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Cyclotron resonance in two interacting electron systems with application to Si inversion layers

J. Appel~ and A. W. Overhauser
Physics Department, Purdue University, Lafayette, Indiana 47907

(Received 27 December 1977)

We have investigated the cyclotron resonance for two degenerate electron systems interacting with one
another through the electron-electron collision time 7,(T) defined as the relaxation time of.the relative
momentum. The coupled kinetic equations for the total and the relative momentum are solved in the. presence
of a static magnetic field and a frequency-dependent electric field. The solution for the power absorption is
discussed in terms of the concentration ratio of the electrons, n&ln„and the parameters 7.1/7 7.2/7.„
where T&2 are ordinary scattering times. %'e find that our results are consistent with the observed

temperature dependence of the cyclotron resonance of inversion layer electrons in Si, for T ~ 25'K. At
lower temperatures also, the frequency dependence of r, becomes important and affects the cyclotron
resonance ir. a two-electron system, even as T~O.

I. INTRODUCTION

The recent observations' of cyclotron reso-
nance in electron inversion layers on Si have led
to the following dilemma. At the Si (100) surface,
the energy levels in the electrostatic potential
wall can be grouped into two different sets of
overlapping subbands. ' The first set is char-
acterized by the discrete energy levels,
Ep Ei ari sing from the orbital quantization
perpendicular to the surface, and by the constant-
energy circles associated with the itinerant mo-
tion parallel to the surface. The effective mass
is m, =0.19m. This set is twofold degenerate if
the intervalley interaction caused by the surface
potential is neglected. The neglect appears justi-
fied because of the smallness of the relevant val-
ley-splitting matrix element. ' The second set of
subbands is characterized by the discrete levels,
EIp, E,', ~ ~ ~ ~ It has constant- energy ellipses associ-
ated with the band motion. The principal effective
masses are m, „=0.91m and m»=0. 19m and the
corresponding cyclotron resonance mass m, is
given by m, = (m, „m„)' '. This set of subbands is
fourfold degenerate, corresponding to the four
energy ellipsoids in the bulk, the axes of which
are oriented along k„and k„. The known details
of the subband structure are discussed in the liter-
ature. ' Of particular interest here is the finding
that Ep( Ep although the energy Ep —Ep is not well
known as a function of the temperature T, the
surface-electron concentration N, (cm '), and an
applied uniaxial stress.

For Ep(Ep, one expects at sufficiently low tem-
peratures only the 0 subband to be partially oc-
cupied. The cyclotron- resonance dilemma is
that, when there is thermally induced partial oc-
cupation of the 0' subband as evidenced from
optical inter-subband transitions 0'- 1',' only a

single resonance line is 'observed. Its mass value
is intermediate between m, and m, . A partial
occupation of the 0' subband induced by uniaxial
stress also results in a cyclotron resonance char-
acteristic of one type of electrons. e Kelly and
Falicov" have addressed themselves to this
cyclotron-resonance behavior taking into account
the electron-electron interaction. In particular
their intervalley exchange interaction is assumed
to be attractive by virtue of phonon-exchange. They
find on the Si (100) surface a charge-density-
wave ground state for a restricted range of pres-
sures. In this range m, varies between m, and

m, in a continuous manner. A second attempt to
understand intermediate values of m, is made by
Ando" using Landau's theory of a Fermi liquid.
His result for the high-frequency conductivity
o, (u&) depends on Landau's interaction function
only via the P-wave components of this function.
These particular components are relevant for the
mass enhancement" whereas the electron-electron
(e-e) collision rate is primarily due to the s-wave
component of I andau's functi, on. This fact be-
comes immediately clear if we make the 6 function
test, that is, if we assume the e-e interactions
in coordinate space to be replaced by a 5 function.
Then, the mass renormalizations become zero.
According to Ando's result, o, (~), also the effect
of e-e scattering on the cyclotron-resonance be-
havior vanishes (a wrong result). On the basis
of the w-dependent current-current correlation
function Ganguly and Ting' and Ting, Ying, and
Quinn"'b have recently calculated the dynamic
conductivity in the Si inversion layer. The com-
plex memory function, that replaces i/i, de-.

pends on the electron-impurity interaction
screened through a T- and co-dependent density-
density correlation function. They obtain a mass
shift Am/m as a function of T and &u which is of
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the order of 10%.
In this brief paper, we calculate the cyclotron

resonance for a system composed of two dif-
ferent types of degenerate electrons, character-
ized by their respective masses m» and m2. As
the pertinent el-el interaction we take into ac-
count the scattering between electrons of sys-
tems 1 and 2. The coupled transport equations
are solved in Sec. II using the proper relaxation
time v., that describes the relaxation of the total
relative momentum towards zero. The results
for the high-frequency conductivity o(&a) are dis-
cussed in Sec. III in terms of the ratio between
the concentrations of electrons 1 and 2, n, /n,
and the parameters r, /~, , where r, E are the
relaxation times due to impurity and phonon scat-
tering. A discussion of the question: can the
theoretical results account for the experimental
cyclotron resonance behavior, concludes the
paper.

The evaluation of 7,(T) is 'given in AppendixA
and that of 7,(T) in Appendix B.

II. POWER ABSORPTION FOR THE TWO INTERACTING
ELECTRON SYSTEMS

where V is the volume under consideration.
To get the conductivities o, from Eq. (4), we

(4)

We calculate the power P absorbed by the elec-
trons of system 1 and system 2 from the high-
frequency electric field. To that end we assume
that the static magnetic field 8 is oriented in the
z direction and that the electric field E =E0e' '

lies in the (x-y) plane. Decomposing the linearly
polarized field E into two circular counter-
rotating components E, ,E, we have

Re(J,E,*+J E*),P P++ P 1

0 0 0

or, in terms of the corresponding conductivities, »~

P/IP, = —,
' (Reo, /o, + Res /o, ) .

Here P0 is the total power for the linear wave and

o0 is the dc conductivity of the interacting elec-
trons at H = 0.

The conductivities v+ can be defined in terms of
the total and the relative momentum of the two
electrons systems, "

P = P~+P, ; II = p, (P~/n, m, —PE/nEmE),

where I/p, =1/n, m, +1/n, m, . Here P and II are
vectors in the x-y plane so that the current den-
sity X is given by

(5)
(

-H+ E = -eVn R — -H+ P) xH
n»Hz» Cm2 nlm»

(6)

The relaxation time 7, relaxes the relative mo-
mentum 0 to zero,

dII
dt

and it relaxes the momenta P, and P, towards the
respective nonequilibrium momenta, for strong
e-e scattering,

dP»
dt

P, —5HE

~e
(8)

dp.
dt

5, —P' dP»
dt

Equations (7)-(9) are in complete analogy to the
ca.se of electron-hole scattering first discussed
in this manner by Kukkonen and Maldague. »' The
effect of the scattering between two types of car-
riers of the same or of opposite sign on the elec-
tric transport coefficients in zero magnetic field
has been discussed using the variation principle.
A simple illustration of the nonequilibrium dis-
tributions of electrons 1 and electrons 2 for the
two limiting cases 7, =~ and ~, =0 is shown in
Fig. 1.

To solve Eqs. (5) and (6), let us first rewrite
these equations by taking P(t) = Pe' ', II(t) = lie'~,
and by introducing the momentum components,
P, =P„~sP, and II, =rr„~N, .'

The two coupled equations for P, and II are
given by

[1+~,/v, +i~,(~ —e,)]II,
—(p/nEmE)[1+i~, (&u —(u,}]P,= -eVn, 7,E, ,

(10)

—[1+7E/~, + i VE(V —u&, )]II,
—(p, /n, m, )[1+i7E((g —(oE)]P,= eVn, rEE, , -

determine the linear relations between the mo-
menta P, II and the electric field E. To that end
we start from the kinetic equations for P and II.
For the electrons 1 and 2 these coupled equations
are, respectively, given by

H+ P=-eVn, E —. II- f)xH
n2PS2 Qm» n2fPl 2
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Relaxed Fermi Surfaces ( Te = 0) p, = — (n, T, [1+v, /T, +is, ((q —&u, )]
eV

(13)

m, = (eV-/D, )(pT,/m, [1+iT,((u —&u, )]
—( p, v, /ln, )[1+i v, ((u —(u, ) ]], (14)

System 2

Unrelaxed Fermi Sur fa ces ( re = )

1 7~ 1
Q 1+/, — — ++

Plgm I 7 R2m2 7

—Y~((d —Gd|) 72((d —ld2)

FIG. l. I11ustration of the nonequilibrium Fermi sur-
faces for electrons l and electrons 2 when an electric
field E is applied in x direction. Here 4P f p

8T f 2E
are the momentum shifts of the Fermi spheres in the
absence of e-e scattering, T, =~. In the opposite case of
strong e-e scattering 78 = 0 the momentum shifts &p f
of the relaxed Fermi spheres correspond to a complete
relaxation of the relative momentum, II = 0.

where &u, , =eH/cm, , We get the two coupled
equations for P and II by replacing in Eqs. (10)
and (11)E, by E and &u, , by -ar, , The solutions
of Eqs. (10) and (11) are given by

+ KT~((d —(d&) 1 + LLf. 'T2

ll2m 27/

+ $1 2(QJ —&d2) 1 +
'Tg

pljmg 7 g
(15)

The results for P, w are of the same form as Eqs.
(13) and (14); however, &u, , is replaced by -&v, ,
In terms of the P's and 7t's, the conductivities are
given by [Eq. (4)]

o, = (e/V)[(n/M)P, -+(I/m, —I/m, )m, ], (16)

where n=n, +n, andM=M, +M, =n, m, +n, m, . The
power absorption obtained from Eq, (16) is writ-
ten down taking T, = 72 = ~ for the sake of simpli-
city, we get

P e n 1 1—Re(P, +P )+ — Re(w, +m )
0 2vvo -M mj m2

2

where

n, M, +nB, = 1+ — — — 7 CO+ u~ CO+M2
Te Te

+ 1+ — T (OT h)2
n,

T~ M n

and Go 0 0 for H = u = 0. It is readily seen that
in the absence of e-e scattering (v, /q. —~) and for
a one-electron system (m, =m, ) the power absorp-
tion, Eq. (19), is given by the standard formula
[cf. Ref. 14, Eq. I.5)].

+ 1+ — —T (d +(d&
M n
M n

7 niM2 —n M
C, = 1+—

+ 1 + — 'T CO + (d2
M2 +1M2 2 2

M nM

(16)

(19)

III. CYCLOTRON RESONANCE ABSORPTION

IN TERMS OF r

In Figs. 2 a.nd 3, results for the absorption be-
havior are plotted taking m, = 0.2 m and m 2

= 0.4 m.
The pa'rameter of the different absorption curves
is T/~, ; ~, is the e-e relaxation time for the rela-
tive momentum, Eq. (A23), and T is the transport
relaxation time due to thermal phonons and im-
perfections. Our choice of m~7=3 is characteristic
of the experimental resonance conditions of Refs.
3 and 4.

The following general trends are seen from the
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n2 = $n)

o P/Po

FIG. 2. Relative change in the power absorption P
vs the magnetic field for ~&v =3; ~& ——eH/cm& and 7 is
the relaxation time due to phonon and impurity scatter-
ing. The parameter on the absorption curves is T/7'~,
where v', is the relative-momentum relaxation time,
Kq. (7), due to scattering between electrons of the two
different systems. n& and n2 are the concentrations of
the electrons is systems 1 and 2, respectively.

model results. For v/~, =0, we get the two peaks
at ~, and +, which are characteristic of non-
interacting electrons. The relative peak heights
depend on n, /n, . At an intermediate value 7./T, =1,
the two peaks begin to merge, although a shoulder
remains for n, =n„Fig. 2. The resonance peaks
have shifted towards intermediate values, between
~, and (d, . Finally, for strong e-e interactions,
~/r, =10, there is only a single resonance, the
center of which is determined by n, /n, and the
width of which is governed by T. The peak position
depends on. the concentration averaged mass, m,
=(n, m, n+, m, )/(n, +n, ), for r/r, »l.

A quantitative comparison between theory and
experiment is not possible. One reason is that
the distance between the 0 and 0' subbands E,' —Eo,
is not known with sufficient accuracy as a func-
tion of temperature and applied uniaxial stress.
This distance determines the occupation of the
subbands, N, and N» by virtue of a self-con-
sistent calculation of the surface potential. By
comparing the qualitative features of the model
results, Figs. 2 and 3, with the temperature de-
pendence of the observed cyclotron resonance,
Ref. 3, it appears possible that e-e scattering is
responsible for'the observation of a single reso-
nance peak. A crucial role for the occurrence of
a, single peak is played the magnitude of the scat-

V~ (r) = (e'/er) e 'rT", (2o)

where e is the dielectric constant and q is the
screening parameter given by

g+g „2= (4e /7fES )(mdppg+m Pp. ) .

(21)

U sing pz, , = 5 '(3w 'n, ,)~ ', we have

~ =(2m/ff)iV (0)i'=2m'(-,'m)'i'

&&8'(m n''+m n' ') ' (22)

where n, is the volume ceontrctni a(=own, ~') In-.
serting this expression in Eq. (A23) and, further-
more taking account of the degeneracies v, and v,
of the electron systems 1 and 2, respectively,
the relaxation time is given by

I

2
(d~ /td

FIG. 3. Same caption as Fig. 2. The difference is the
ratio n 2/n(.

tering time v, %e therefore do not merely con-
sider 7, to be an adjustable parameter but calcu-
late it as the relaxation time for the relative mo-
mentum in Appendix A. The result is given by
Eq. (A23). It is symmetric with respect to the
parameters of system 1 and system 2 and it de-
pends on the collision probability w be@veen two
electrons of 1 and 2, respectively. By ta,king M)

as constant, the integrations over the scattering
angles were readily performed. For the sake of
simplicity, we shall assume here that+ is given

'by the q =0 component of the Fourier transformed
scattering potential. " In the Fermi-Thomas
approximation, this potential is given by
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v»~ (Ir)2
(T) 3 gs 1 2 1 2

x + n, f.[(s,/n P»]
nlrb n m

1

(m,n,'~&+ m n'~')

where the function L is of the order-of-magnitude
1 and is given by Eq. (A20) using P»/P»
= (+,/&, )' ' =P. In Fig. 4 the relaxation rate is
plotted versus &, /&, for a fixed set of parameter
values for m„m„&„&„andn, +n„and it is seen
that the quantity 1/7, T' does not vary much in the
range 10 '«, /s, ~ 10", except for the cusp at

The main dependence of &, ' on n„n, is
given by the factor (n, +s,) ' ' arising from q„r'.
Assuming that the surface concentration N& =', ',
the relaxation rate in the inversion layer of Si is
of the order 7 '-3 10"T'[10"/(N +N )] with & in
'K and N, , in cm '.

For a qualitative comparison with the experi-
mental results for the T dependence of the cyclo-
tron resonance in Ref. 3, we may assume that the
parameter 7/7', in our formula for P/Po, Eq. (17),
depends on X„N, through the sum N, + N„ the
magnitude of which is experimentally known from
the gate voltage. The experimental values of 7
determined in Ref. 3 from the width of the res-
onance lines at T =25.5 and 65'K are 6~10 "and
3~10 "sec, respectively. The corresponding
values of r/v, are 2 and 8, using (N, +N, ),„„
=5X10" cm '. Hence at both temperatures, e-e
scattering is so strong that only a single resonance
line is to be expected (see, for example, Figs. 3
and 4). The position of the resonance peak depends

on N, /N„Eq. (17). The experimental power ab-
sorption at 25.5 'K yields a cyclatron resonance
mass m, =0.21 m. This value is larger than the
0-subband mass, ~, =0.19 m, and therefore can
be attributed to a small occupation of the 0' sub-
band m, =0.42 m. At 65 'K, m, =0.27 m indicating
a partial occupation of the 0' subband such that
&, becomes comparable with N, .

Hence, the & dependence of the cyclotron reso-
nance mass of inversion-layer electrons in Si can
be understood in a qualitative manner when we
take into account the combined effects of both a
partial thermal occupation of the 0' subband and the
e-e scattering between the carriers in different sub-
bands. In pa, rticular, the e-e scattering rates are
such that v, ' & v 'for the experimental conditions.
The observation that our results are consistent with
the experimental findings rests on the assumption of
a partial occupation of the 0'-subband. It appears
from the results of the optical intersubband ab-
sorption' that this assumption is justified, al-
though the. exact dependence of N, /N, is as yet un-
known.

Finally, we would like to address ourselves to
the question: %hat is the effect of the electron-
electron collisions on the cyclotron resonance be-
havior at very low temperatures~ As T -0, the
collision rate 1/7, vanishes as (&T)' (cf. Appendix
A) if one neglects the effect of the oscillating elec-
tric field on 1/7, . This neglect, however, is no
longer justified at,, frequencies u where +~& &&.
Even at & =0, an electron-electron scattering
process can be accompanied by the absorption of
a photon and, thereby, lead to an (hu)' contribution
to 1/r, . The final result for the temperature and
frequency-dependent collision rate, derived in
Appendix 8, is given by

0,6 1/r, (T, v) = b[(kT)' + (I&a/2n)'], (24)

0.5

0

O
OP

I- 0.4
OP

O

I

lo-'
I

I

nI /nq

I

lO'

where b is the factor of (&T)' in Eq. (23). As for
the experimental situation of Ref. 3, the frequency
of the electric field is &=890.7 0Hz and corre-
sponds to & =7'K, at which temperature both of
the terms in the bracket of Eq. (24) have the same
magnitude. The corresponding value of 7„Eq.
(24), is -5 &&10 "sec and is comparable with the
impurity scattering time 7 at this temperature.
Hence there is no reason to expect two distinct
resonance lines at &- 7'K if both the 0 and 0'
subbands are sufficiently occupied.

FIG. 4. Plot of the e-e scattering rate, Eq. (23), ver-
sus the concentration ratio n~/n2, where n&, 2 are the
volume concentrations of the electrons in systems 1 and

2, respectively. The parameter values of the two
systems as chosen as follows: m~=0. 2m, v&=2 (de-
generacy); m2=0. 4m, v2=4; n&+n2=3. 16 &&10' cm
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the center-of-mass velocity is

=- [(n, T, +n, T,)/(n, m, d-n, m )]eE . (A3}
APPENDIX A: SCATTERING TIME r {T)

(A1)

The time v, is defined by Eq. (7) as the relax-
ation time for the relative momentum II between
electrons 1 and 2; we can write

dI, p, -Ã

where P', is the total momentum of electrons 1
when Il =0. In the presence of an electric field E,
we have

In general, II +0, the momentum P, is given by

(A4)

where dv, =[2/(2]]k)'Jd'p, . The rate of change of P,
can be written in terms of the collision integral
f (p, )

dP "(ff
p, dv, = — I (p, )p, dr, ,

e-e

P, =n, m, v, (A2) (A5)

where &, is the concentration of electrons 1 and where

1(p)= —f dv , J dv , Jd'P-, w(—p„p,; p;p;)[f f (1 —f, )(1 f ) f,—f;-, (1 —f,)(—1 —-f )]—
x 6(ei+e2-ex —e2)6%+p2 p). p2} (A6)

Here w is the collision probability for two elec-
trons, f, =f$, ) an-d c, =P', /2m, . The ~ functions
express energy and momentum conservation in a
collision process. The collision integral vanishes,
I (p, ) =0, for f, =f,', etc. , where f', is the displaced
Fermi distribution in Fig. 1, corresponding to Il
=0.

%'e proceed by expanding the distribution func-
tions in Eq. (A6} around their displaced counter
parts for ~ =0. For example,

0

(A7)

We may replace sf,'/9&, by

se" = ~rf~ (' f~ }
1

(AB)

e, =(ZP, -ZP,')p, /m, . (A9)

By substituting (AV} into Eq. (A6) we get

where f,o=(exp[(&, —&/&T] —1) ' is the equilibrium
distribution; f = Fermi energy. The perturbation
+, in the presence of an electric field E is given
by

d7-dr- d P so AP -bP ' Ep —hp —Ap -Ap ' —Ap -Ap
1 2 1 2

"fiof20(1-fio)( -f-.o} ('i+"-'i -'-. } 4+p2-k-p2)
The factor 4p, —Ap, can be taken out of the integral since

hp2 —bp o = (n, /n, )(-bp, —bp ',),
by virtue of total-momentum conservation. Hence

(Alo)

1(p,) =n, (&p, - ~Pl)K(p, ),
where

(A»)

K(p, ) = f dv-, dw d' d—w, — ' + ' f, f, (1-f-, )(I -f ,)—kT

x 6(e, +e2 —e—,—e,—) &(p, +p, -p,——p —,).
By substituting (A11) into Eq. (A5) we get

K(p, )pi d Ti ~

~e

(A12)

(A13)
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cess is large. This leads to a very small V»(q)
[of Eq. (20)]. The processes we keep involve ~q]'s
which are at most 2P~ for the individual subbands
and 2'/k is very small compared to the Brillouin
zone size.

Fixing p„ the momentum p, is defined by the
angles ~ and y2 with respect to py as the polar
axis. According to the collision geometry of Fig.
5(a),

O-~-m; 0-y2 ~2~. (A14)

The integration over p —, is written in terms of
the angle p between the planes p„p, and p-„p;
and the two variables P-, and P;. According to
Fig. 5(b) we have

2
dr , = .

(
)—,p~ sinydq„dqg dy,

(b)
p~ = p~ +Q'~ cosp +Q'„SlIlp ~

p,—= p, —q, cos(a —y) +q, sin(3- y),

dp;dp;. =[sinycos(3- y)

+cosy sin(a —y)]dq„dq .

(A15)

FIG. 5. Collision geometry. (a) The maximum angle
between p& and p& is independent of the ratio between
the Fermi momentap~ and p~ for.electron systems 1
and 2. (b) It is assumed that the plane spanned by
p&-, p &

is rotated by an angle p into the plane of p &
and

p&. Then sing= sin4/I, 1+ (p)g/pp~) +2(p fp/pp+)cosd]'
1For p f+ pgp' one has p= ~8 (Hef. 19).

%e proceed by rewriting K in terms of suitable
integration variables before we finally carry out
the integration over p, in Eq. (A13).

In calculating 7, we consider only intravalley
transitions, p, -p, +q, p2-p2-q; we neglect inter-
valley transitions, p, -p, +q, p, -p, —q. The rea-
son is that since the 1 and 2 electron surfaces are
so far apart in momentum space, that the ~q j

which is involved in the intervalley scattering pro-

x (kT) d~dydcp,
P~ (A16)

where P = Pj,,/P~, .
The integration over p,—removes the & function

responsible for momentum conservation.
The integration over p, is carried out by writing

d p2 =p2dp2 sjn343dy2

=pg 2m2k'Tdz sin3dddy2 .
Substituting (A16) and (Al'I) into Eq. (A13) for r„
we get

Using dP;=(m. ,/P~, )de; and dP,—=(m, /P~, )de; and
introducing the variables x =(e —, —r)/kT and y
=(e;—&)/kT, we get

2 1
dT

(2m@)' (1 +p' + 2 cosa)»~

dr, dx dy dz dy dy,
0 0

u(6, (p) 2 1 m, m,sin3d3 ——-- ' 1 2 kT'2
(2~@)' (1+'p&+2pcos3)&~& ppg

2 1 1
gis ~apzakT + (px-Pi 'PT)2r J nlml n2m2

f,(f)f.(~)[1-f.(~)][1—f.(X)], (A18)

where t=(e, —$)/kT and

sin'3(1 + cosy)
1+P'+2P cos3 (A19)

sin'3d92, (1+p'+2pcosa)~i&

P-1
Replacing w(3, y) by a constant, we can perform
the integration over 3, (A20)
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The z, y, z integral is according to Ref. (18) given
by

M(t) =

xfo(t)fo(z) [1-fo(x)1[1-fo(y)1
=-,'fo(t)[1-fo(t)](m'+t'). (A21)

The t integration is performed by writing

dr, =2(2m@) '4am, P„,kT dt)

n+'t
M(t)dt =- " dt

8$

2n 1 4

+ ~ ~ ~ (tzT/t)',

where the dots denote higher-order terms. The
final result for 7', is given by

APPENDIX B' SCATTERING TIME v (T u}

To obtain the frequency dependence of &, , we
proceed by formulating the power absorption due
to electron-electron collisions in the presence of
a time-dependent, spatially homogeneous electric
field. The procedure consists in two steps. First
the Hamiltonian for two noninteracting electrons
is solved for the time-dependent wave function in
the presence of an oscillating electric field. Then,
using these wave functions, we calculate the power
absorption due to the electron-electron interac-
tion in the framework of time-dependent first-
order perturbation theory.

The time-dependent field is given by

1 eA cE= ——,A= —E, cosset . (a1)0 ~t (d

In the presence of this field, the two-electron
Schrodinger equation has the form

1 1 1 1
6mb nm em a

(H, +H, )(t)=i8—,' (B2)

x m2m2p~~~l ~

~

up(kT)2
g2 j

(A23) where

where ce is the constant collision probability sub-
stituted for )z)(3, (p). Eq. (A23) is symmetric with
respect to the interchange of indices 1 and 2.
Assuming that 1 and 2 refer to the electron and
hole Fermi surfaces of a degenerate semimetal,
E(l. (A23) agrees with the first term in Eq. (9) of
Ref. 15.

P', eE, p,+i pi i cos4f
2mi C 2Pli tFLi GD

2 2

+ 2EOCOS Q)t ~

«0
2' i 40

i =1,2. (B3)

The solution, (I)»—= )t)y ~, of Eq. (B2) is given by

where p» =(1/V) exp(ik, r, +ik, r, ) and &;
= h'k', . /2m, Assuming that the external field is
small,

The result for the first-order coefficient a,"2' is
given by

heEO'k&/m& &u= h&oe& k; «e&, (B5)
21

u&( ) ~
~«.a& ~.

12
~ 12

we can expand the exponential function, Eq. (B4),
in terms of e, = (e/m, . &u')E, and ignore terms of
second and higher order in this parameter.

Then, using standard time-dependent perturba-
tion theory, we have the following ansatz for the
wave function perturbed by electron-electron col-
lisions:

+4[(k,- k,) e, +(k,-k, ) e,]

sin~z(u&» -,-, —&u)t
~~

(+&a, ta

x [1+i(k, e, +k, e2) sinet] . (B6)

where H12 12 is the matrix element of the screened( int )

scattering potential between y» and cp». In terms
of a,'&', we get the transition probability, kr-k,
and k&-k„ in the form
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1 g(1)
122

(( ((2~)')
gt

d ~1 d ~2 I +12,12 I

' {()(e, + e2 —e-, —e2) + 4[ (kz —&1) e'1 + (k2 —k2) ' e, ]

x [ 5(21+ e2 —e1 —e;+koo) + ()(e1+ E2 —e„—f2 -)2(o)]] . (88)

To account for momentum conservation, we write

a,',"g I'= w8(k, +k, -k, -k,), (89)

assuming that W is a constant (dimension: en-
ergy'/cm').

To get the power absorption P due to electron-
electron scattering we simply integrate 2e over the
filled states k»k„ thereby multiplying the last

two energy 6 functions by +Su and -h(d, respec-
tively. At T=O, only the last ~ function, corres-
ponding to the absorption of a phonon during a scat-
tering event, contributes to P.

At T & 0, either an absorption or an emission
process may take place in an electron-electron
collision. The formal result for the power absorp-
tion, using Eqs. (88) and (89) and the momentum
variables introduced in Appendix A, is given by

2y 4P=, 4vm, p~d&, 2n'm+2 de2
8~ 62

sin3d3
(1+p'+ 2p cosa)'i 2

&& 8v W[(p-, —p, )(e, —e,) ]')2&e [()(e,+ &, —e-, —e-, —)2(d) —(((2, + e, —e-, —e;+ g(d) ]

"fo(&r)fo«r) [1-fo(e1) ][1-fo(&.)] . (810)

Using the approximation

[(pl —pl) (el —e2)] = 2 p1 —p1 I

the integrations are readily carried out. The
final result is given by

P 4 (1/m, —1/m, )
' e'E', 1

V 32' 1/n, m, + 1/n, m, (e' v, (T, (0)
Bl1)

where 7, (T, &o) is given by Eg. (24). The coef-
ficient b in Eq. (24) is the factor of (kT)2 in Eq.
(A23). We mentioned also that W, defined by Eq
(89), is related to the collsions probability w in
Eq. (A6) by writing W=(h/V')w.

An expression of the form of E(l. (24) for v', '(T, (d)
has been given by Gurzhi, ' Hopfield, "and Quinn, "
without derivation of b.
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