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Atomic displacements around an impurity and three-body interactions in metals
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Two methods for calculating the asymptotic displacement of the ions around substitutional, homovalent
impurities in a metal are compared. While the order of approximation in the method of homogeneous
deformations coincides with the order of electronic response involved, this is not so in the direct calculation
of local force and displacement fields. Consistency of the approximation requires that even the lowest-order
structure-dependent calculation of the asymptotic and preasymptotic local displacements should include the
nonlinear, thi."d-order electronic response of the electron liquid.

INTRODUCTION

On dissolving a foreign atom, the elastic response
of the host crystal always leads to a static dis-
placement field which, for large distance from
the impurity, goes like' ~ '

u{H)-C(R)/~R~' . (I)

Here 8 is the unit vector pointing to 8, and the
relevant elastic properties of the host as well as
the host-impurity interaction are contained in the
amplitude vector C. Macroscopic considerations'
lead to a factorization of C which, for cubic crys-
tals, is

asymptotical and preasymptotical displaeements,
as it is in finding long-wavelength-phonon charac-
teristics in lattice dynamics.
. By this we do not mean the fact that three-body
interactions, while representing a different order
of approximation in the en. elegy of a regular crys-
tal, may incidentally be still large enough not to
be neglected besides the linear screening term,
as found in the case of some pure metals. "' The
point is that the contribution of the three-body inter-
action terms to the local force and displacement
fields, even though associated with third-order
electronic polarization, is in fact second order in
smalbgess for long distances and without taking
it into account, even the lowest-order structure-
dependent approximation is incomplete.

Here the function A is independent of the kind of
impurity, being defined solely in terms of the
elastic constants c;„of the host, while the second
factor has the meaning of variation of the atomic
volume with concentration, with the proviso, how-
ever, thai this derivative is taken by considering
the crystal to expand {contract) uniformly, local
deviations from Periodicity being ignored.

Therefore, having a microscopic theory for the
free energy of a dilute solid solution, e.g. , that
for simple metal alloys' at T=O, we can determine
C in two ways; first, directly by calculating u(B)
and looking for its asymptotics and second, by
finding (5Q,/5c)„, from the static equilibrium

. condition of the strictly regular lattice.
Besides showing that the perturbed-electron-

liquid treatment of dilute, homovaleni alloys ac-
tually involves the validity of (2), we will demon-
strate the rather peculiar way the consi. ,tency of
the theory is realized, via the nonlinear response
of the electron liquid connected with three-body
interactions4 in the alloy. As a result, it turns
out that the necessity of taking into account non-
linear response is as unavoidable in calculating

RESULTS

The energy per atom of the dilute substitutional
alloy can be expressed as'

where the first term is the energy of the pure host
at an actual volume per atom Q„Octad.„,would
be the energy change if no local deformation of
the periodic lattice were allowed and 4E„depends
on the local ionic displacements,

P E(1) u(gl

1, O1

+ (pi~ I~a+ Gyes~ I a)u(1) u(1 )g .
1,0. 1,8

In (4), P is the dynamical matrix for the pure host,
while the force field F and the force-constant
change matrix 5P arise due to the presence of the
impurities; l indicates the position of regular
lattice sites. Equilibrium occurs at those u(1)
= u(1) that minimize (3). Neglecting 5Q one has

1978 The American Physical Society



18 ATOMIC DISPI ACEMENTS AROUND AN IMPURITY AND. . . 72l

from (4)

u(l) ——g g; 1.6F(l )~, (5)

" —p; and R; is the actual position
of an ion originally at the regular position 1,

R; = 1+ u(1) .

where the static Green's function g= (t)
' is given

in terms of vibration frequencies (d, polarization
vectors e, and host atom mass M as an integral
within the Brillouin zone and a sum over different
polarizations X,

Alai~8 ~0/(2v) d- ~ e„*(&1))ea((lz) a (-l-f )

Mm-
qX

For nontransition metals, E can be given as a
series containing increasing powers of the elec-
tron- ion interaction4

E=E +E,(n,)+E")(n,)+E"'+E")+~ ~

Here E„is the Madelung energy, E0 is the energy
of the homogeneous electron liquid with density n„E"' is the average of the non-Coulombic part of
the mean electron-ion potential V,

Expanding f; in powers of u, the u-independent
elleI'gy cllallge lip to 211(i order, by (6)—(8), ls

bE(~) ~ b~ g PG

Geo

— Q [~v;f'O, —
q q

where bE"' is E,'„",,—E„",,', and 6 stands for re-
ciprocal-lattice vectors. The linear terms in u
define, by (4), the force field F tending to displace
the ions from their regular sites. One gets sub-
sequent contributions of increasing order accord-
ing to (6)

F = F"'+F"'+ ~ ~

writing

Z 2E"'=— v(r)+ +~ dr,
00 lrt (7)

F(i).=—g a.F(k)e"&'-"'

k

we have'

where Z= Zp Z$ p is the ionic charge, E"' is con-
nected with the linear response of the electrons
and E'"' (n&2) represent higher-order polariza-
tion terms responsible, in general, for many-
body interactions among the ions. ~ For the first
two structure-dependent terms one has

8&2)(k) = -v-,av-„n, (P~/~-„)

and next,

F(3)(k) 6 l P J &3) 5 -I-c
k. q -k-q Nk q q ~kaq

(8) A(3) &a ~ k G+
k~ G, k-G

GA) G -k-G

E(3) g Q g(3)(&lqI&11/)

qq q

' f'" 6(j+&1'+(1")
E»g & ie

q q q

where the dielectric constant e; is given by the
linear polarizability function P; as

e- = 1+ (4((e'/q')P- (8a)

A."' is the third-order, irreducible response func-
tion of the electron liquid and, for a single im-
purity at 1= L the function f; is

It can be seen that higher-order terms have neces-
sarily a factor of order -vo/E~ or (dv;/(I, E~-) in
comparison arith those making up I ' and I' '
(Ez is the Fermi energy), so that they can be ne-
glected. [For a, homovalent impurity (hv;/e, E~)
«1 for large and small q values as well. ] The
physical significance of E"' is clear; e.g. , the
second term represents three-body interactions
among the impurity, the ion a,t 1 and one of the
other ions of the lattice.

Now, independent of the particular form for E(k),
one has generally, by (5) and (12),

f~ = vq — e""i+ av-e"' . —
N

1

Here v; is the Fourier transform of the host-ion
potential

5)
u(l) = -i—'

(M (2~)3
~ r e.*(q&)e,(q&);e.&f-Z&

z

&
l E (@+G, )&(l+ G)) .

(15)
v-= — v(r)e "'dr00 For the asymptotics of u one has to look at the
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small-q expansion of the expression beside the
exponential, 6

e= e(0, 8, q), X)+ ~ ~ ~ + O(q'),

o)-' =c '(8 p)q + ~ ~ ~ +O(q ),
where 8, y are the angles of the unit vector q= q/

I q I
and c~ is the velocity of sound with a particular

polarization. Further, for cubic crystals the ex-
pansion of E leads to (see Appendix)

Z (q&+ G&)E(q+ G)

with the repeated index y implying summation.
Evaluation of (15) for large IlI asymptotically
gives, by choosing L =0,

L(1) = ~lim E(q)
A(l)

I l I'

+ z Q (E(G)+-,G,
G&0

'Y
QQ

(17)

eEI
=qolim E(q)+qoZ E(G)+ sGysG I, (16)

q=0 680 with the "elastic amplitude vector" A given by

1 Qo
2' 8 ~eg(0, 8, y, A,) [e(0, 8, y, A.) 'q)

4))~ 2)T o 8(cos8) ~ Mc'„(8, y) - 8=v/2
(18)

Here the polar angle 8 ha.s to be measured with
respect to l and )(: is the compressibility of the
pure host. Obviously, A is connected with the in-
verse Christoffel-matrix of the host and can be
found, numerically in general, in any particular
direction / independently of the alloying problem
(see Appendix). Comparison with the macroscopic
theory' shows that A so defined is precisely that
entering Eq. (2), thus the bracket in (17) must
equal (6Qo/6c)„, .

Now, consider this bracket in the particular case
of a metallic solution, with E given by (13), (14).
The termsE"'(G) inthe sum in (17) canbe neglected
in comparison withE'2'(G) but the term E"'(q =0)
is by no means small. In fact, due to the Coulom-
bic behavior of v at large distance, Eqs. (8a) and

(10) imply

V

~.) Q~(0)

h. (o)(0, q, -q) P(0) d P-
(&,.}' 6 dago e;

- (20)

(no=Z/Q, is the electron density) one has

»m E(o)(QQ = -so 2 I
+t)o I'Qo~8 1 I'

~+
0 en, 2Nq-0 0 a

+P voke~o, .) (21)
Ggo

'&G

Further, by (13), (19), and (7) we have

or, equivalently, by using the identity due to Brov-
man and Kagan4

so that d(m" ')
lim E"'(q) = Zhv-e=0 dO
g~0 0

(22}

(, &
6Z 1 ~ A"'(0, q, —q)

P(O) ZV ~ (~.)2

6"

Since by (10), v;-1/Q„E(2)(q} depends explicitly
on the volume as 1/Qo, thus Eqs. (17), (21), and

(22) give

zg(l} -,—-~Q, +)(;g -Q, +-,'G„+n, )F")(G) —
tenno

—g I
he~I'Q, ' . (23)

~0 0 P 0. 0 q

The last term in the square brackets depends on

QO only through n„and the diff erential ope rator
before E"'(G) is actually (-Q,d/dQo) for any func-
tion depending on 00 explicitly and also through
G„and n0.

A(l} d(~„,)
upi~) 2

—I(.'00 (24)

, We have therefore by (11) the asymptotic law
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The bracket in (24) has a very simple meaning.
If the equilibrium atomic volume in the pure host
is Q,„, and the minimum of (3) occurs at Q»+ 5Q„
we have

(
d'E &d~ +~

so that for the volume associated with the homo-
geneous expansion of the lattice we have

5Q, ~~ d(~...)
which, with (24), leads to Eq. (2}.

ale emphasize that the contribution of third-
order forces, consisting of the terms with n, (S/
Bn,} in (28), is substantial in obtaining this result.

DISCUSSION

Two methods for the calculation of the asymp-
totical amplitude of the ionic displacements around
an impurity have been compared and seen to give
identical results, but the electronic response to
be taken into account in the two cases is of dif-
ferent order. In particular, to reproduce the amp-
litude (5Q,/5c)„, derivable from the second order
energy change of the undistorted lattice, we had
to include both second- and third-order electronic
response functions in the calculation of the force
and displacement fields. Analogous result holds,
in general, in any stage of approximation; the
fact that the first-order (structure-independent)
approximation ~"' in calculating (5Q,/5c) is
consistent with the second-order "continuum" re-
suIt for tbe local displacements [with GWO terms
in (17) neglected] bas already been noticed. '

Higher-order electronic polarization, giving
rise to many-body forces between the ions, ap-
pears in a similar way in the problem of phonons
in pure metals, 4 when one determines the longi-
tudinal sound velocity by the method of long waves.
There it turns out' that to obtain the compres-
sibility in second order [-(vo/E„)'] one has to ac-
count for three and even four b-ody interactions-
in the small-q expansion of the dynamical matrix.
The physics in both the pure metal and the alloy
cases lies in the fact that E'"' in the expansion (6)
has a definite degree of smallness only for a
periodic arrangement of the ions, whereas this is
not so for a deformed crystal. The small quantity
ensuring the decrease of subsequent terms in (6)
in the case of periodicity is, however, different
in the two problems: for the pure metal it is4

vo/E~ while in the homovalent alloy, as seen from
(8) and (9), it is either vo/E~ or bv;/a, Ez Since.

E'"' consists of the nth-order response function
and just n potential factors, and in the periodic
case each of these must be either vo or 4v; [Eq.
(9)], the term associated with the nth-order elec-
tronic response is automatically of nth order in
smallness If one calculates, however, the force
field in the presence of the impurity (or in the
phonon case, of the periodic distortion), a factor
v;(qv G) appears, and v;/c;for smallq is by no
means small, being instead of the order of E„.
Hence the force field E "+ ' derived from E "+

is for small q's actually of order n in smallness.
%e see that, even in the lowest-order structure-

dependent approximation, two- and three-body
forces must be taken into account side by side
in the calculation of the force and displacement
field, otherwise the degree of approximation is
not defined and hence the theory cannot be con-
sistent. ,

Besides this principal question of consistency
in describing the asymptotics, the result implies
that any attempt to determine the preasymPtotic
displacements must also include third-order elec-
tronic polarization effects, since not too close to
the foreign atom [small q's in E"'(q)] these con-
tribute to u(R) in the same order as the linea, r
screening terms.

Numerical results using the model parameters'
for a dilute Na(K) alloy show that leaving out
nos/Bno terms in (23) leads to an about 8% over-
estimate of the asymptotical amplitude for the dis-
placements.
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APPENDIX

(I) By inverting the transformation (12) we have,
choosing I =0

Q(k + G )E(k+ G) —i+=E(1) e '"'
G

which, by differentiation with respect to k„gives
at k=0

Since the right-hand side of this equation shows
the site symmetry of the lattice, we must have
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(ii) For cubic crystals A(l) was analytically ob-
tained by Krivoglaz for the [100]direction'

([100]) .1l 12 (g+» l2(&
12m(c„+c,,),„c„)igc„1+~g 1+

Il

Here g is the anisotropy parameter

g = (c» —c» —2c«)/c« .

It is possible to obtain a relatively simple function
also for the g (( [110]-direction.

Ap([((0))= y'2 .
"(((,(),/, +I),

&&here

I=—
4

2 '~' P+ y cos'y
2

w o E cos g7+E cos p+ 1

and the constants o., P, y, E, and E are combina-
tloIls of $ and X = c«/c» as

E= ~[--,"(~ —.')~], y=-«(~ 2) —,'~ (-.'~-E)

E= g[—,
' —($+2)X], b. = —,'$ +E —,'gE—

, ,((+s)

E(~+1)—(~/2)(~+ 1)F- (e/4)(~+ 5)

All other components of A vanish in these cases.
In highly anisotropic crystals, like the alkalis,
one gets A„([100])&0 and A, ([110])&0. Numerical
results for the angular dependence of A for a num-
ber of metals have been published very recently. '
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