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The random-phase approximation is generalized to include the effects of band anisotropy, coupling between
degenerate valence bands, coupling to optical phonons, and the Hubbard exchange correction. This method
is used to calculate the ground-state energy and equilibrium density of the electron-hole liquid in Ge, Si,
AgBr, and various II-VI and III-V compounds and the thallous halides and lead chalcogenides. The results
are compared to the experiments where they are available. Agreement is excellent for Ge and Si and
reasonable for the other materials, considering the large uncertainties in the values of the band masses, etc.
Substantial discrepancies remain between theory and experiment, however, in the cases of GaAs and ZnO.

I. INTRODUCTION

Recently, it has become clear that electron-
hole (e-%) liquid phases can be observed in a
wide variety of semiconductors.! Following the'
early work on Ge and Si, compounds—where
polar effects are important—have been studied.
The e-% liquid has been observed recently in the indi-
rect-gap materials GaP (Ref. 2) and AgBr (Ref.

3). It has also been found that in certain polar
divect-gap semiconductors, such as CdS and
CdSe,* the many-body interactions between car-
riers lower the band gap and lead to a stabilization
of the e-k liquid phase. Such phases, in direct-
gap semiconductors, exhibit stimulated emission
and the theory of the energetics of these phases

is important for the understanding of laser action.

At the same time, a theory of the e-Z liquid in

polar semiconductors has begun to develop.®™’

In this paper, we present a detailed theory of

the e-% liquid in these systems. We apply it to
calculate the ground-state energy and the equil-
ibrium densities of the e-% liquid in a large num-
ber of materials.

The development of the theory of the e-Z liquid
in polar semiconductors began with the observa-
tion by Keldysh and Silin® that the polar interaction
should tend to stabilize the liquid phase. Their
paper contains an analysis of the electron and
hole exchange energies but no detailed discussion
of the correlation energy. They found that the
exchange energy is lowered by the polar inter-
action both in the high-density and in the low-
density limits. Keldysh and Silin argued in favor
of a lowering of the ground-state energy at any
density.

This conclusion was reinforced by our work®—

18

hereinafter referred to as I—in which we cal-
culated the ground state energy of the e-Z liquid
for four polar semiconductors including the

_coupling to the LO phonons. We found that in

Cds, CdSe, ZnS, and AgBr, the electron-phonon
interaction increases the stability of the liquid
phase relative to the excitons. In our approach
we generalized the random-phase approximation
(RPA) by adding the polarizability of the polar
lattice to that of the carriers. The RPA is the
basis for the successful theory of e-k liquid in
the elemental semiconductors Ge and Si. It can
be used for the densities of interest where high-
density expansions break down.

To simplify the additional complications created
by the inclusion of the phonon interaction, the
ground-state energy was calculated in I using
the plasmon-pole approximation® which is a
simplified version of the RPA. (ROsler and
Zimmerman’ also used this approximation—albeit
in a somewhat improved form—to calculate the
phase diagram for e-k liquid formation.) The
main advantages of the plasmon-pole approxi-
mation are its mathematical simplicity and its
clear physical meaning. These advantages, how-
ever, are counter-balanced by a certain degree
of arbitrariness in the choice of the parameters
which leads to difficulty in applying the theory
to semiconductors with a complex band structure.
More precisely, the choice of the b coefficient
in the plasmon energy dispersion [w?=w? +ag?
+bg* (see I)] is basically an uncontrolled ap-
proximation. The valence band structure of the
semiconductors considered in I was simple and
the results were not too sensitive to this param-
eter. The relationship of the plasma pole to the
RPA has been explored recently by Rosler and
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Zimmerman’ (RZ) for CdS. They used this com-
parison to adjust the b coefficient and then ap-
plied their method to several other II-VI com-
pounds. We have found that the electron (and
hole) self-energy—and thus the e-% liquid ground
state energy—is sensitive to the choice of b for
semiconductors with the zinc-blende crystal
structure which have a coupled valence-band
structure. In addition, difficulties remain in
treating the band anisotropies. In fact, it turns
out that the plasmon pole approximation leads

to errors of the order of ~25% in the case of the
ground-state energy of the e-k liquid in GaP.®

In this paper, we will use the full RPA to des-
cribe the carrier polarizability and include the
effects of band anisotropy and coupling between
degenerate valence bands where it is appropriate.
The Hubbard exchange correction is also included.
The carrier polarizability is added to that of the
lattice to obtain the total polarizability for the
RPA. In the low-density limit this calculation
reduces to that of weakly interacting polarons.

In this limit then the main contribution is the
single polaron energy shift. This shift is well
known'® for nondegenerate bands and it has been
recently discussed for the case of coupled valence
bands.'!? As the density is increased the im-
portance of the Coulomb interaction grows relative
to the lattice interaction until in the high-density
limit, lattice effects are negligible. The theory

is outlined in Sec. II.

In Sec. III we present results for a variety of
semiconductors and compare to experiment where
we can. We discuss first those with the wurtzite
structure which have simple ellipsoidal electron
and hole bands: CdS, CdSe, ZnO, ZnS. We also
include the case of AgBr. The comparison is
made to the results in the plasmon pole approxi-
mation that we have obtained previously for these
materials. All these semiconductors have sub-
stantial polar coupling. Next we consider semi-
conductors in which the valence bands are coupled.
We present new calculations for the elemental
semiconductors Ge and Si, which treat the band
structure more accurately. The cubic II-VI and
III-V are also in this class and have polar coupling
which varies from weak to fairly substantial val-
ues. Lastly, we consider a group of highly polar
semiconductors characterized by orbitally de-
generate holes: TICI, T1Br, PbS, PhSe, PbTe.

Section IV is devoted toasummary and evaluation
of the results. We find that for those compounds
in which the plasma frequency w, is much smaller
than the phonon frequency w, the full RPA may
not be reliable. We argue that replacing the dy-
namic phonon by its static limit, i.e., screening
the Coulomb interaction by the static dielectric

constant €, is a better approximation in this
limit.
II. THEORY

As in the nonpolar case,! we use the effective
mass approximation to describe the electrons
and the holes near the band extrema. Thus the
Hamiltonian of the system contains a kinetic en-
ergy term with effective masses determined by
the band structure and Coulomb interactions
reduced by the high-frequency dielectric constant.

The Hartree-Fock energy (per e-# pair) can be
obtained exactly.’®!* For a system of v, con-
duction bands and v, uncoupled valence bands we
have

Eqp=Ex+Eq, (1)
2.2099 /' u n :
Ey= 7?2 ( 2/3 * a3 )ER’ @
s Ve Mgy Vy' Mgy

Eo=- 0.3163 (v o) +v3 2 ¢ (p ) Ep, (3)

s

where we have adopted the reduced units used
in the e-Z liquid literature. Wave vectors are
measured in units of the effective Fermi wave
vector

kp= (3T )13, @

where n is the e-h pair density. Energies are
measured in units of the effective Rydberg E,
(z=1),

Ep=pet/2e2 =e?/2¢ ., (5)

(€. is the high-frequency dielectric constant;
a, is the effective Bohr radius), where the re-
duced mass u is

Vu=1/my+1/mg, (6)

and m,, (m,,) is the optical masses of the elec-
tron (the hole) defined as

1/me=3(1/m, +2/m,), (7a)

U/ =5 (L/myy+2/my,) . (Tb)
The density-of-states masses are given by

Mo = (M, m3 ), (8a)

Mgy = (M M (8b)

The dimensionless parameter 7, is defined as

re=(3/4rn)*(1/a,). (9)
The function ¢(p) is given by
_uef SinTH[(1 - p)
s(p)=pi( L L0=E)
sinh™[( p - 1)*/2]
o —— et
(’p _ 1)1/2

"low-p

o(p- 1)), (10)
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with .
pP= m]./mu (11)

and ©(p)=1 for 0<p<1 and zero otherwise.

For the case of two coupled valence bands the
hole contribution to the Hartree-Fock energy in
the spherical approximation is given by

B =EY+EY, (12)
E=(2.2099/r ) p/my(L +y* 22 E,,  (13)
E=-(0.9163/7,) ¥(y) Eg, (14)

with

Yly)= m['%(l_Y)élnCIg )

+1+')/2+3‘)’3/2+37’1/2

+i(l- Yz)f <1+x)]’
(15)
where

y=my/my (16)

(m,, is the light-hole effective mass; my is the
heavy-hole effective mass).

The HF energy as givenby the previous equations
is accurate to within a few percent corrections
due to warping. All the approximations, both in
the nonpolar and in the polar case are contained
in the correlation energy. In this paper, as in
Brinkman and Rice, we use the Hubbard approxi-
mation to calculate the correlation energy of the
e-h liquid. This scheme of approximation agrees
reasonably well both with the Combescot-Noziéres
(CN) approach®® and the more sophisticated
Vashishta, Das, and Singwi (VDS) scheme.'® The
chief advantage of the Hubbard approximation is
its relative simplicity which leads to the pos-
sibility of including in the scheme the modifi-
cations due to the phonon coupling.

The coupling to LO phonons is included by adding
to the Hamiltonian a term of the form

H= E M(k)(ai"’a-k)(cpq-ku C +bﬁ+io biu) ’ (17)

Pt ko

where

M(k) ={(2me?/RP) (€, — €.)/€u€o) W} /2. (18)

anda] (@), ci{cz), b} (b3) are creation (destruction)
operators for LO phonons, electrons, and holes,
respectively, while €; and w; are the static di-
electric constant and the LO phonon frequency.
Within the RPA, inclusion of the LO coupling
leads to the diagrammatic expansion indicated

in Fig. 1 where interaction lines correspond to

COULOMB INTERACTION
MM LO-PHONON INTERACTION

FIG. 1. First-, second-, and third-order diagrams
for the RPA including LO-phonon coupling. The Cou-
lomb interaction is Eq. (19) and the effective, LO-pho-
non mediated, interaction is Eq. (20).
the Coulomb interaction

V(k) = 4ne?/k?c,, , (19)
and the effective (phonon-mediated) interaction
V. (k) = V() (w% - w3)/(w2 — w?~id), (20)

and w, is the transverse phonon frequency. Thus,
in the RPA, the correlation energy per pair is

d3r
tei ) g J,
1
xf d_KIm(_AVL_-AVTr)
o A 1-AVrm
21).
where (
V=V+V, (22)

and m=m(k, w) is the polarization part which we
discuss below. This expression was used by
Keldysh and Silin® as a starting point for their
density expansions. We make the plausible as-
sumption that the Hubbard method of including
(approximately) the diagrams exchange-conjugates
to the RPA diagrams, can be carried over to the
phonon-coupled case. That is to say, we replace
the polarizability AVm by

AT = AT /[1 4 (W], | (23)

where f (2) =0.5%%/(k 2+ 2 2) for a one-component
system. The generalization to a multicomponent
system with different masses is straightforward
and a useful approximation has been discussed
in'Eq. (2.9) of Ref. 14. For the purpose of numer-
ical calculation it is very convenient to distort

the w contour to go along the imaginary w axis.
(This gives a real integrand and it is not necessary
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to take into account explicitly the collective
modes.) Thus, for v, (v,) valleys in the con-~
duction (valence) band, we obtain

E = 111 f (d—akr -——[ —f (R, +v,) ]t
X (In{1 =[1=f(R) (v, +v,)™]
x V(k, iw)n(k, iw)} + VR)n(K, iw)),
(24)
where porw
n(k, iw) = ' (K, iw) (25)

i=1

and wi(l;,iw) is the ith valley polarization'part
J

- p(f)m(il 1 0')2 Ez)
TT‘(k,'Lw)— o o~z -'1‘+ 2—5— 1+ E—z_T In
where

_Ek/p(i) (31)
w=w/(2€ ((i) (32)

The anisotropic valley polarizability =, A(E,iw)
is obtained from the scaling relationship

wiA(E, iw)=m, (K, iw,my), (33)

where the right-hand side denotes n,(E’ , iw) with
m® replaced everywhere by the density-of-states
mass m, = (m,m?)3% k' is related to k by the
transformation
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(1-3k)+ (@/R)?
(1 +3R) + (w/k)

771
given by
el _ i)
k 2 (l) . : +R
T ( zw) Z 7y (E%z) _€§(:%)2+w2 ’ (26)
with
n,=0(e D —e¥), (27) -
=pi/2miP+ pi/mP., (28)
p e = (32 @)/, (29)

With obvious notation, #‘*’, m{?, and m{* are,
respectively, the 7th valley carrier density, lon-
gitudinal, and transverse band masses.

Thus, for an isotropic valley we obtain

15(1555))],

(30)

- 2 s
+ ;w—(tan“—k(—lgk—) + tan”
k w

r
The cdse of two coupled valence bands is more

complicated. A considerable simplification is
obtained by introducing the isotropic approxi-
mation of Luttinger'® used also by Combescot and
Noziéres!® in their calculation of the ground-state
energy. They showed that the effect of the coupling
could be represented by introducing the matrix
element

AR, K) =1 [1+3(k K /RR")?]
for coupling between like bands. Unlike bands
are coupled by 1 - A(k,k’). Therefore, the total
polarization part for the two bands may be written
as the sum of the contributions of the two non-
interacting bands plus the coupling term A7 given
by

(35)

(i) )
€P _E‘q»ﬁ )
(E(t) _€éié)2+w2

@) (i)

kl=k,p ', (34a)
kh=k, p'. (34b)
l,
Am —22[1 A(D §+§)][nm( dt)_(;*;
i - I o (i;” ;:ﬁ))2+w
) )
+1’L;g) (‘ 2 ek
€(j)_€éi%)z+w

After some simple algebra (see Appendix ), we obtain

Am (K, iw) = (3k, /3272 (1/B) [F(m D, mP) = Fm ™, m

where

ko=[3172(n("’+n(”)]’/3 {
and

k=k/k,

and

)
W) Fm P, m) ~FmP,m9)], (37)
(38)
(39)
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3/2)1/3

0

) % 1/(1+B ;
Fm®, m@) =m _S_k___f ax —4x2By In
(1+B3/2)1/3 x

(% +x)°—x2B

+tan™

x+5
x-k

 26y-1) (s E22

[(c +F)? = Bx2]2 £ (A))2

(k -~x)*+x%B
3]

+[x2B(1+y) - 2(%2 +x%)] In

with

AP =2mPDy/R2 B=mP /m® C41)
and

Y(0)= (w2~ F2/[Box 4 (AD)7] . (42)

An interesting limiting case is the low-density
limit, which is obtained from (40) for »,~ e and
which corresponds to the results for the single
polaron energy shift of Refs. 11 and 12.

Finally, Eqgs. (30) and/or (35) are substituted
in Eq. (24) to obtain the correlation energy
numerically. The integrals are two or three
dimensional and have been calculated with an
accuracy of ~2.5%. Adding the correlation en-
ergy to the HF energy obtained from (1) and (12),
we obtain the ground-state energy of the e-2
liquid. We remark that all the masses appearing
in the formulas of this section are bare band
masses (not polaron masses) since all polaron
effects are included in the correlation energy,
Eq. (24). In fact, the polaron problem is com-
pletely described by (24) in the lowest order in
V™ [and, of course, setting f (k) equal to zero].

III. RESULTS

In Sec. II, we have derived expressions general
enough to include all the band-structure cases
which we shall present in this section. We divide
the compounds into three groups; (A) CdS, CdSe,
AgBr, ZnS, and ZnO which have simple band
structures and for which there are experimental
results (except for ZnS); (B) cubic crystals with
a coupled valence-band structure: the elements
Ge and Si, the II-VI compounds CdTe, ZnSe,
ZnTe and the III-V compounds AlAs, GaP, GaSb,
InP, InSb; and (C) thallous halides T1Br and TICl
and lead chalcogenides which are strongly polar
and have multivalley band structures.

A. CdS, CdSe, ZnO, ZnS, and AgBr

These II-VI compounds have the hexagonal
wurtzite structure.!” In this structure the electron
minimum is at the " point and in Table I we list

[ - E)2+sz]z +(A

() \2

)

(40)

it

the polaron masses obtained by a variety of optical
and resonance experiments. The valence band

is split into three doubly degenerate (including
spins) subbands by the combination of crystal-
field and spin-orbit coupling. The splitting be-
tween the upper subbands, referred to as A and
B, is fairly large and also listed in Table I. If
we ignore the B subband entirely then we find
that in all cases except ZnO the hole Fermi en-
ergy is smaller than the subband splitting and
our approximation of ignoring the B subband is
reasonable. However, in ZnO the splitting?® is
the smallest (~5 meV) and the Fermi energy is
the largest so that we take the opposite or cubic
limit and ignore the A-B splitting. In this case
the A and B subbands are degenerate even at
finite k. The spin-orbit effects are much less
than crystal-field splittings in contrast to the
zinc-blende structure discussed in Sec. III B.
Because of this subband degeneracy, at finite

k, there is no need to explicitly consider inter-
band coupling. We treat the hole bands in ZnO
as fourfold degenerate (including spin). The
polaron mass parameters for the holes are listed
in Table I. Also listed there are the experimental
values of the LO phonon energy (w,) and the
static (€,) and high-frequency (€,) dielectric con-
stants. From these values we can define the
dimensionless polar coupling constant

ay=e(l/e, —1/€)m /2w, )2, (43)

where m is the free-electron mass. The individual
polar coupling constants for electrons (a,) and
holes (a,) are simply obtained by substituting the
bare density-of-states mass (m?,) for m in Eq.
(43). In these compounds the static dielectric
constant €, is anisotropic. For simplicity we
have averaged the static dielectric constant as
follows:

1/ey=5(2/eqr +1/€qy) s (44)

where €,,, is the transverse (longitudinal) die-
lectric constant. Since the anisotropy is small,
this averaging procedure does not introduce large
errors. Similarly, we neglect the anisotropy of
the LO-phonon modes.
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TABLE I. List of parameters used in the calculations. Ey is the exciton binding energy, @, is the polaron coupling
constant, and A is the splitting between the two highest valence bands. The bare masses (unstarred) are obtained from
the polaron masses (starred) as indicated in the text.

mF m, miy My m¥y Wy g € €o w, (meV) Eyx (meV) @, A(meV)
cds 0.205% 0.185  5.0°  4.38 0.72 0.555 8.58P  5.86P 36.8" a7b 141 15.2¢
cdse 0.13¢  o0.116 259 225 0.459  0.38 9.4b  g.2P 26.1Y 154 1.25 26.4°¢
ZnS 0.28°  0.25 1.4 1.25 0.49¢ 0.41 8.6°  5.2° 43.6° 36f 1.34  28.4°
ZnO  0.28%  0.24 2,27 1.1 0.79  0.6" 8.599 4.0} 72k 59! 1.84 4.9
AgBr 0.288  0.221' 1.71  1.25™ 0.79  0.52™ 10.6®  4.68"  17.3° 16P 3.35 79.99
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The energy shift of the bottom of the band -E, _calculations, from the experimentally measured
is given by polaron masses (m},) and these are also given
in Table I.
~Ep= =[a:0(p) + ard(Py)]wy , (45) There are two other types of interaction between
where p is the mass ratlo m,/m, and ¢(p) is de- carriers which are neglected in our approach. One
fined in Eq. (10). is the piezoelectric polar coupling. This has been
We have taken into account the anisotropy of the considered for CdS by Mahan and Hopfield*® who
effective masses by calculating the longitudinal showed that it leads to important changes in the
(m% ) and transverse (mg ») effective polaron effective mass but only at very low energies
masses in the intermediate coupling approximation'® (<1 meV). The energy scale in our calculations
_ is much larger and we shall ignore this effect.
1= M, L1 & oy, (P )] (46) The second interaction is the exchange splitting
where between the excitons with parallel (antiparallel)
_ /o 2 electron and hole spins. Hopfield and Thomas®*
¥u (p) = (my /m)M3p*2F (p)] , (47) determined a value of 2.1 meV for this splitting
¥, (P)=(m, /m)l/z{—{p vz _ F(p)]}, (48) in CdS. Again it is a small correction and we
and shall neglect it. In ZnO the effect is biggest and

1 1-p\ /2 ) '/ by scaling the CdS results we estimate the split-

Fp)=6(1 —P)(l—:p*)m [( ) ) -sin™*(1-p) ] ting could be as large as~14 meV. In the e-k
liquid phase if we assume no spin dependent

" correlations between electrons and holes we would

1
+0(p~1)—37
(p-1)%2 crudely estimate a repulsive contribution to the

p—1\Y2 electron-hole energy of one-half of this splitting
[ ‘( —To_) +sinh™* (p 1)1/2] (49) or =7 meV in ZnO. A better estimate requires
consideration of the enhanced density in the liquid
We use Eq. (46) to determine the band effective relative to an exciton and the spin dependent cor-

masses (m, ;), which we require as input for our relations—effects which tend to cancel. For ZnO,



774 G. BENI AND T. M. RICE 18

the effect is only 3% of E; and we neglect it.
For the semiconductors discussed in later sub-
sections, the exciton is more weakly bound and
the spin exchange effects are much smaller.

The ground-state energy was calculated from (2),
(3), and (24) using the band-structure parameters
listed in Table I as input. In Fig. 2 the results are
presented for the II-VI compounds and the numbers
are given in Table II. The zero of energy is the
bare band gap. On the sides of the figure, the
position of the band gap including the polar shift
determined by (45), is indicated by the upper
arrow. The lower arrow denotes the position of
the allowed free exciton energy (i.e., antiparallel
electron and hole spins) and the separation of the
two arrows is the experimental exciton binding
energy (E,). In I we reported results for CdS,
CdSe, and ZnS based on the plasmon pole approxi-
mation. In these materials our present results
are close to those reported in I. The main dif-
ference arises from a slight change in the values
of the masses. Previously we did not remove the
polaron mass enhancement from the experimental
values of the mass. We also have included the
anisotropy in the polaron band shift rather than
using the optical mass as in I. 'When all of these
effects are included the changes are <10% of the
total ground-state energy. _

Recently, Rosler and Zimmerman’ (RZ) have
reported calculations for CdS, CdSe, and ZnS
based on very similar approximations. The
main differences between the two calculations
are the inclusion of the Hubbard exchange cor-
rection here and the method of calculating Eg.
They calculate the chemical potential in the RPA
rather than E; directly. Our value of |Eg| is
slightly smaller than theirs if we use polaron
masses as they did, and this we attribute to the
Hubbard exchange correction. Our results using
the bare band masses as input is ~10% smaller
in |Eg|. The use of bare masses also reduces
the calculated single polaron shift but the change
here is smaller than in |Eg|. The result is a
substantial reduction in the binding energy Ej
relative to the exciton defined by Eg=|Eg| - Ex
-Ep. ’

While the changes in Eg are small, the changes
in density are larger. Both our calculations and

the RPA calculations of RZ show a sizable increase

in equilibrium density relative to the plasmon pole
approximation. We have no simple explanatidn .
for this change. ) ‘. .

Experimental values have been reported* for
CdS and CdSe. The binding energy Eg~ 13 meV in
CdS and Eg~0'meV in CdSe. Our new theoretical
values give only a small binding energy of =1 meV
in CdS and none at all in"CdSe." However, ‘while

the changes in the binding energy are large, the
changes in the total ground-state energy are only
~10%. We note that in calculating E; we are sub-
tracting two large number, e.g., in CdS, [Eg|
~100 meV. In addition there are substantial un-
certainties in many of the input parameters. For
example m,, in CdS and CdSe is quite uncertain
and m,, has experimental errors =(10~20)%.
These uncertainties are larger than the polar
renormalization of the masses (=10%) which are
responsible for the differences in Ez (*10 meV
in CdS) between our results here and in I. Also
it has to be borne in mind that our theory of the
correlation energy is approximate and for example
in simple band structures in nonpolar materials
the theories of Vashishta et al.!® (VBS) and Inoue
and Hanamura?® give increases of this order in
the correlation energy over the RPA. In view

of these uncertainties, the overall agreement on
the values of E; is satisfactory even though the
discrepancies in Eg look large.

The value of the equilibrium density is a more
serious problem. Both our present calculation
and that of RZ give numbers which are larger
than those in I. The increase arises from the
use of the methods based on the RPA but our
values are less than those of RZ since we have
used bare band masses as input. Even so, our
value (2,=3.9X10* ¢m™3) in CdS is substantially
greater than the experimental values which are
in the range n,~(1-2) X10'® cm™3. At present, we
have no explanation for this discrepancy.

In the Zn compounds, we have new calculations
for ZnS and also now for ZnO. The former case
is quite similar to CdSe and CdS in the relative
energetics and we expect a corresponding sim-
ilarity in its properties. In ZnO the conduction
band has a single spherical minimum at the I

~ point and the electron polaron mass has been

determined experimentally (see Table I). The
valence band is doubly degenerate as discussed
above and we use the same mass for both subbands
as determined in a recent band-structure cal-
culation by Chelikowsky.?® Note that these hole
masses are quite anisotropic (m,/m, ~ 3) as
expected for II-V1 compounds. Recent magneto-
optical experiments of Hummer® deduced iso-
tropic masses of a comparable magnitude but a
comparison with other II-VI compounds favors
substantial anisotropy. Using these values we
compute a large value of the single polaron shift
Ep =186 meV which is larger than the effective
Rydberg E; = 158 meV (see Table II), in contrast
to the other II-VI compounds. We find that the
e-h liquid in our calculations lies:above the
exciton by =20 meV and the equilibrium density
is=2x10' cm™3. Recently, Skettrup?! has mea-
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FIG. 2. Ground-state en-
ergy vs 7, for the e-z lig-
uid including LO-phonon -
coupling for CdS, CdSe,
ZnS (scale to the left), and
ZnO (scale to the right). In
each case the polaron
ground-state energy is in-
dicated by the upper arrow
while the lower arrow in-
dicates the experimental
binding energy of the low-
est exciton. :

TABLE I. Calculated ground-state properties of the electron-hold liquid. Eg is the effec-
tive Rydberg [Eq. (5)]; Ep is the polaron shift [Eq. (45)]; E%" are the electron (hole) Fermi
energies; w, the plasma frequency; n, is the equilibrium density; E¢g is the ground-state
energy; and Ep is the binding energy of the liquid with respect to the free exciton, i.e.,

Ep =|Eg|-Ex-Ep.

Eg Ep Eg E W, 7y Eg |Egl-Ep  Eg
(meV) (meV) (meV) (meV) (meV) (em™3) (meV) (meV) (meV)
cas 73.7 73.1.  50.7 7.7 84  3,9x10% -101.2 28.1 1
CdSe 33.6 36.7  21.0 3.4 35.5 5.4X1017  —47.9 11.2 -4
ZnS 85.6 73.2  42.9 17.3 88  4.9x101% -103.9 30.7 -5
ZnO 158 186 116.3 19.9 201 2x10t?  —224.0 38 -21
AgBr 1024 4.7 7.9 12.3 135  1.0x101® —121.0 46.3 +30
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sured the optical gain in ZnO as a function of
excitation intensity and temperature. The results
are consistent with the observation of an e-
liquid with binding energy of =22 meV at a density
of #1x10*® ¢m™3. For ZnO the discrepancies
between theory and experiment are larger than
for the other II-VI compounds and the very large
difference in densities makes it doubtful that
Skettrup’s experiments can be explained by an

e-h liquid model, unless the values of the input
parameters are seriously in error or some new
effect outside our model is present.

Turning to AgBr, our new results are shown in
Fig. 3. Compared to our results reported in I,
there is a substantial increase in both |Eg| and
ny. (Note that in the case of AgBr, the masses
used in I were bare masses and there is no re-
scaling of the masses compared to the present
calculation.) The :change in ground-state properties
reflects the considerable uncertainties introduced
by the choice of the b coefficient in the plasmon
dispersion in a multivalley band structure such
as AgBr. The increase in density n, is similar

=70

to the change we found in the Cd compounds. Also,
in Fig. 3 we show the results in two other ap-
proximations, the € approximation and the
complete neglect of polar coupling. In both approx-
imations the only explicit interactions are the
Coulomb interactions, screened by the static
dielectric constant €, and using polaron masses

in the former case, while, in the latter, €, and
bare band masses are used. Also, in the €§
approximation the energy is referred to the band
gap reduced by the polaron shift. We defer dis-
cussion of the comparison of the different approx-
imations to Sec. III B.

Recently, Hulin ef al.® have observed a new
luminescence line in strongly pumped AgBr which
has all the hallmarks of an e-% liquid line. By
fitting the line shape they can obtain the binding
energy Ep relative to exciton quite accurately and
Eg=55 meV in AgBr. To obtain a theoretical value
of Ez we calculate Ep from Eq. (45) and use
Ascarelli’s experimental value®® of Ey =16 meV,
giving us Ez=30 meV. At this point, we note that
the experimental value of Ex is surprisingly small.

~80
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FIG. 3. Ground-state energy plotted against 74 for AgBr. Curve (a), pure Coulomb interaction (no phonons); curve
(b), LO-phonon coupling included by replacing €. with €, using the polaron effective masses and adding the polaron
shift (ef approximation); curve (c), LO-phonon coupling included by the method described in the text. The arrows on
the left indicate the polaron ground-state energy Ep (upper arrow) and the experimental binding energy of the lowest

exciton (lower arrow).
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It lies outside the range determined by Er and
Eg(€./€,)? whichisunusual. Inaddition, theex-
citonic molecule binding energy®® E, is =7 meV
and the ratio E,/Eyx ~is is much larger than ex-
pected on theoretical grounds.”” Of course, any
increase in Ex leads to a corresponding decrease
in Ez from the value of 30 meV that we calculate
and worsens the comparison to experiment. The
luminescence line shape 2also gives an experimental
value of ny,~ 8x10'® cm™2 which agrees well with
our theoretical number of n,= 1xX10'° cm™3. One
possible source of the discrepancy in E5 is the
neglect of intervalley phonon scattering between
the hole ellipsoids. In the absence of information
on the relevant electron phonon matrix elements,
we cannot estimate this correction to the effective-
mass approximation.

B. Ge, Si and the cubic III-V and II-VI compounds

All of the materials in this subsection are cubic
crystals and have a coupled valence-band struc-
ture.'” Before discussing the polar effects, it is
instructive to begin with the elemental semiconduc-
tors Ge and Si and we shall focus attention on the
role of the valence-band coupling.

Several groups have calculated the correlation
energy for Ge and Si.! The original Hubbard ap-
proximation calculation of Brinkman and Rice,*
used four spherical electron bands and two spher-
ical hole bands characterized by optical effective
masses in the correlation energy. Combescot and
Noziéres® included the anisotropy of the electron
bands and included valence band coupling in the
spherical approximation discussed above. How-
ever, their method of calculating E, based on the
Noziéres-Pines approximation involves a numer-
ical interpolation and they estimate errors=~10% in

their answers. Vashishta, Das, and Singwi'® cal-
culated the Hubbard approximation including aniso-
tropy in the electrons but treated the hole bands in
the decoupled optical mass approximation. They
also included effects of the higher order electron-
hole scattering, etc. Recently, Rose and Shore®
made a complete RPA calculation for Ge including
both anisotropy of the electrons and valence-band
coupling in the spherical approximation. We have
calculated E using the method described in Sec.
II, namely, the Hubbard approximation with aniso-
tropy of the electrons and valence band coupling in
the spherical approximation. The results of all
these groups are listed in Table III. Comparing
first the Hubbard approximations, we see that our
results are slightly below those of VDS,'® and sub-
stantially below those of Brinkman and Rice.*
From the earlier results of Vashishta, Bhatta-"
charyya, and Singwi'® we can estimate the affect
of passing to the other limit of two uncoupled light
and heavy mass valence bands. Our values in both
Ge and Si lie close to halfway between such results
and those of VDS.!® Rose and Shore’s results
(RPA) for Ge lie very close to this limit and =0.5
meV below our results. While the Hubbard ap-
proximation should be slightly higher than the
RPA, this discrepancy is rather more than expec-
ted. Our best results are obtained by adding the
e-h scattering correction of VDS to the Hubbard
approximatibn with all band structure effects in-
cluded and are listed also in Table III. These val-
use for both Ge and Si are in excellent agreement
with the values quoted in the recent review of ex-
periments by Hensel, Phillips, and Thomas.! This
gives us confidence, in cases of multivalley band
structure, in our procedures for estimating the
ground-state energy without polar effects. Note
that the electron-hole scattering correction in Ge

TABLE II. Experimental and theoretical ground-state energies (in meV) of e-% liquid in
Ge and Si. Input parameters of our calculation are the same as in Ref. 14. HA means
Hubbard approximation including anisotropy. FSC means fully self-consistent. 6 is the esti-

mated error due only to numerical computation.

BR? CNP VDS® Rsd This work Experiment®
HA FSC RPA FSC HA FSC
Ge 5.3 6.1 (5.8)f 5.8 5.9 6.57 6.65 6.1 6.2 6.0+0.2
Si 20.3 21.0 20.8 22.0 21.7 22.9 22.9+0.5
6 10% 0.25% . 5%8 ) 2.5%

2Reference 14.
PReference 13.
CReference 15.
dReference 28.
®Reference 1.

fu. Combescot, Ph. D. thesis (University of Paris, 1973) (unpublished).

8J. H. Rose (private communication).
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TABLE IV. Calculated ground-state properties of the EHL. Ey is the effective Rydberg
[Eq.(8)]; Ep is the polaron shift [Eq.45)); ER" are the electron (hole) Fermi energies; w » is
the plasma frequency ; ny is the equilibrium density; E; is the ground-state energy; and Eg
is the binding energy of the liquid with respect to the free exiton, i.e., Eg =|Eg|-Ex-Ep .
Values given in parenthesis for GaAs, GaSb, ISb, and InP are obtained by using the €
approximation (with Ep in the appropriate units).

Eg Ep Eg  E} w, a Eg |Ecl-Ep  Ep

(meV) (meV) (meV) (meV) (meV) (cm™) (meV) (meV) (meV)
GaP  23.1 18.92 13.45 25.85 87.8 7.1 x10'% _48.38 29.9 11.9
AlAs  26.9 26.48 19.31 28.0  119.0 1.25X10'® _59.0 32.45 14.5
CdTe 15.7 22.7 15.6 2.0 29.6 2.4 x107 _32.7 10.0 0
ZnSe  32.9 32.6 46.0 7.8 86.7 3.2 X101 _58.8 26.2 5
ZnTe 23.5 20.5 17.2 4.2 36.7 6.6 X107 _34.8 14.3 3
GaAs 5.5 7.7 6.1 0.8 10.4 3.7 x10% _10.0 2.7

@.0) @.6) (0.5 (7.7)  (2.4) x1016 (4.48) (0.28)
Gasb 2.2 2.0 2.35  0.32 4.4 4.9 x108% _2.3 0.3

(1.93) (1.98) (0.3) (3.6) (4.0) x1015 (2.85) (0.0)
InSb 0.5 2.1 0.65 0.02 1.0 1.1 x10M 2.1 0.0

(0.4) (0.46) (0.01)  (0.8) [(0.7) x10% (0.6)
InP 8.1 15.5 7.6 1.0 13.2 6.7 x10% _1546 0.1

@.9) @.7  (0.6) (8.0) (3.3) x10% (5.0) (1.0)

and Si is not large and the band-structure effects
we have included here is more important. How-
ever, for simpler bands the electron-hole scat-

tering gives a larger effect. ‘

Next we discuss the case of indirect gap polar
materials GaP and AlAs. These materials are
muchless polar than those discussed above in
Sec. I A and their band structures'” have simil-
arities to Ge and Si. We recently reported® our
calculations in detail for GaP and here we merely
quote the results in Table IV for completeness.
Qur results are in good agreement with the recent
experiments of several groups.? AlAs is very sim-
ilar to GaP in all properties but the uncertainties
in the band parameters are larger.?® In particular,
it is not clear whether the conduction minimum is
at the X point as calculated by Stukel and Euwema®°
or away from it at (27/2)(0.9,0,0) as calculated by
Hess et al.*® We shall assume the former but if the
latter result is correct the e-# liquid will be more
strongly bound. In the absence of detailed experi-
mental results we use the theoretical estimates of
the masses from Lawaetz,3" Stukel and Euwema,®
and Hess et al.,?® quoted in Table'V, as input.

Inboth materials the e-7 liquid is strongly bound. In
GaP experiments give values for E; and », close
to our calculation (see Table IV). No experiments
have been reported to our knowledge in AlAs.

The direct-gap cubic III-V and II-VI semiconduc-
tors have a single spherical conduction band, cou-
pled valence bands, and relative weak polar cou-
pling especially for the III-V compounds. Consid-
ering first the II-VI compounds CdTe, ZnSe, and
ZnTe there is a similarity to the hexagonal II-VI
materials discussed in Sec. IIIA. The extra de-

generacy arising from the coupling valence-band
structure favors the e-# liquid. InTableVI

we list theband parameters. Insome casestheyare
accurately known from cyclotron resonance but in
other cases we have used the values calculated by
Lawaetz.?! The polar correction to the masses for
the coupled valence bands is taken from our pre-
vious work'? and that of Trebin and Rossler.’* If
we compare to the hexagonal II-VI compounds, we
see (Fig. 4 and Table IV) a distinct trend towards
a larger binding for the e-Z liquid which we believe
is due to the degeneracy of the valence bands.
These materials should be favorable cases to ob-
serve the e-h liquid but we know of no experiments
at the present time. The case of CdTe has also
been considered by RZ.” They, however, did not
consider valence-band coupling and did not include.
the Hubbard exchange corrections effects which
compensate so that our results and theirs are in
close agreement.

In the cubic III-V compounds, there is a consid-
erable amount of information on the band masses
from cyclotron resonance and we have used these
values where possible. In the case of GaAs, the
complete calculation described above leads to a
ground-state energy for the e-i liquid |E;|-E,
=2.7 meV which is 1.5 meV above the exciton.
What is even more disturbing is that the ground
state calculated in the e} approximation lies below
the complete calculation (see Table IV). In fact the
€} approximation including valence-band coupling,.
as discussed above, gives |E;|-E,=4.48 meV
leading to a small binding energy. The first calcu-
lation for GaAs in the €¥ approximation using op-
tical mass averages, was that of Brinkman and
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TABLE V. Indirect gap materials. List of parameters used in the calculation Ey is the free-exciton binding en~-
ergy and @ is the polar coupling constant. Polaron masses are starred.
my My ) myy o Mgy m¥, my m My € €0 Wp (meV) @ Ey (meV)
Ge? 1.58 0.082 0.042 0.347 15.36 4.15
Slb 0.9163 0.1905 0.154 0.523 11.4 14.7
GaP¢ 2.032 1.781 0.254 0.25 0.163 0.15 0.479 0.46 11.02 9.07 . 50 0.322 18 .
AlAs 237 2.0¢ 0.245 0.24° 0,16 0.153F 0.67 o0.652f 10,98 8,58  49.88 0428 18%10

3Reference 14.

PReference 1.

“Reference 9.

dReference 29.

®Reference 30.

f Reference 31.

&M, llegems and G. L. Pearson, Phys. Rev. B 1, 1576 (1970).

hM. R. Lorenz, R. Chicotka, G. C. Pettit, and P. J. Dean, Solid State Commun. 8, 693 (1970).

Rice'* who obtained a value of |E;| - E,=3.7 meV.
Subsequently, VDS used their electron-hole scat-
tering method and obtained |E| - E,=4.08 meV.
(Note both these calculations used an earlier value
of €, which was 4% larger.) Therefore, we can es-

timate 0.41 meV as the e-h scattering correction
leading to a best value in the €} approximation of
|E;| - Ep=4.9 meV which gives a value of E;=0.7
meV.

Shah et al.* have measured the absorption spec-

I TABLE VI. Direct gap materials. List of parameters used in the calculation. Ey is the

free-exciton binding energy and o, is the polar coupling constant. Polaron masses are starred.

m* m, mi, € T€o?  w; (meV) a® By (mev)

CdTe 0.0963¢ 0.103¢ 1,094 10.31¢ 6.9 21.2f 1.21 108
ZnSe  0.18" 0.1499  1.2669 8.8 6.2 30.5! 0.99 21}
ZnTe  0.16% 0.15! 0.68! 9.9™ 7.3 25.5™ 0.83 11"
GaAs  0.0665° 0.085° 0.52° 12.35°  10.48 36.8P 0.278 4.24
GaSb  0.047" 0.045°  0.32° 15.7 14 .48 29.8° 0.118 - 2.8t
nSh 0.0134¢  0.016°  0.39° 17.9" 15.7Y 23.9" 0.185

InP 0.0803°  0.12° 0.58° 12.6" 9.6 42.8% 0.442 4.0t

2¥rom LST relationship, if reference is not given.

bFrom Eq. 43).

°R. A. Stradling (private communication).

dReference 31, polaron corrected as in Refs. 11 and 12.

°1. Strzalkowski, S. Joshi, and C. R. Cravell, Appl. Phys. Lett. 28, 350 (1976).

f3. Waldman, D. M. Larsen, P. E. Tarmenwald, C. C. Bradley, D. R, Cohn, and B. lax,
Phys. Rev. Lett. 23, 1033 (1969).

gc. Milloz and R. G. Wheeler, Phys. Rev. 153, 913 (1967).

LYo : & Henry, K. Nassau, and J. W. Schrlever Phys. Rev. B 5, 458 (1972).

iw, Taylor, Phys. Lett. A 24,556 (1967).

iG. E. Hite, D. T. F. Maple H. Aven, and B. Segall, Phys. Rev. 156, 850 (1967).

XD, L. Rode, Phys. Rev. B 2, 4036 (1970).

IR, A. Stradling, Solid State Commun. 6,665 (1968).

™M. Balkaski, in II-VI Semiconductor Compozmds edited by D. G. Thomas (Benjamin,
New. York, 1967), p. 1007,

"R. E. Nahory and H. A. Fan, Phys. Rev. Lett. 17, 251 (1966).

°R. A. Stradling, College Int. Cent. Natl, Rech. Sci. 242, 317 (1975).

PA. L. Mears and R. A. Stradling, Solid State Commun. 7, 1267 (1969).

ap. D. Sell, S. E. Stokowski, R. Dingle, and J. V. Dilorenzo, Phys Rev. B 17,4568 (1973).

'J. L. Robert and D. Barjow, C. R. Acad. Sci. (Paris) B 270,350 (1970).
* M. Hass and B. W. Henvis, Phys. Chem. Solids 23, 1099 (1962).
tReference 17.
US. 8. Mitra, J. Chem. Phys. 41, 3158 (1964).
VJ. A. Van Vechten, Phys. Rev. 187, 1007 (1969).
“J. R. Apel and T. D. Poehler, Phys. Rev. B 4, 436 (1971).
- ¥G. Lucowsky, R. M. Martin, and E. Burstein, Phys. Rev. B 4, 1367 (1971).
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tra of GaAs in the presence of intense optical
pumping. They found that the exciton absorption
broadens with increasing exciton intensity and that
the threshold for the onset of absorption moves
down below the band gap. The data can be fitted
by including band gap renormalization and carrier
heating. Their determination of the chemical po-
tential relative to the polar shifted band gap (u =E,
+8E /an+Ep) 1L = -9 meV is consistent with the
data of Hildebrand et al.,** who measured the gain
spectra and found that the gain threshold lies ~4
meV below the free exciton. They interpreted this
result as evidence of e-% liquid phase with E;~4
meV, although carrier heating could also explain
their result. More recently, however, Hildebrand
and GoObel3* reported transmission experiments at
various photon energies of the exciting laser. In
particular, by using an exciting energy identical
to the exciton, heating is excluded and the carrier
temperature can be estimated to be roughly the
same as that of the sample. So, a strongly bound
e-h liquid is suggested by these experiments. We
have no explanation for the large discrepancy be-
tween the theoretical value of 0.7 meV and the
value of #4 meV, especially since the uncertainties

24 28

in the band parameters are less than in the case
of strongly polar compounds. :

Returning to the question of the difference be-
tween the results of the calculation based on the
dynamic screening method of Sec. II and the €} ap-
proximation, we note first that in contrast with all
polar materials discussed so far, we have here a
case where w,<<w;, or in other words we are at
relatively low densities. In the low-density limit,
Keldysh and Silin® concluded that the true ground-
state energy would always lie below that calculated
using a frequency-independent dielectric constant
€, and bare band masses. This was referred to in
I as the €, approximation. The €¥ approximation
is the same except that the polaron mass correc-
tion is included. The Keldysh-Silin conclusion was
based on the lowest order correction to the ¢, ap-
proximation which is simply adding in the polaron
mass correction. However, the answer we found
in GaAs lies above not only the €} approximation
but also the €, approximation. The problem we be-
lieve arises from the use of the bubble sum, shown
in Fig. 1, which neglects vertex and self-energy
corrections. The initial dispersion of €(w) in the
e-h liquid is upward, leading to values greater
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FIG. 5. Ground-state energy vs 7, for the e-k liquid
in the €f approximation for InSb (scale to the right),
GaSb, GaAs, and InP (scale to the left).

than €,. However, if one looks at the single elec-
tron-hole (i.e., exciton) problem, the effective
Hamiltonian in this limit (E,/w; < 1) has been de-
rived by Sak?®® and by Hattori.®® These authors
find that the two leading corrections to the e¥ ap-
proximation are a repulsive d-function interaction
between the electron and the hole and the velocity
dependence of the polaron mass. These two effects
cancel each other leading to a very small correc-
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tion to E; in GaAs, say. We believe that similar
cancelling corrections will occur in the e- liquid
but a systematic expansion for the many electron-
hole problem has not yet been carried out. For
this reason, we conclude that the €¥ approximation
is better than the dynamic screening method dis-
cussed above in this limil, w,<w,.

Turning to GaSb, InSb, and InP, we see from
Table IV that in these cases the defects of the dy-
namic screening method are even more apparent.
Again, we only get binding for the e-Z liquid in the
€* —approximation (see Fig. 5). For InP the sit-
uation is very similar to GaAs, discussed above.
For GaSb and InSb, the scale of energies is very
small and the equilibrium densities are very low.
This will make it difficult to see an e-#z liquid in
equilibrium in these materials.

Lavallard et al.®” have recently studied InSb at
high density and observed an e-4 fluid at densities
~4 X 10 e¢m™® more than an order of magnitude
above n,. However, for reasons that are unclear,
they did not see the expected rapid expansion of
this highly compressed fluid. We can obtain a val-
ue of the bottom of the band Ey; at this density
from our results using the well known formula
Epg(n)=E(n)+nldE(n)/on]. We obtain a value of

"Egp+Ep=-2.9 meV at n=4.4x 10" cm™ which

- compares favorably with their experimental value

of Egp + Ep=—-2.5 meV.

C. TIBr, TICI, PbS, PbSe, PbTe

It has been recently established that the thallous
halides are indirect.® These materials have the
CsCl1 structure. The single conduction-band min-
imum is at the R point and the valence band has
three maxima located at the X points.® These ma-

TABLE VII. List of parameters used in the calculation. Ey is the free-exciton binding energy; @, is the polar

coupling constant,
cated in the text.

For the thallous halides the bare masses are obtained from the polaron masses (starred) as indi-

mgh Mgy MGy mey M my mgty my € € wy, Ex a
TIBr 0.52*  0.35 0.52%  0.35 0.55° 0.386 0.74%  0.491 35.1> 5.41> 14.3¢ 23¢ 4.82
TIC1  0.55* 0.38 0.55°  0.38 0.58*  0.362 0.98% 0.663 37.6° 5.1°  21.5° 28.8¢ 4.2
PbS 0.11f 0.084f 0.112f 0.079f 1908  18.5"  26.58 1.1
PbSe  0.052f 0.035 0.068f 0.034f 2808  25.21 18.28 0.99
PbTe 0.25° 0.025f 0.025f 0.25f 4508  36.9% 13.68 3.9

2Reference 40.

PR. Z. Bachrach and F. C. Brown, Phys. Rev. Lett. 19, 952 (1967).
¢P. P. Lowdes and D. H. Martin, Proc. R. Soc. A 308 473 (1969).

dReference 41.
eRescaled from Exy for T1Br (see text).

f American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972).

gE. Burstein, S. Perkowitz, and M. H. Brodsky, J. Phys. Suppl. 11—12 C-4 (1968).

B, C. Brown, in Polarons and Excitons, edited by C. G. Kuper and G. D. Whitfield (Plenum, London. 1962), p. 323.
iw.G. Spitzer, D. A. Kleinman, and C. J. Frosh, Phys. Rev. 113, 133 (1959).



782 G. BENI AND T. M. RICE 18

(a)
_90 -~
- .
-100 | .
(a) TIBr
=140 -(a) -
(b)
ﬁ_
S -120} .
E
(L]
w
-130 | 4
—140 I (b)Y TICI i
(b)
l¢——
-150 } .
1 1 1
0.8 1.2 1.6 20 2.4
Ts

FIG. 6. Ground-state energy vs 7y for the e-k liquid
including LO-phonon coupling for TIBr and TICl. In
each case the polaron ground-state energy is indicated
by the upper arrow while the lower arrow indicates the
experimental binding energy of the lowest exciton.

terials have quite large values of the polar’ coupling
constants —comparable to AgBr. The effective
masses have been measured by cyclotron resonance
studies?® and are listed in Table VII. It is inter-
esting that the role of the anisotropy of the hole
masses is reversed and m,,<m,. The exciton
binding energy has been measured* by optical stud-
ies in T1Br. To obtain a value of E, for TICl we

scale the value for T1Br by the ratios of E,. The
results are shown in Fig. 6 and Table VIII. We see
that the values of |E|~ E, are very close to E,.
The equilibrium densities are quite high, n,~ 10"
cm™. This suggests rapid Auger decay processes
in the e-% liquid. However, by using techniques
similar to those used by Hulin et al.,® it should be
possible to observe an e-k liquid phase. It would
be interesting to have experimental results for
these cases to compare with AgBr. Also, it would
be of interest to see if we underestimate E, here
as occurs in AgBr, CdS, and CdSe.

The lead chalcogenides form in the NaCl struc-
ture and are unusual in that they have a direct gap
located at the L points of the Brillouin zone.%?
There is thus fourfold orbital degeneracy in both
the electron and hole bands—a circumstance that
clearly favors the e-Z liquid. The masses have
been determined by resonance techniques.*® The
exciton binding energies have not been measured
to our knowledge. They have extremely large
static dielectric constants. The value of €. is also
large because of the small band gap. They there-
fore have very low values of the equilibrium den-
sity n, and are in the limit w, <w, where our dy-
namic screening method is inapplicable. The re-
sults in the €¥ approximation are listed in Table
VIII. While of some interest theoretically because
they are large on the relative scale of E,, on an
absolute scale, the values of |E,|-E, and n, are
very small. This makes it very unlikely that pure
enough materials and low enough carrier temper-
atures can be obtained to see an equilibrium e-7%
liquid in these materials.

IV. DISCUSSION AND CONCLUSIONS

The theory presented in the previous sections is
an improvement over the plasmon pole approxi-
mation of I, and in view of the importance of the
detailed nature of the band structures, we have
taken care to include the coupling between the val-
ence bands and also anisotropy where appropriate.
Even so, there are still a number of serious lim-
itations. One of the most important, is our imper-

TABLE VII. Calculated ground-state properties of the EHL, Ep is the effective Rydberg [Eq. (5)] ; Ep is the polaron
shift [Eq. @.5)] ; E#" are the electron (hole) Fermi energies; w, is the plasma frequency; zy is the equilibrium
density; E; is the ground-state energy; and Ep is the binding energy of the liquid with respect to the free exciton, i.e.,
|Eg|—Ex —Ep . Values for the lead chalcogenides are obtained using the €% approximation with Ep in the appropriate

units).
Eg Ep Eg Eg wp ng Eg |Eg |-Ep Ep
(meV) (meV)  (meV) (meV) (meV) (cm™3) (mevV) (meV) (meV)
T1Br 91.5 i89.0 61.9 23.0 137 1.4x10%? 109.8 20,8 —2.2
TIC1 114.5 115.8  75.2 25.3 164 2.2x 1019 144.7 28.9 0
PbS 0.017 0.012 0.012 0.06 2.4x1018 0.025
PbSe 0.0034 0.0029 0.0028 0.013  6.5x 10! 0.005
PbTe 0.0012 0.0012 0.0012 0.007  2.9x 101! 0.0025
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fect knowledge of the input parameters, effective
masses, dielectric constants exciton binding ener-
gies, etc. Since we end up comparing two large
energies |E.| and E,+E,, small errors are great-
ly magnified in the comparison. For example, an
error in the dielectric constants affects E, and E
in different ways. Even though we have taken the
most accurate experimental values available, er-
rors of the order of 10% in E; are common.

A second serious limitation arises in the semi-
conductors where the e-Z liquid occurs at low den-
sities so that the carrier plasma frequency w,
<w;. The III-V semiconductors GaAs, GaSb,

InP, and InSb are examples of such materials.

We commented briefly on this problem in Sec.

III B. Let us compare the dynamic screening cal-
culation to the €} approximation. The difference
arises in the correlation energy [Eq. (21)]. By ex-
panding the phonon factor at the relevant frequency
w,,

V= V(w3 + w%)/ (W +w})

=V(w7/ w1 +wy/ 0wy - w}/w}), (50)
in w,, it is easy to see that
(P, 2> (Vo g (51)

where 7, (and7 ¥) are the polarization parts cal-
culated with dynamic (and static) screening. In-
equality (51) shows that the second order (in )
contribution to E is more negative in the €} ap-
proximation. As a result, if the equilibrium den-
sity is low enough that w,<w,, the €} approxi-
mation gives a lower E.

The trouble with the dynamic screening approxi-
mation is that, at low densities, we cannot retain
only the diagrams indicated in Fig. 1 and neglect
the vertex and self-energy corrections. As we
pointed out in Sec. III, in this limit where the char-
acteristic electronic energies are much smaller
than w; and the polar coupling is weak, Sak® and
Hattori®® have derived an effective Hamiltonian for
the single electron-hole (i.e., exciton) problem.
The two leading corrections to the e¥ approxi-
mation are a repulsive §-function interaction be-
tween the electron and hole and the velocity depen-
dence of the polaron mass. These two effects tend
to cancel leading to small net corrections. We
conclude that in this limit, it is better to work with
the €} approximation. This is in contrast to the
conclusions of Keldysh and Silin® and of I. How-
ever, our calculations in I were limited to semi-
conductors for which w,> w;.

In fact, for most of the semiconductors, the lim-
it w,>» w; applies and, in these cases, the dynamic
screening method gives values of E; below the ¥
approximation. An example is the case of AgBr

where in Fig. 3 we show E; as a function of 7, cal-
culated in the €¥ approximation and by using the
dynamic screening method. Also for comparison,
we show the results of a calculation using only
Coulomb interactions between the carriers
screened by €,. From these results, which are
representative of the limit w,> w,, we see that
the coupling to the optical modes stabilizes the e-h
liquid. T

It is reasonable to expect that the generalized
RPA diagrammatic expansion (which as discussed
in Sec. III B works well for w,=0) will remain a
good scheme of approximation for w,/ w > 1.
Thus, it is somewhat surprising, but perfectly
consistent, that in many cases, we can calculate
more accurately the e-k liquid ground state energy
than the exciton binding energy in a polar crystal.
In fact, it occurs frequently, e.g., CdS, that w,
> w, while E,=w;. While a more general the-
ory—to include cases for which w, < w;—will be
considered in a future work, at this stage the crit-
erion w,> w; may be used a posteriori to assess
the reliability of the calculation of the e-z liquid
properties for a given semiconductor using the dy-
namic screening method.

For most of the materials that we have dis-
cussed, the values of |E;| and E,+ E, are close.
One exception where wp> w; but e-xz liquid ground
state is found to be substantially higher than the
free exciton is ZnO. One might have expected,
because of the approximate degeneracy of the val-
ence band, that the e-Z liquid state would be fa-
vored. However, ZnO has a large value of the po-
laron shift of the band gap E,. In fact, if we com-
pare E (the characteristic interparticle Coulomb
energy) to E,, then ZnO is one of the few materials
where E,>E,. Looking over our results, there
appears a trend that the e-Z liquid binding energy
varies inversely with E,/E,. For example, in
AgBr, this ratio is considerably less than one and

‘Eg is large.

Another trend in our calculations appears to be
a consistent underestimation of the value of E rel-
ative to experiment in the polar materials as ex-
emplified by AgBr, CdS, and CdSe. The discrep-
ancy is not very large (~10%) but in the nonpolar
or weakly polar materials, e.g., Ge, Si, and GaP,
the theory is very accurate. Perhaps, this arises
from some deficiencies in our treatment of polar
coupling or because of the relatively greater cor-
rections due to electron-hole scattering in these
materials with simpler band structures. The most
puzzling discrepancy is between our theory and the
experiments of Hildebrand and Gobel® in the case
of GaAs. It is hard to see how any of the correc-
tions discussed above can give a value of E; as_
large as they have reported.
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In this paper, we have restricted our calculations
to zero-temperature properties. The formalism
is easily applicable to finite temperature for the
analysis of the thermodynamic properties of the
e-h liquid. Reinecke** has calculated the phase
diagram for CdS at finite temperatures in reason-
able agreement with the experiments of Leheny and
Shah.*

It is apparent from the calculation presented
here, that formation of the -7 liquid is a wide-
spread phenomenon. The observation in CdS and
CdSe and recently in AgBr and GaP supports this
conclusion. We hope that these calculations will
lead to experiments on more semiconductors and
enable us to test the trends that have emerged from
our calculations.

Note added in proof. Since the preparation of
the manuscript, new studies have been reported
on (a) GaAs; (b) CdS, CdSe; and (c) SiC. (a) GaAs:
A careful study of spontaneous luminescence by
V. V. Stopachinskii [ Sov. Phys. JETP 45, 310
(1977)] on ultrapure GaAs at low pump powers has
led him to identify an e-% liquid line with n,~ 10%®
cm™ and E;~1 meV in very good agreement with
our calculations. A series of luminescence, gain,
transmission, and excitation spectra experiments
by O. Hildebrand, E. O. Goebel, K. M. Romanek,
H. Weber, and G. Mahler [Phys. Rev. B (to be
published)] has led them to identify a luminescence
line with a peak 5 meV lower as due to emission
from an e-h plasma—an identification similar to
that made in earlier work by T. Moriya and
T. Kushida [J. Phys. Soc. Jpn. 43, 1646 (1977)].
Both of these studies are at hiéh— excitation
power. Hildebrand et al. interpret their data in
terms of a hot, dense, e-k plasma, but their
analysis leads them to a value of the e-% pair en-
ergy some 5 meV below our calculation. In view
of the agreement between theory and Stopachin-
skii’s data at low powers on pure samples, the
analysis of the high-power data needs to be re-
examined. (b) CdS and CdSe: Recent time-re-
solved picosecond luminescence spectra [M. Hay-
ashi, H. Saito, and S. Shionoya, Solid State
Commun. 24, 833 (1977); ibid. 24, 837 (1977)]
show a new luminescence line appears at very
high excitation intensities in CdS and CdSe. The
line becomes broader with increasing intensity and
shifts to lower energy. Hayashi et al. attribute
this line to a high-density e-%# plasma. There is a
strong similarity to the data at higher powers in
GaAs discussed above. (c) SiC: Very recently
D. Bimberg, M. S. Skolnick, and W. J. Choyke
[Phys. Rev. Lett. 40, 56 (1978)] have reported the

observation of an e-#Z liquid in cubic SiC. A
straightforward application [G. Beni, T. M. Rice
and L. A. Hemstreet (unpublished)] of a simple
extension of the theory presented in this work
gives results in excellent agreement with the ex-
periments of Bimberg et al.
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APPENDIX
To obtain Eq. (37) from Eq. (36) we write
Amy, =219 I [ - 13), (A1)

where

) e e e _ D)
Jii= Z [1—A(p,p+k)]WL(TB_L2, (A2)
b

-€glp)+w

0, p
tpl<¢
with
p'=pPIBY2+5,,(1-BY2)] (A3)

and B given by Eq. (41). I%/ can be reduced to the
following one-dimensional integral:

ij — 2 (J)p2 y
1= 25m kJ' Ax2(fo+fy fotfofs)y  (A4)

with
f1=(1/4x*k®}{2k = Bgx Inl(x+ &)/ (x - E)]}, (A5)
fo=11/@xk)2 (22 - 122 ~(2m'Pw)? - B}, (A6)

1 1 2%k =[22(B = 1)% - £7]
/3= dxbm Dy (ta'n '

om e
+tan™ 2xk+[’2€27y(21(3j)-;1) -k ]) . @an
=11/ @ Ka2@ - 1) - #2[1+ B(1 - 2)]}, (A8)
_ ([2ex =B -1)+ 2P+ @mPDw)?
s _1n([2kx+ 2B -1) =R2P+ 2mDw)? > ) (A9)
and
g=(? —kz)z[x432+(2m‘f’w)2]‘1, (A10)

Finally, changing variables, one obtains Eq. (37)
from (A4) and (Al).
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