDING ELECTRON-PHONON

INTERACTION

It is a well-known fact that radiative recombina-
tion spectra involving deep-lying impurity levels
generally involve rather strong phonon coupling,
increasing with the depth of the level s,x4.xs,x . 3- 5

In such spectra a linear interaction with CC pho-
nons is easily observed as a series of equidistant
peaks (phonon replicas) for each phonon involved
or, if the interaction is very strong, as a broad
bell-shaped peak at energies below the purely
electronic transitions. In the case of radiative
recombination, both initial and final electronic
states are usually very well defined within a nar-
row energy region, greatly facilitating interpreta-
tion of the phonon-interaction, since the purely
electronic (no-phonon) transition is corresponding-
ly narrow. In absorption processes between a
band and a deep level, where either the initial or
the final electronic state is within a continuum, a
broad range of energy states is available. This
gives rise to a broad spectrum even for the purely
electronic (no-phonon) transition, and the influence
of phonons is not as apparent as in luminescence.
The phonons manifest themselves via phonon
replicas of the electronic transition 0,~ also in
the absorption spectra, but these replicas may be
extremely hard to observe since they overlap
considerably.

What is more readily observed is an overall
broadening of the absorption spectrum with in-
creasing temperature due to the fact that phonons
can be absorbed in the optical transition at ele-
vated temperatures. From an experimental point
of view it is therefore desirable to have a theory
for the phonon line-shape function (telling the
strength of each individual phonon replica) which
predicts the broadening of the spectrum at higher
temperature.

As already mentioned, the model generally used
for a quantitative treatment of electron-phonon
interaction in optical transitions involving impur-
ity levels is the so-called configuration coordinate
(CC) model. "" In its original form this model
is worked out for transitions within localized
levels, and it has been successfully applied to
such systems as I' centers in alkali halides and
rare-earth impurities in semiconductors (internal
transitions within an ion)." However, the general
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approximations behind the model, i.e. , the adia-
batic and Condon approximations, may have a
much wider validity, and it is apparent that the
model with proper modification can be applied to
most optical transitions via impurities in solids.
For example, it has been shown by Hopfield, that
LO-phonon interaction in radiative transitions in-
volving even shallow states in semiconductors
show excellent p,greement with the phonon line
shape predicted by the CC model. " The formal-
ism for the CC model has been worked out a long
time ago, and excellent papers exist on the
topic,""for the semiclassical as well as the
quantum treatment. Therefore, we shall refer to
these treatments, and merely outline some es-
sential steps in the theory for easy reference, as
well as point out the assumptions and modifica-
tions made in applying the theory to the problem
of a band-to-deep-level transition as, e.g. , 0 in
GaP. Usually the semiclassical model is used in
evaluation of experimental data due to the simple
expressions arrived at for the line-shape function.
However, the quantum treatment gives consider-
ably more physical insight in evaluating detailed
experimental data and is necessary in cases of
weak and intermediate electron-phonon coupling
as well as at low temperatures. We shall show
that the full quantum treatment is not a serious
complication of the formalism.

Consider a system of an isolated deep-level de-
fect plus an electron (being either bound to the
defect or in a continuum state) plus a number of
CC modes interacting with this defect system. We
describe the behavior of this system in terms of
an adiabatic wave function in the electronic co-
ordinates F and nuclear normal coordinates Q
= (q„

4(,Q) =q (,C)y(Q) =q (,0) Q X,(q;). (I)

Neglecting the nonadiabatic terms that differenti-
ate y with respect to Q, this kind of wave function
separates the Schrodinger equation into two coupled
equations. One for the electronic part, qr(r, Q),
and one for the vibrational wavefunction for the
nuclei y(Q), where the energy eigenvalue for y
enters as adiabatic potential for y. In calculating
the optical transition probability for a transition
between state i and f (discrete or continuum
states), Eq. (I) gives (written for one normal
mode)

I';g" I &a~(r, q) I lf'le;(r, q)&l'

= i&my(r q)lrlq «(r q)&l'1&x'(q)l x;(q)&l'

~oei &q ~

In this (the Condon) approximation the optical

f

spectrum will be an electronic transition prob-
ability, a„(q) (where q is the mean q for the
vibrational overlap) repeated and weighted by a
line-shape function given by the (squared) vibra-
tional overlap integral P,. [H' = (e/m)A ~ p is the
optical perturbation Hamiltonian. ] To describe a
real spectrum we thus need (a) an explicit ex-
pression for the dipole integral as a function of
photon energy, (b) a solution to the vibrational
overlap integral for all normal coordinates q,
active in the optical transition, and (c) a method
to sum over all initial and final vibrational states
for all modes in (b).

In the following we discuss in somewhat more
detail to what extent the two components 0,~ and
Io can be deduced from theory, and finally ar-
rive at a procedure for practical use in dealing
with experimental spectra.

A. Spectral distribution of the electronic matrix element for
an optical transition between a deep level and a continuum

The treatment of this part can naturally be
divided into two different problems: (i) How can
we get a good description of the electr'on wave
function and the binding potential for the deep dis-
crete state'? (ii) What is the proper description
of the continuum state if we take the real band
structure into account, and how can the distur-
bance of the band state due to the presence of the
localized defect be described?

Clearly none of these problems is solved at pre-
sent, and, therefore, a detailed theoretical pre-
diction of the whole spectrum for o,~ is not pos-
sible at this stage. Therefore, we shall restrict
ourselves to some simpl'e approximate conclu-
sions, which can be drawn for the- near-edgeprob-
lem and can be compared with experiments. For-
tunately for the treatment of the electron-phonon
interaction, deconvolution methods can be used to
deduce the c,~ spectrum from the experimental
o curve and therefore a theoretical prediction of
the detailed shape of o,~ is not necessary (see
Sec. IIC). The dependence of c,& on photon energy
close to the edge is the simplest problem since
there one might assume parabolic bands. For the
impurity potential one usually assumes something
very localized, but the detailed choice of the po-
tential (6 function, Yukawa, etc. ) seems not too
critical for calculation of optical cross sections. "
Therefore a 6-function potential is usually adopted
and is the easiest one in calculations. For shallow
states the one-'band approximation, where the
state is derived from wave functions of the same
symmetry 8.s the lowest band extremum, is a good
approximation, and is extensively used in theo-
ry."" For a deep state this simple approach
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fails, and one should consider an impurity wave
function with Fourier components from several
bands. Furthermore, one is probably even making
an approximation if one considers, e.g. , a deep
donor state as being built up from only conduc-
tion-band states; it is quite conceivable that
valence-band states would also be admixed jn a
complete expansion of the localized state wave
functions in terms of band states. The simple
theories generally employed so far, i.e., the
Lucovsky model, ' and the so-called quantum de-
fect model" disregard the importance of the sym-
metry of the impurity and the continuum state. A

proper treatment of the cr.~ spectrum has to take
symmetry effects of the wave function for the
bound state into account as well as the real band
structure. A detailed account of this problem is
beyond the scope of this paper. To illustrate the
formalism, we will present a simple treatment
for a deep s-like donor state (appropriate for 0
in GaP), with the assumption of parabolic bands,
in Appendix A. The resulting spectral dependence
for the photoionization of electrons to a parabolic
conduction band haveing a symmetry compatible
with the deep donor state is

v„'(h v) ~ (0 v E~)'i'/—(h v)',

i.e., the Lucovsky formula (Ref. 20). For the
photoneutralization of the donor state by excita-
tion of electrons from a parabolic valence band
(p-like symmetry) we obtain

o,'(hv) ~ (hv Er)'~'/(hv[E-~+ n(h v —Er)]'I', (4)

where En is the donor binding energy (measured
from the I' minimum), Er E, —E~, a——nd o. =m„*/

ng,*. The different shapes of these two cross
sections is illustrated in Fig. l.

B. Phonon line-shape function

In the evaluation of the vibrational overlap in-
tegral in Eq. (2) (needed to obtain the weighting
factor P& for convolution of the zero-phonon cross
section, o„), we assume that the electronic state
interacts with symmetric (A.,) localized vibra-
tional modes, e.g. , "breathing modes. " Because
different normal modes are independent, we can
write P& as a product of the P, 's for the different
normal coordinates (q,). Assuming that each mode
corresponds to a harmonic potential E, (q) = —,'V, uPq',
the eigenstates (x„,) are those of a one-dimen-
sional harmonic oscillator with energy values
c„&= (n+ 2 )8 v and n =0, I, . . . (Fig. 2). In the
optical transition we change the charge state of
the center, causing, in the linear approximation,
a term proportional to q to be added to the po-
tential. This gives the new potential Ez(q) =Eo

(fl
(fJ
O
K
CQ

I.O l.5
PHOTON ENERGY (eY)

2.0

FIG. 1. Spectral dependence of optical cross sections
(linear scale) according to the simplified treatment in
Appendix A for the electronic part of the transition. The
curves plotted are for the 0 donor in GaP, i.e., 0.„(hv)

'
0&- (1/h v3) (h v —0.9)3~2; o.&(hv) &x: (hv- 1.45) ~ 2/hv [1.4+ 0,'(hv
—1.45)]2. Three difference curves are shown for
0 &(hv), corresponding to & = 0, 1, and 8, respectively.
(The case &=0 corresponds to a flat conduction band. )

+ 2pe'(q —q,)' with the corresponding energy
states e &= E+(m+ —,")8ur (Fig. 2). Hence, the
linear approximation results in a shift of the potential
parabola minimum to q =q„E,above the initial one
but without any change of the phonon frequency
(Fig. 2). The validity of this result for the case
studied will be discussed in Sec. V. The overlap
integral can be calculated as (for n ~m),

1&x,~(q) I x. ,;(q)&
~

e-xl2(n ~/~ ~ )&/2X(m-n)/2I m-n(X) (5)

where I.~(X) is the associated Laguerre polynom-
ial, ' and the parameter A is defined as

X = p, &uq', /2h = —,'y, &u'q', /he& .

Consequently, A, corresponds to the number of
vibrational energy quanta the final state is dis-
placed relative to the initial and is thus a direct
measure of the phonon coupling strength. At T
= 0 K only the ground state (n = 0) of the initial
state is populated in thermal equilibrium, giving
the transition probability

l,&x.J(q) lx o, i(q)&l'= s '(x"/~ ')
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i.e., the different replicas have the well-known
Poisson distribution often observed in emis-
sion. "'3' For large values of A. , i.e. , very strong
phonon coupling, this expression approaches a
Gaussian distribution observed as bell-shaped
emissions in alkali halides and II-VI compounds. "

For a finite temperature, the initial states must
be weighted by their thermal population factors
and a, transition from state n to state re will have
the probability (for n &m)

(1 e-)' ~l)(X')e-n&~/a2'e-)(

x (n!/m! }A "[L„"(X)]'.

C. Explicit expressions for the total optical cross section:
(including phonon interaction)

With the knowledge of the dipole transition prob-
ability between the two electronic states (Sec.
II A) and the single-mode vibrational overlap in-
tegral (Sec. IIB), we can evaluate the total cross
section for the transition being either an absorp-
tion [(-) sign] or emission [(+) sign]. In an arbi-
trary case with Z CC modes that couple to the
optical transition, we get for the measured total
cross section at the temperature T:

n()vv)=p p p p n ()vv —z, n p (m,. —n)l)tv) x 11P(n, , m, , T')

n&0 ml n =0 m =0
Z Z

o,((hv) =F(5(()„x„c(hv)). (10)

/
pgggAc. a.~ggggg
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C9
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Here E, denotes the zero-phonon energy difference
between the two (discrete or continuous) states and
the P,.(n„m, , T )'s are the probabilities in E(I. (8).
This form is convenient for computer calculations
of expected experimental curves at different tem-

peraturess.

Since, at present, the spectral distribution of
the electronic cross section o„(hv) cannot be ac-
curately predicted over a large energy range, we
shall in such cases use a 0,((hv) computed from
low-temperature data employing a deconvolution
method corresponding to Eg. (9) for T =0. With
input values for h&, and A, , we can express

It can be shown that this deconvolution procedure
is in general unique for the functional form of
o',((h v), and in Appendix B is given a simple treat-
ment for the general case with N phonon modes.
With the aid of a Z-transform technique it is
shown that in this case an analytical expression
can be obtained for the functional form of I' in
Eq. (10), as a simple summation over the experi-
mental o values

o„(a)= g f,v. ..

where k is an index for the discrete equidistant
experimental points chosen. The 0,~ thus com-
puted from low-temperature data is the proper
choice for comparison with theory for optical
cross sections. For the emission case this was
illustrated for the GaP:0 system in Ref. 40, and
in Sec. V we study the absorption of the same sys-
tem with special attention to the differences be-
tween the interpretation of a total experimental
cross section and the relevant extracted v,~. This
0,~ is also in a suitable digital form to generate
spectra for higher temperatures, thereby in-
creasinng the accuracy in determining the true
shift of the electronic threshold with tempera-
ture. 4'

//j
r~ZuZ. v. B.Zuia

FIG. 2. Configuration coordinate diagram for optical
transitions via a deep level in a semiconductor in the
linear model for the electron-phonon interaction. The
corresponding energy band picture is shown to the right.
The thresholds for zero-phonon transitions are indi-
cated by vertical arrows.

III. EXPERIMENTAL TECHNIQUES

I

The lack of detailed optical data for deep-level
transitions is essentially due to experimental
difficulties. Straightforward optical transmis-
sion measurements on homogeneous material re-
quire very large optically perfect samples for
accurate measurements of absorption thresholds
(c( generally below 1 cm '), but has been at-
tempted in some cases.""This method is of



814 B. MONEMAH, AND L. SAMUELSON 18

~ ~ e r r ~
~ ~

10
MI-

Kl
K

10-2

C)

C3
LLI
V)

I
II~

/
loII ~

II ~

II
I ~

I ~

II ~
II

III ~

I
I ~
II ~II ~

I ~

I ~I
I ~
I
I

190 K
O

~pi

course only reliable when other absorption pro-
cesses in the photon energy region under study
can be reduced to a negligible amount, which ig
at present very difficult in III-V compounds.

Although selective techniques using additional
light sources have been attempted in transmission
measurements, "the bulk of data now available
on absorption cross sections for deep impurity
levels have been obtained from various measure-
ments on P-n junction or Schottky-barrier struc-
tures, such as photocapacitance and photocur-
rent. '~ " The most significant studies on the
III-V-compounds have been done for GaAs and
GaP, the center most extensively explored being
0 in GaP."' ' ' ""' The methods involving
P-n junctions (or Schottky barriers) are attractive
since they, inprinciple, allowstudiesof alldeep cen-
ters in the material, both radiative and nonradiative,
provided a reliablep -n.junction structure can be
prepared. However, the method is generally not
selective for different centers with similar posi-
tions in the forbidden gap. Further we have ob-
served, that the strong electric field (of the order
10' V/m) in a P-n junction can considerably in-
fluence the shape of absorption edges obtained by
this technique, causing an additional broadening
(Fig. 3).

It has been shown that photoconductivity mea-
surements can give very good sensitivity for deep
impurity absorption spectra, ""but the method
is not selective for a particular center. Further,
all types of electrical measurements, especially
those on P-n-junction (and Schottky-barrier)
structures are very difficult to carry down to be-
low 50 K. For a detailed evaluation of optical
cross sections for deep levels it is very important
to have access to reliable experimental data on
extrinsic absorption edges down to the very low-
est temperature range (say 2 K). Below we shall
describe such methods applicable for deep levels
with a partly radiative recombination of excess
carriers. They provide a selective and very
sensitive way of measuring the spectral behavior
of optical cross sections for transitions between
a deep-level state and continuum band states.

A. PLE method

FILT E R

GaAs, lnP or interference

A.M.

Keithley 417

t

Picoammeter

REC.

P M, '-' SAMPLE
RCA, S1-type
Dry Ice cooled-

]4

The measurement of photoluminescence excita-
tion spectra (PLE) is in principle very simple, as
can be seen from Fig. 4. In addition to the tradi-
tional use of this method in the study of localized
defects, it has recently been used successfully to
obtain spectral information within the fundamental
absorption region of semiconductors. "' In that
case, it was difficult to extract absolute values or
even the correct spectral variation of the absorption
coefficient, except near singularities. In the case
of extrinsic PLE spectra, we will show that ex-
cellent accuracy can be achieved for the spectral

Jarrel-Ash
.75m Double
Czerny-Turner
25- 100

lo-' I

1.4
I I I I

1.6 1.8
PHOTON ENERGY (eV)

2.0

FIG. 3. Comparison between spectral deperidence of
photoneutralization cross sections 0& &(h, v) for 0 in GaP,
measured by two different techniques at 190 K. The
dotted line denotes our PLE data, the dashed line is data
from photoc apacitance measurements by C. H. Henry
(Hef. 62).

FIG. 4. Schematic picture of the simple experimental
setup used to record PLE spectra for the 0 donor in
GaP. Monochromatic light via a double grating mono-
chromator is focused on the sample, and the excited
luminescence is detected with an S1 photomultiplier
(HCA 7102) via a filter system and recorded on a
stripchart recorder as the excitation wavelength is
scanned. The only addition necessary for PLQ mea-
surements is the indicated extra light source for pri-
mary excitation of the sample.
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variation of the absorption coefficient (or the
cross section) for impurity to band transitions.
The method is fundamentally different from those
involving junction structures, i.e. , photocapaci-
tance and photocurrent measurements. . In the
latter case a reverse-biased junction is used to
obtain a high-field region, where optical excitations
via localized levels can be studied without the in-
fluence of recombination (and thermal excitation
if the temperature is kept low enough). fn the
PLE method, we make use of the recombination
of excess carriers to detect the absorption pro-
cesses via deep levels in a bulk sample, indeed a
quite different approach. One advantage of the
PLE method is its ability to perform measure-
ments down to the very lowest temperatures,
where the most accurate information can be ob-
tained on phonon-assisted processes. Further it
is selective for different radiative centers. Of
course, the method is not directly applicable for
centers which have very weak radiative recombina-
tion.

To illustrate the kinetics of carriers excitation
and recombination via a deep center in relation to
PLE measurements, we shall take the specific
example of a deep donor state in p-type material.
This is relevant to the experimental data on 0~,
for 0 in GaP to be presented below in Sec. IV. In
Fig. 5 is shown a picture of the relevant carrier
traffic via the 0-center in p-QaP. Under station-
ary excitation with photon energies j.n the range
E~ —E~&hv &E~ we have for the total hole capture
rate R into the 0 center, taking even the two-
electron state into account, "

AXkA'AXXXXA A%XX AXXXXX%X

c) NT ) = o IN
n1 T

+L ~ &I NT

--RN
———--———-E

F

FIG. 5. Schematic picture of the relevant parts of '

excess carrier excitation and recombination rates in
PLE measurements via a deep level.

efficiency n, the concentration of these centers
Nr (~N+r) and the excitation light intensity, ab-
solute values of cr» are obtained. A plot of a~,
versus photon energy can be obtained, if I is
kept constant and L, is observed as a function of
hv for the excitation light (of intensity I). Here
the assumption is made that, z does not vary with
hv, which is trivially clear if we assume that the
(free and bound) hole concentration is only weakly
perturbed by the excitation. For the same reason
n should not vary with I for reasonably low flux,
which can easily be tested. by measuring L as a
function of I (Fig. 6). As long as linearity is ob-
served in the L Idependen-ce (for the extrinsic
excitation conditions discussed here), n does not

8 = n L =~~~NrI- (o„~+op2)N rl
0 ++ e„2/z2 I+ c„j.N ~+ c»N&». (12)

where I is the radiative emission intensity from the
donor down to the valence band (or to shallow acceptor
levels at low temperature) and n denotes the ra-
diative efficiency of the hole recombination pro-
cess from the one-electron state. N~ and N~
are the concentrations of ionized and neutral
species, respectively, of the one-electron state,
N» denotes the concentration of two-electron
states. Otherwise conventional notations are
used. ' ' ' ' As will be shown specifically in Ap-
pendix C, the traffic via the conduction band as
well as the two-electron state can be neglected in
P-type material under our experimental condi-
tions. ln this case, Eq. (12) reduces to

~~

&~ IO

CO

Ld

z
~ IO
C3

LU
CD
V)
LLI

& IO'

O
CL

IO
IO' IO l(T l(T'

EXCITATION INTENSITY (rel.units)

o,', =(n 'L/N, I),
which means that o~, is directly proportional to
the measured luminescence output J. for the
reverse optical transition. Knowing the radiative

FIG. 6. Logarithmic plot of luminescence intensity
for the 0 related emission vs intensity of excitation
light with 1.8-eV photon energy. The maximum excita-
tion intensity employed here was about 10' photons/
cm sec.
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vary with I (if the temperature is kept constant).
Under these conditions it is experimentally more
convenient to allow I to vary with hv, but mea-
sure both L and I vs hv, whereupon 0» can be
calculated from Eq. (13).

The treatment of PLE measurements given here
was for radiative transitions from a deep donor
down to the valence band. Clearly, the correspon-
ding information about v„', can be obtained from a
similar treatment of radiative capture emission
in n-type material. However, other optical meth-
ods, such as photoquenching of luminescence,
seem to be more suitable for measuring the o„',
transitions in the particular case of GaP:0 we
have experimentally studied.

B. PL@ method

The PLE method is used to measure the optical
cross section for transitions from a deep level to
the band that gives a reasonable radiative branch
for carrier capture (e.g. , donor —valence-band
transition). The complementary cross section (in
this case for transitions to the conduction band)
often has nonradiative carrier capture, but can be
studied by another optical technique, the PLQ
method (see Fig. 4). As has been shown previous-
ly,"the spectral distribution of quenching of

' photoluminescence (PLQ) is (under suitable con-
ditions) proportional to the optical cross section.
In Fig. 7, is shown a schematic picture of the
relevant carrier traffic via a deep state studied

0 0
n) p T

+ 0 0
c)NT 0 )I NT

)f

R

by PLQ. In this case fundamental excitation is
used, and a straightforward application of the
PLQ technique depends upon the requirement that
the center under study is not the main recombina-
tion channel for excess carriers.

For specific case of a deep donor with a radia-
tive transition to the valence band (Fig. 7), we
have for the intensities I.p without, and I.p„with,
secondary excitation of photon energy E~&h v& E,
—E~ in n-type material

X =pc(P'No&"
p p T

= n c~"'N'~p"'.
p+s p T

(i4)

(i5)

Here n denotes radiative efficiency of the lumi-
nescence. cp=apvpP, where op is the capture
cross section for holes to the donor, vp is the
hole thermal velocity, P is the free-hole con-
centration, and N~'P' and N~' " denote the density
of occupied deep donor states for primary and
priMary plus secondary excitation, respectively.
The quenching ratio Q is most naturally defined
as

c {P+s)I{I0(P+s)

e"'N'~'
p . p T

where (14) and (15) have been inserted. Further,
we have under stationary conditions (Fig. 7),

(16)

o'(hv )I&I' 'I —c"'¹''
n p, T p n T

p T p p T=o'(hv )X "'I -c(P'X'(P',
(17)

[oo(hv )I oo(hv )I ]II0(Pss) c (P+s&~+{P+s)

o 0(h v ) I&I
s (p+s & I c {p+s ) ~ 0 (p+s )

p p T p p

c~"& o'(hv )I +c„'P"'

c,"' op(hv p)Ip+ c„"'

X
o'„(hv, )I, + o",(hvp) I, y c„'P'+ cp(P &

{J0(hvp) Ip + o' „(hv, )I, + op(hvp) Ip+ c„'P" +'cp{P+"

where Ip and I, denote, respectively, the intensities
of primary excitat. ion of energy hvp and secondary"
excltatlon of hip, . Insertion of N r'p"' and N T(p

from Eq. (17) into Eq. '(l6) yields

0 +
o )I NT

0
L= uc NT

This can be reduced to

hf~urdu iuzxii .iiuiuTr op'(hv, ) Ip+c„'P'

(19)

FIG. 7. Schematic picture of the relevant parts of
excess carrier traffic in PL@ measurements via a
deep level. R denotes the dominating path for recom-
bination (unspecified) for excess carriers.

where

1

[o0(hvp)+op0(hvp)]Ip+(c„""'+c,"")+o0'(hv,)I, '

if we assume that cp+' —cp+ '=0. The last as-
sumption is true if the center under study is not
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IOO o/o IV. EXPERIMENTAL RESULTS FOR GaP:0
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FIG. 8. Comparison between the theoretic al ex-
pression [Eq. (20)] for PL quenching ratio Q (solid line)
and experimental data (+) for different values of the
ratio of secondary and primary excitation intensities
I~/Ip .

a dominant recombination center. For such a
center we may assume negligible change in con-
centration of minority carriers (holes) as well
as majority carriers ('electrons) on application of
the secondary light in the above mentioned re-
stricted energy range. This means that in the
second term of Eq. (I9), c~' —c„'~"'= 0. We
therefore arrive at a convenient linear relation-
ship between Q and I„ i.e.,

Q =P o'„(hv, ) I, , (20)

if P is constant.
The validity of Eq. (20) depends experiments, lly

on the chosen ratio I,/I~, a,nd, as is shown in
Fig. 8 for n-type 0-doped GaP, a suitable choice
of this ratio perfectly validates Eq. (20). Thus,
over a small energy interval, it is possible to
scan Q vs hv and accurately record o'„(hv, ). Since
the validity of Eq. (20) restricts the excitation
intensities, the PLQ method is usually less sen-
sitive than the PLE method described above. By
keeping Q constant, it has been possible to mea-
sure nearly four orders of magnitude of the rise
of o'„, in GBP:0, which is far better than previously
reported with other methods.

In application of the above P LQ method to the
0 donor in GaP, the presence of the two-elec-
tron state must be considered. In Appendix C,
we elaborate on this point, 2,nd show that under
suitable conditions Eq. (20) is still valid for
evaluation of a'„,(hv).

+lith the experimental technique described i@

the previous section a detailed study was carried
out on the photoneutralization cross section 0'&,

in 03,P:0 in the temperature range 1.5 to 300 K
(PLE measurements). In addition, PLQ data
were collected for the 0'„, -transition, in order
to achieve accurate optical data for both cross
sections from bulk material. In this paper, we
concentrate on the data collected at the very
lowest temperatures, where the details of the
phonon interaction problem are most clearly
displayed. Phonon broadening at higher tem-
peratures, as well as other effects of temper-
ature on optical cross sections, are discussed
separately. "

In Sec. IVA below we display the PLE and PLQ
datg. , compared with data from the radiative emis-
sion- from the 0 center. In Sec. IV 8 the phonon-
interaction parameters deduced from these data .

are used to obtain the purely electronic part of
the cross section, via deconvolution of experi-
mental spectra. It should be pointed out that the
spectra obtained are representative of several
different crystals from different sources, where
the major p dopant was Zn, but in some cases
C (crystals were from three sources: IBM T.J.
%'atson Center, Ferranti I,td. , United Kingdom
and those we grew ourselves in Lund).

A. PLE and. PL@ measurements at iow T

In Fig. 9 is shown in a logarithm. ic plot the
overall appearance of the 0&, curves, measured
over nearly five orders of magnitude with 1.5-
meV spectral resolution. (Access to a more
sensitive photomultiplier than the S1 type employed
here would increase this sensitivity considerably. )
The curve rises sharply from the threshold en-
ergy of about 1.44 eV, peaks at about 1.81 eV and
decreases continuously up to 2.2 eV. Measurements
at higher photon energies are difficult to evaluate
for 0&, because the fundamental absorption in-
validates the simple treatment in Sec. IIIA. The
curve looks smooth, as one would expect from a
convolution of any broad electronic specf;rum with
a reasonable amount of phonon interaction in-
volved. Since even the simplified models for the
purely electronic transitions (Sec. II A) predict
smooth curves if effects from the band structure
are not drastic, no judgement on the influence
of phonons on the spectral shape ean be drawn
from a gross inspection of curve such as Fig.

Clearly, the relevant details in the phonon
interaction are expected to show up most easily
close to the edge. A careful study was therefore
made of the near-edge region at 1.5 K. The onset
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FIG. 9. Plot of 0.
& ~(hv) for 0 for GaP at 30 K from

PLE measurements on the 0-related DA-pair emission.
Note that five orders of magnitude are measured of the
absorption edge with about 1.5-meV spectral resolution.

of the signal related to a~0, occurred at 1.442
+ 0.002 eV in the samples studied (Fig. 10), and
the first part of o~, has the appearance of a tail
with a photon energy dependence like (hv —E)
where n ~ 1. A drastic rise in o&, occurs at
about 1.452 eV and in the energy region 1.454-
1.467 eV the curve has an energy dependence
(hv-E)" where P = —,'. At higher photon energies
a number of phonon replicas of this edge region
are observable up to 1.55 eV, essentially due
to the occurrence of the steep edge around 1.452
eV. The first replica of this edge occurs at 1.471
+ 0.001 eV, a second occurs at about 1.491 + 0.002
eV which is somewhat obscured by the third at
1.500+ 0.002 eV. The most prominent replicas
at higher photon energy occur at 1.519+0.001
eV and 1.539+0.001 eV (Fig. 10). Thus the elec-
tronic (no-phonon) part of the o ~~, spectrum seems
to be observable up to 1.4V eV. Above this photon
energy the CC phonon interaction dominates the
spectral shape.

It is of interest to compare the experimental
results on c&,(hv) from Fig. 10 with spectral re-
sults from the low-temperature DA-pair emis-
sion on the same sample. Such a comparison
is shown in Fig. 11, where the derivative o'~, (hv)

spectrum is shown in order to display the sim-
ilarity with emission data. In emission we have
a rather narrow electronic peak, "and evaluation
of the strengths of the two phonon modes @~,
= 19 meV and 5'm, = 48 meV is fairly accurate

i5
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l.52 l.54 l.56

FIG. 10. Detailed linear plot of 0-&&(hv) for GaP:0 at 1.5 K. The right-hand part of the curve is displaced vertically
for clarity. The expected position and relative strength of each phonon replica of the feature at 1.452 eV is indicated
by vertical bars.
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FIG. 11. Comparison between the PL emission inten-
sity spectrum (upper curve, linear scale) and the de-
rivative spectrum (do.

& ~/dhv) of the absorption curve
(linear scale) for GaP:0 at 4 K, which strongly indi-
cates that the CC phonon energies are the same in
emission as in absorption.

via stepwise deconvolution (Ref. 40 and Appendix
B), the quoted values being A. ,=1.65+0.15 and

X, =1.1+0.1. Prom Fig. 10 it is apparent that
the observed steps can be assigned as phonon
replicas of the 1.452-eV edge with these same
phonons: 1.471 eV (h&u, ), 1.491 eV (2@@,), 1.500
eV (h&o, ), 1.519 eV (K~, +her, ), and 1.539 eV
(2k~, + 8'&o,).

In the bottom. , of Fig. 10 it is also indicated
where we expect phonon replicas of the 1.452-
eV edge and their r relative strengths, according
to emission data. The two extra steps expected
below 1.55 eV (around 1.51 eV and 1.53 eV) are
considerably weaker and therefore not as apparent
in the experimental curve. These observations
from Figs. 10 and 11 justify the statement that
Fur, and ff&o, have the same energies (say+5%)
in absorption and emission. The coupling
strengths A, , and X, in absorption are difficult
to evaluate directly from Fig. 10, because the
spectral behavior of the background is not obvious.
However, such an attempt to evaluate X, and X,
gave values which within 20% agreed with those
stated above from emission data.

The PLQ technique has been used to study
v'„,(hv} in GaP:0 at different temperatures. The
method is not as sensitive as the PLE measure-
ment for 0'&„but three to four orders of mag-
nitude could be measured at T &200 K. In Fig.
12 is shown an example of such a PLQ measure-
ment, compared with a a „, curve measured with
photocapacitance technique, "where the difference
in sensitivity is evident. Unfortunately, the

IO
I.O I.I I.P

PHOTON ENERGY (eV)

Fjo. 1.2. PL@ spectrum for On 1 (hv) in GaP:0 at
77 K compared to photocapacitance measurements from
Ref. 62. The insert shows the resulting 0,&, „& of an
approximate deconvolution at 77. K plotted to linearize
the theoretical expression in Eq. (3).

0.9

sensitivity of the experiment dropped below 60
K, so that we have been unable to obtain any good
data revealing details of the "ca,mel's back"
structure in the conduction band. " There are
many reasons why a detailed evaluation of the
spectral behavior of the photoionization cross
section close to the continuum edge will be dif-
ficult for the 0 donor. One obvious reason is
clearly observed in Fig. 12„namely a strong
contribution of excited states to the o'„,(hv)
spectrum. The vibronic broadening of o'„,(hv)
up to 77 K can be neglected for the upper two
to three orders of magnitude, and therefore the
strong tail below o.9 eV in Fig. 12 must be due
to excited states contributing to the electronic
cross section. In fact, the lowest measured point
of v'„,(hv} at 77 K falls below 0.840 eV, which
leads to the conclusion that the optically active
excited states extend at least -35-40 me& below
the continuum edge (at -0.89 eV at 77 K). This
is not too surprising, since excited states close
to the conduction band are expected and have been
observed previously for the 0 center. " The
phonon replica of this tail region will overlap the
continuum edge, which effectively masks any
possible structure in this edge. The photo-
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ionization continuum is expected to have approxi-
ma, tely a (hv-E)'~' dependence close to the edge
[Eq. (3)], and replicas of such an energy depen-
dence would be extremely hard to observe even
in the absence of excited states.

B. Deconvoluted spectra for o,&(hU)

'The spectral distribution of the electronic ma-
trix element o,~ is obtained from Eqs. (B12) and

(B18) applied to experimental data. A typical
spectrum for o~~, „(hv) obtained in this way (at
4 K) is shown in Fig. 13 for phonon parameters
A., =1.65, 5~, =19 meV, A., =1.1, A~, =48 meV.
There are at least three important new observa-
tions one can obtain from Fig. 13: (i) Apart from
the tail region below 1.452 eV, the rise in o,~ (hv)
curve for hv&1. 5 eV can essentially be described
as oa(hv)-(hv —e,)'~', in good agreement with
Eq. (4). (This will be discussed in more detai
under V B.) (ii) The main peak of 0'el(/2 v) occurs
at about 1.73 eV with a half width of about 0.2 eV.
(iii) A monotonic decrease in o.~(hv) occurs for
photon energies &1.8 eV.

The o~, ,&(hv) spectrum for photon energies close
to the edge is shown in more detail in Fig. 14. To
make Eq. (A14) as realistic as possible within
this framework we have computed the density of
states p,,(hv) for the valence band using the k p
method and a full 6&6 matrix for the valence-band
wave functions, the resulting curve is shoWn in
Fig. 15. This density-of-states curve does not
show any appreciable rise in the contribution from

O
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1.44 I.45 I.46 I.47
PHOTON ENERGY (eY)

I.48

FIG. 14. Deconvolved curve 0.,&(hv) (solid line) from
0 p f (h v) measured at 1.5 K in the near-edge region.
The slashed curve (dashed line) is a simplified theore-
tical curve according to Eq. (A14) with a realistic den-
sity of states p„(hv-Ez) and a=0 corresponding to a
flat conduction band.

the light-hole band in the region —,'b. .. from the
edge, "and therefore this effect cannot explain the
apparent rise in the deconvoluted curve just be-
low 1.50 eV. The fit to Eq. (A14) is surprisingly
good close to the edge and can be used to evaluate
a value of the o'~, threshold as 1.453+0.002 eV at
1.5 K. The tail below this value cannot be fitted
within this framework of parabolic bands; pos-
sible reasons for this will be discussed below
(Sec. V B). The deconvoluted g&o~ „(lgv) spectrum
also does show a peak in the energy region hv

C"
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C2
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FIG. 13. Comparison between the total experimental
cross section 0&q(hv) at 4 K and the deconvolved elec-
tronic spectrum 0.,~(hv) (linear scale).

FlG. 15. Valence-band density of states in GaP cal-
culated by a 6 &&6 matrix k p method using the set of
valence-band parameters from Bef. 86.



OPTICAL TRANSITION S VIA THE BEEP 0 DON OR IN GaP. I. 821

1.55 eV, in agreement with Eq. (4). As will be
shown in more detail in the second part of this
investigation, ' a~, is actually composed of two
different contributions, of which the near-edge
part peaking at -1.55 eV is temperature depen-
dent, and decreases in magnitude with increasing
temperature. The broad peak in v~, „(hv} at
about 1,73 eV in Fig. 12 is due to the temperature-
independent part of v&~,~(h v), which will dominate
at not too low temperatures. " The presence of
these two parts is clearly visible already in the
original PLE data (Fig. 9) and is apparent also in
photocapacitance curves measured at 77 K."

To deconvolute 0„, we face the problems that
excitation to excited states might have different
parameters for phonon coupling than continuum
excitations and that the deconvolution formalism
is written for zero temperature while our data
are for 77 K. However, the result of such an at-
tempt to deconvolute 0„', gives the 0 „„,that is
shown in the insert of Fig. 12. The data. are
plotted as [(hv)'o, t]'~', to test Eq. (A13) for a
(dipole forbidden) photoionization process. The
almost linear region above the threshold at
-0.89 eV supports this theory and the deviation
for energies below 0.89 eV is expected for transi-
tions involving excited states.

V. DISCUSSION

A. Phonon interaction in optical processes via deep levels

In previous investigations on impurity properties
it has beeri customary to neglect totally the pre-
sence of phonon cooperation in the evaluation of
spectral dependences of cross sections, and these
have been treated as being of purely electronic
origin (Refs. 13, 16, 17, 20, 21,. 36, 42, 44, 45,
50, 51, 53, 56, 61, and 67-72). This in spite of
the well-known fact that phonons (relaxation ef-
fects) are important and have a strong influence in
all cases of radiative transitions observed for deep
levels in semiconductors. "'"" In a few cases
phonons have been taken into account in such anal-
yses, but the evaluation of parameters is done in
an oversimplified manner. ""'"To gain real in-
sight into relaxation phenomena connected with
change of charge state for a defect, the energy
and coupling strength of each vibrational mode
taking part in electronic transitions has to be
known. %e have demonstrated that this informa-
tion can, at least in some cases, be obtained from
simple optical measurements on bulk material at
very low temperatures. The analysis of data has
to be based on a quantum treatment if these de-
tails are to be extracted. The basic assumptions
used in our evaluation are that the adiabatic and
Condon approximations hold, further that the lin-

ear term dominates in the electron-phonon inter-
action. The adiabatic approximation is believed to
be excellent for deep centers, "'"while it may
break down for shallow centers where phonon en-
ergies are of the same order of magnitude as the
electronic binding energy. The validity of the
Condon approximation has previously been ques-
tioned for such transitions. " If the electronic ma-
trix element (or the effective field" ) depends
strongly on q, a proper separation in Eq. (2) will
be more complicated. For optical transitions be-
tween electronic levels, this non-Condon correc-
tion is expected to be only of the order E(vibra-
tion}/E(electronic}. The errors introduced by the
Condon approximation will give uncertainties in
the deconvoluted spectra far away from the zero-
phonon part, while the approximation is expected
to be very good for the first replicas. Our data
from deconvolution and convolution of emission
and absorption spectra confirm that the correc-
tions to the separation in Eq. (2) are minor ef-
fects. In other cases, like scattering processes,
where the interaction Hamiltonian is a strong
function of the inter-ion separation, the non-Con-
don correction will be a first-order effect. Fur-
ther, nonadiabaticity and non-Condon terms (that
in the optical transitions are second-order cor-
rections) can not be omitted in treatments of
multiphonon capture. "'" Here, the nonadiabatic
terms [involving (By/Sq)], are those that give
the coupling between the, otherwise, orthogonal
states. For capture close to the crossover point,
E(phonon)/E(electronic) can be a dominant factor
for the transition probability.

The vibrational modes that take part in the
optical transitions studied here in the GaP:0-sys-
tem consist of two sharp modes with energies 19
+ 1 meV and 48 + 1 meV, i.e. , they are resonant
with the acoustic and optical phonon bands, re-
spectively. At least for the 19-meV mode, the
rapidly relaxing excited states seem to be life-
time broadened by, typically, -3 meV. ~' Phonon
emission and absorption (bno0) processes in
optically induced electronic transitions require
a coupling of the electronic system to the vibra-
tional coordinate because of the orthogonality
properties of nondisplaced oscillators. Such modes
are expected to be different from the infrared ac-
tive local modes for the center, "' where coupling
of an electronic wavefunction to the vibrational
coordinate does not enter the transition probability.

An important observation is that the energies of
the phonons coupled to the different charge states
of 0 (i.e. , emission versus absorption) are equal
within experimental uncertainty (say 5%). This is
not consistent with the model used to interpret
measurements of capture cross sections at ele-
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vated temperatures for the same center, where a
shift of 22% in phonon energies between different
charge states has been postulated to explain a
factor -10' difference between experimental data
and predictions from the theory Of multiphonon
emission. "'"'" Apparently mechanisms other
than mode softening have to be invoked to explain
such large discrepancies.

As pointed out previously the broadening effects
caused by a high electric field make conventional
methods employing pn junctions or Schottky bar-
riers unsuitable for revealing the details in the
vibrational coupling. Optical measurements on

bulk materials of the kind presented here are
therefore invaluable as a complement to the con-
ventional measurements, even though their ap-
plicability is restricted to a much smaller class
of defects due to the requirement of a partly
radiative recombination branch. Furthe rmore,
even in cases where optical data do not reveal any
phonon structure, the formalism of deconvolution
of low-temperature spectra developed here gives
a valuable tool for estimating an upper bound for
the strength in phonon coupling, assuming rea-
sonable phonon energy. Kith the aid of such a o„.)

spectrum obtained from deconvolution of experi-
mental data taken at the lowest possible tempera-
ture, broadening effects at higher temperatures
can be accurately predicted and compared with
experiment. The formalism developed is in this
sense a universal method to study phonon coupling
strengths as well as electronic properties of deep
levels.

B. Evaluation of electronic cross sections for deep-level
transitions

As has been shown explicitly in Sec. IV 8 for
GaP:O, the deconvoluted spectrum for optical
cross sections is a unique solution from which
reliable data for the electronic spectrum of the
optical transition can be extracted. The CC pho-
nons (i.e. , the lattice relaxation) can be sepa-
rated from the problem in this way. If momen-
tum conserving (AC) phonons are important in
the optical transition, "they may be naturally in-
corporated in the formalism for the electronic
transition. " In the case of GaP:O described here,
transitions near I' in the Brillouin zone dominate,
and the MC phonons can thus be neglected. A

comparison between our deconvoluted curves and
the experimental v~, curve (Fig. 13) reveals that
even for a moderate relaxation, as for the one-
electron O state in GaP, it makes no sense at all .

to fit models for the electronic cross sections
directly to experimental data. Since the spectral
behavior of optical cross sections is the most

valuable test of theoretical calculations based on
specific assumptions on bound electron potential
and wave function, this point is crucial. One can
safely predict that relaxation of at least the same
order of magnitude as found for 0, in GaP is
present for most deep levels in GaP and GaAs,
and therefore for these materials a deconvolu-
tion treatment seems to be mandatory in evalua-
tion of optical cross sections. The role of relaxa-
tion effects for deep levels in elementary semi-
conductors such as Si is unclear. Most authors
believe such effects can be neglected, "but some
detailed spectral data on Si:Co have been inter-
preted in terms of .phonon replicas. " The most
recent data on the Si:Au center also show evi-
dence for lattice relaxation. '

An interesting new result that has appeared
from our detailed investigations of the near-edge
part of c~,(he) in GaP:0 is that the leading part
of the threshold indicates a value of 1.453 + 0.002
eV for the distance between the 0-donor level and
the valence band at 1.5 K. The shallow donor
binding energies for GaP were established rela-
tively early to within -1 meV via ir transmission
measurements. " The binding energy of the deep
0 donor was therefore known with the same ac-
curacy, since it has been obtained for DA-pair
spectra in comparison with shallow donors. "
(The donor-acceptor distances are of course known
with excellent accuracy from these same DA-pair
analyses. "4") Recently, an upward revision of
all donor binding energies with three to four meV
has been suggested, "'"when the "camel's back"
behavior of the GaP conduction band is included
in the analysis of donor spectra. Thus the 0-
donor binding energy at 1.5 K is about 0.899
+0.001 eV, indicating a band gap of 2.352+0.003
eV for GaP at 1.5 K, about 14 meV higher than
reported from original transmission data." Since
the excitonic band gap is well established, "this
would also mean a drastically increased value for
the free exciton binding energy in GaP (E.,= 24
+3 meV instead of the original value 10+1 meV").
It is interesting to note that this new value of F.,
comes closer to the theoretical estimate of 18.5
meV from effective-mass theory" {neglecting pos-
sible influence of the "camel's back" in the con-
duction band).

A comparison of these results with earlier
data" "'"gives a somewhat confusing picture.
There seems to be some controversy about the
acceptor binding energies. Preliminary data from
ir absorption on heavily P-doped samples" indeed
indicate values that are about 8 meV higher than
those previously established, ' although it has to
be admitted that these data have been obtained via
a subtraction of a very strong background con-
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taining phonon structure. On the other hand re-
cent measurements on PLE spectra for a dis-
crete DA pairs indicate that the earlier lower
values are essentially correct." This situation
illustrates, that the energy spectra of excited
states of acceptors in GaP are not well under-
stood at present. "

In the absence of direct measurements of the
free exciton binding energy, a higher band gap of
GaP thus remains as one natural explanation of
the v» data; in that case the tail below 1.452 eV
has to be ascribed to some unspecified broadening
mechanism. On the other hand, at the detection
limit of our setup, the tail extends down to 1.442
+0.002 eV, which is where expected according to
the original value of the band gap. We feel the
scatter in this edge +0.002 eV is real between dif-
ferent samples (the monochromator repeatability
is better than that). Thus, if the old value of the
electronic threshold"" E, -E~ is correct, there
must be some interaction present to severly dis-
tort the edge region of the electronic spectrum
from what is expected based on parabolic bands
close to the edge (we believe the expected terms
linear in k for the valence-band top are too
small in GaP to account for such a. distortion).

A possible source for a shift of the absorption
edge in transitions between a band and an impur-
ity level that should be important is the Coulomb
interaction E~ between the studied impurity and
other charged atoms. In the o~ process we photo-
neutralize oxygen atoms which interact with ion-
ized acceptors (in p-type material). The magni-
tude of this interaction that shifts the donor level
by Ec(R) is determined by the statistical distri-
bution between different donor-acceptor distances
g similar to the problem in DA-pair recombina-
tion."' This effect, which will. be discussed in
detail separately, "suggests that the cr~ threshold
will be broadened and effectively shifted to higher
energies by (Ec)—E„*. Here (Ec) corresponds to
the peak in the distribution function for different
distances for charged donor-acceptor pairs, and
E„ is a correction for transitions into excited
bound hold states induced by the Coulomb field
of the acceptor. " The resulting shift induced by
these different Coulomb effects are estimated to
be -2 to 3 meV and might thus explain only a
minor part of the discrepancies between the posi-
tion of the main edge at 1.453 eV and the old value
for E —E

VI. CONCLUSIONS

We have presented, for the first time, a de-
tailed experimental study of the influence of lattice
relaxation on optical transitions involving a deep

state in a III-V semiconductor (0 in GaP). The
study was made possible by employing novel purely
optical techniques of high sensitivity to measure
optical cross sections for the particular center
under study. E.g. , we have observed in detail both
emission properties of the GaP:0 center via
luminescence, and optical absorption via the PLZ
method, both methods selective for the particular
center and useful down to the lowest temperature
where all spectral details of importa, nce for a
complete description are resolved. The experi-
mental results for GaP:0 evaluated with a realis-
tic theoretical model have provided novel physical
insight into the details of phonon interaction in
optical transitions via deep states. It is demon-
strated that a detailed knowledge of this problem
is a prerequisite for an adequate discussion of the
behavior of the electronic part of the optical cross
sections for such a deep state.

The configuration coordinate model extensively
used for internal optical transitions within lo-
calized defects is shown to be very useful for a
description of lattice relaxation via coupling to
localized phonon modes that do not contribute mo-
mentum in the optical transition. We have em-
ployed a simple quantum treatment of the vibronic
problem which successfully describes observed
experimental results for GaP:0 in both radiative
emission and optical absorption from the valence
band. The main assumptions necessary for this
treatment are the adiabatic and Condon approxi-
mations, both shown to be good for this center.
The relaxation properties in optical transitions
via the one-electron state in GaP:0 can be com-
pletely described with two narrow phonon modes
of energies 6&, = 19+ 1 meV, h &, = 48 + 1 meV and
coupling strengths A.,= 1.65+0.15 and A., = 1.1 + 0.1,
giving a total Franck-Condon shift 6 &&

= S5 + 5
meV. We have also developed a deconvolution
method for experimental optical spectra by which
these can be relieved from the influence of CC
phonon interaction. The o'e& spectrum for the
electronic part of the optical transition, can thus
be extracted for adequate comparison with theo-
retical predictions. Evaluation of such spectra
also provide the only reliable basis for prediction
of the spectral shape of optical cross sections at
higher temperature due to phonon broadening,
since no simplifying theoretical models have to be
assumed for o,~. 'For comparison with decon-
voluted data for o» „,(h v) for GaP:0 we have used
a simple theoretical treatment that takes into
account the symmetry properties of the deep state
as well as the continuum states. This theory pre-
dicts a spectral behavior o~, -(hv —Er)' ' close to
the threshold, in good agreement with experiment-
al data with a 1.5-K threshold energy of 1.453
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+0.002 eV. In the explanation of a.-14-meV up-
ward shift of the spectrum compared to the ex-
pected position, a higher value for the band gap
jE, as E, =2.352+0.003 eV at 1.5 K is considered.

The fact that the shape of v~, „,(hv) is entirely
different from the experimental o»(lg v) curve leads
to the important conclusion, that the usually at-
tempted fit of model calculations for o,), (hv) di-
rectly to experimental spectra is meaningless in
ca,ses of non-negligible lattice relaxation. It turns
out that o~»(hv) for 0 in GaP is composed of two

overlapping contributions, one of which has a
temperature- dependent strength.
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lism, "'"can be deduced from the conduction-band
Bloch states, lc, k ) = u, p(r)e' ' ' as

t) (r) = QA. (k) lc, k ) (Al)

~ = (»/@)((I, KIH'lan))'p(E, ).

Here the perturbation Hamiltonian H' = (e/m)
A p includes the vector potential A and the mo-
mentum operator p = —i@V.

Inserting (Al) into (A2) yields

(including more than one band is a trivial extension
of the treatment below and is of course necessary
for a deep state). We want to estimate photo-
ionization and photoneutralization cross section
for transitions between this state and the two
bands. The following Golden Rule expression for
a discrete-continuum transition, where p(E, ) is
the density of states in the continuum state,

I I, R), is obtained

APPENDIX A: SIMPLE THEORETICAL MODEL FOR

PHOTOIONIZATION AND . PHOTONEUTRALIZATION
CROSS SECTIONS FOR A DEEP STATE

We will use as an example a deep donor with a
bound electron state which, in the Kohn forma-

The second factor in the argument of Eq. (A3), the
dipole matrix element between Bloch states, can
be developed as follows:

u, );)r)e '(-)))v)u, )l)r)e' 'd v= f uj )'(r)(-i rite)u, )(r)d w+Kc sr, );) )a, );)r)d'r . (A4)

A (k.) = —(c, k
I Uo I yn &/(&. (k)+

I &. I ) . (A5)

If E denotes an s -like state, i.e. , we have photo-
ionization, the first integral in Eq. (A4) will
vanish, to zeroth order in k, while the second is
finite for l = c. Consequently we end up with a
term proportional to hk, a forbidden dipole transi-
tion.

In the case of photoneutralization, l is a valence-
band state (of mainly P character) and in this case
the first integral in Eq. (A4) is finite and the
second vanishes (for small k). This gives a con-
stant term independent of k, an allowed transition.

The first factor inside Eq. (A3) can be ex-
pressed as

l

numerator we must know the continuum Bloch
state. We will make rough estimates of this ma-
trix element for a few cases.

A. Extended potential

Example: Uv ~ e'/r, i.e. , a-Coulomb potential.
If we use pl. ane waves instead of Bloch states, the
matrix element can be expressed as

Using the full Bloch state, and expanding the
periodic part uk(r) in the reciprocal-lattice vec-
tors gives

This results from appl. ication of the one-el. ectron
SchrMinger equation to Eq. (Al) with the impurity
potential UD, and describes the admixture of
(conduction) band states into the donor state

To evaluate properly the matrix element in the

uk (r)= QC(C-k)e'

i.e. , for small 0:

(Ava)

(AVb)
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G

e~i(G-k ) ~ r ~-ard3
r

Consequently,

()l)) I) e (r)e ' '(- —)e "e)'r
~ (@I')(/2(kv @ )(/

2
v E~+— —"- tv —Ez

C

cr ~(kv) (x: AD(k = [2m,*(kv —Er)]'/'/S)p„(kv —Er}

=pc;
G

4m@'

o.'+(G —k)' ' (A8)
where we have use parabolic bands and put E~
=E, —ED. E~ is the binding energy measured
from the (conduction-band) I' minimum.

A, (k) ~ o.'/'/(n'+k')' (A9)

This means that, although the number of CG's
needed in Eq. (A7) to describe ((0(r) might be con-
siderable, it is probably sufficient to retain only
very few terms in Eq. (A8) because of the de-
nominator ~ [c('+ (4 —k}']. E.g. , for ED =0.1 eV,
a'=[(2m~E()/k']=4 x 10" (m ') while for the first
6 4 0, (6, —k)' = [(2((/a)(~3/2)]' = 1 x 10' (m ').
This means that the C=O term is favored com-
pared to 4, by a factor & 100. Therefore, keeping
only the 4 = 0 term, we get

APPENDIX 8: DISCRETE METHOD FOR DECONVOLUTION

OF CC PHONON-ASSISTED OPTICAL SPECTRA

Assume that we have an experimental low-tem-
perature spectral distribution g r(x) (where x cor-
responds to kv), which e.g. , can be an absorption
spectrum. If N linear CC modes are present with
energies ke, = &x,. and coupling strengths A, , we
can express or(x) as

B. Localized potential

Example: A square-mell potential with depth
IV, I for t'«, :

&I))ol ) f e);(r)e ' "
. )r)i(ue'r

For small k we get

-.=„1'0 ((1'(r}4 (f'r
k r0 0 (r& r0)

(A10)

((e(r}=~.(r)+k &I((k(r)+ (A11)

When ((i; and g() have the same symmetry the first
term will dominate and give an (almost) constant
matrix element near the F point. Hence, from
Eq. (A5) we get for a localized potential

A.~(k) ~ u'/'/(a'+k') . (A12)

SUMMARY

For an s-like donor state composed of conduc-
tion-band states through a localized potential, we
can write the ionization cross section

o „'(k v) c(:„—A'i)(k)P p, (k v —E~) ~

(A13)

If, however, u, (r) and g~ have different symmetry,
the integral vanishes and we must use the term
proportional to k in Eq. (A11), making the matrix
element proportional to k."

x 0' i x - x0 — jg]Qx. Bg
f=1

in agreement with Sec. II, Eq. (9). Here o„de-
notes the electronic part of the cross section to be
determined as a function of x and A =Q", ,l((. As-
sume we select experimental values at x= x0+ 4&x,
where k=G, 1, 2, . . ., T.

We let &x,.=n,.&x, where a,. are integers, and
assume that o r(x) = 0 for x( x„which is indeed
what happens in the real case for low temper-
atures, where x, is the pure electronic edge. I et

I'„=o r(x, + knx)

o, = v „(x,+ k &x)

From Eq. (Bl) follows:

N (y )N(

iM ')
( o()- c(u ((((

MI -0 M~=0
' -& i gJ t

This equation is solved for a„by using Z trans-
forms. " For this we define the following Z trans-
forms related to expression (B4):

1'(Z) =Q F„Z
0=0

. y )(((
H((Z) = e '( Q ' ZN(

, (M,)t

and for the neutralization cross section we get =e &' " for x=1 N (B6)
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S(Z) =Q o,Z'.
0=0

Substituting Eq. (84) in Eq. (85), we obtain

j= 1 M)"-0 ( ))

-A i ga( N(

). M -0 ( E)

(O'I)
ficients in Eq. (814) are identically zero. For cal-
culation off,. it may sometimes be convenient to
use a recursion relation. This can be derived in
the following way.

Differentiating (811), we get

(z) E(z) (=- Q l,.a(z r'),

into which we can substitute (813) for E(Z) to give

Since the e are integers, the sum over k is inde-
pendent of,.e,.M„and one can factor the sum-
mations, giving

Replacing the index of summation j by j —a„ for
each i on the right, and equating coefficients of
like powers of Z' ', we obtain

1'(Z) = S(Z) gH, (Z () . (89)
-8f.= . A...c(gf . —(r)

f= 1
(816)

Thus, we obtain

S(Z) =&(Z) I'(Z),

where

E (Z) = 1jil,.H, (Z () = e

Formally we can now write the solution to
Eq. (84) as

+)) gf j ))-j r
j=o

(810)

(811)

(812)

which is to be used with the starting values

f, =0, j&0, .

eA

f, =0, 0&j &min. ((x,), .
If we again note that f,. 00 only for j=Q,n,M, , .
where n,. and (M,.) are integers, we can rewrite
the recursion relation so that only the nonzero f,.
are computed

where the f~'s are the coefficients in the expansion

A

Z;1(;(r;f;-. . (81&)

+(Z) =Qf;Z'
j=o

For the special case where two phonon modes are
active, the recursion formula corresponding to Eq.
(815) will read

To find an expression for the coefficients f~ in this
expansion we note that according to Eq. (811), f~ =

I,
(~i(r if~0, + 1(2o'0f~n, ) . (BIS)

F(Z)= ' g P ' Z~*'(M(( y)M(

My"-0 MM=0 - t=l

With the aid of these equations, we can now iden-
tify the coefficients f,. in Eq. (812) simply by in-
spection:

M ( y)M(fj M), ~...MM J.J. (M ) f
(815)

where the sum goes over all combinations of the
M, 's, such that Q,e,M, =j.

The deconvolved spectrum can thus be computed
from Eq. (812) with the f, from Eq. (815). If. the
spacing &x between the experimental points is cho-
sen much smaller than the phonon energies (in our
case we used &x= 1 meV whereas phonon energies
were of the order of 20-50 meV), most of the coef-

APPENDIX C: QUANTITATIVE DISCUSSION ON

EXCITATION AND RECOMBINATION KINETICS

IN GaP'O

A. PLE measurements

The proper application of this technique to mea-
sure ao» in P-type 0-doped Gap is dependent on the
validity of Eq. (13), i.e. , several terms in Eq. (12)
have to be negligibly small compared to the leading
term g»N ~I. The occupation of the 0 donor, i.e. ,
N ~ is determined by the recombination rates of
these photoexcited donors with holes (free or bound
to acceptors) which can occur radiatively or non-
radiatively via Auger processes. The maximum
lifetime T„observed for electrons on the donor un-
der these circumstances is about 5 x 10 '
sec.""" With a typical excitation intensity I
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=10"photons/cm'sec, N'r=Nr=10" cm ', and
cm ', and 0» = 10 "cm', we obtain an excitation
rate U, =N ~g»I=10" cm 'sec '. A conservative
maximum value of N'~ is therefore obtained as N'~
=U&7'~=5 X 10 cm . Thus, N PN'&10 (for all
temperatures below room temperature), which
means the term (o'„,+era~, )NDrI in Eq. (12) can be
safely neglected. The two-electron state has a
lifetime &,=10 ' sec inP-type GaP." If we assume
a maximum excitation rate U, for the two-electron
state, we obtain U, =].0'4x 5x ].09 x 10-'6= 5x ].07

cm ' sec ', which means N~=U, v', &1 cm '. Thus,
all two-electron processes can also be ignored in
Eq. (12). This already means that the spectral be-
havior of o~, measured by PLE spectra is safe
[Eq. (13)]. The background observed in the experi-
ment (above dark current in the photomultiplier)
is due to the two terms c»N~+c„yN p We just
showed that the first one is negligibly small. The
excitation rate U„ for electrons via 0 in P-GaP can
be obtained as U„=N ~g'„,I& 5 x 10' x 10 "x 104 = 5
x 10' cm 'sec '. The minority electron lifetime
1„in P-type GaP: 0 is estimated as v„& 10 ' sec
for T & 300 K,"which means we are dealing with an
electron concentration n = U„v'„= 50 cm ' for ex-
citation via the 0 center alone. Two-step exci-
tations via other centers present in the material
could conceivably raise this value, but probably
not more than a couple of orders of magnitude,
since the occupation of such centers must also be
low in p-GaP. Thus, c„,N ~= g„,nv„N ~&10 "x10'
x 10' x 10' =10 cm sec ', about fj.ve orders of
magnitude smaller than the leading term N ~a~»I.
Thus, the background should be negligibly small
below 300 K, in agreement with experimental ob-
servations.

There is one problem that is not apparent in the
above treatment, but does show up in experiment,
namely the effect of relative donor-acceptor pair
distributions on excitation processes. At low tern-
peratures the free-hole concentration is so low
that donor-acceptor pair recombination (radiative
or nonradiative Auger) is the dominating mechan-
ism that governs the occupation of oxygen centers.
The maximum lifetime (5 x 10 ' sec) given above
refers to luminescence data, but there are 0 cen-
ters which are situated so far from acceptors that
they have an extremely small probability for fe-

combination, but they may well be active in ex-
citation processes. Therefore the total steady-
state concentration of occupied donors may be
much larger than calculated above, which would
influence the two-step excitation of minority elec-
trons in the conduction bar}d via O. That this oc-
curs in practice is proved by the remarkably
strong (green) shallow DA-pair emission observed
for T ~ 50 K with two-step excitation via 0 in GaP.
As long as No~ for these 0 centers thatdo noteffec-
tively take part in the recombination process is
not raised to be comparable to N r, Eq. (13) will
still be valid. Since N ~ and N~ depend on I, a de-
viation from a linear dependence of I. on I would
occur if any of the terms except oo»N 'rI in Eq. (12)
were not negligible. As seen from Fig. 6 perfect
linearity is observed in our experiments, there-
fore, Eq. (13) is indeed valid. [Since the green
DA-pair emission varies with (below band gap) in-
tensity as =I", a PLE spectrum based on detec-
tion of the green gmission does not give a straight-
forward measurement of o»(h&). j

B. PLQ measurements

The most sensitive sets of measurements were
here performed on n-type 0-doped material, hav-
ing rather high resistivity even at room temper-
ature (the thermal equilibrium Fermi level was
found to be situated about 0.75 eV below the con-
duction band from Hall data). Therefore omitting
the two-electron state in the analysis would seem
to be a serious limitation. The terms that are
omitted in Eq. (1V) are, of course, the same as
those included in Eq. (12), and there is no difficulty
in principle to include them in Eq. (17), except for
a much more complicated final expression. The
most important terms involved are cr'„,N»I„
oo~+orI„and c»N~, which are all very small un-
der the conditions of the experiments. The position
of the two-electron level is not established, but
from data for the optical cross sections '~ ' one
can find that o'„, and o» are both very small at 1ow
temperature in the region 0.8&hv&1.4 eV, where
our measurements were performed. The thermal
capture term c~Q~ is small simply because p is
very small. Therefore, proper inclusion of the
two-electron state will not influence the analysis
of our PLQdatafor OinGaP accordingto Eq. (20).
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