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Infrared active modes in large clusters of spheres*
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Some previous work on the effect of aggregation on the infrared absorption spectrum of small-dielectrie-
sphere powders is extended in order to take into account various cluster sizes and shapes. A model recently
introduced is critically discussed. Trends are given for the spectral bounds, the largest absorption strengths,
and the possible structure in an infrared powder spectrum, as a function of the number of crystallites.
Application of our results to NiO powder spectrum is briefly made. According to our calculation, the upper
half of the spectrum can be completely covered by modes belonging to the considered clusters. The
assumption that crystallites are spheres is discussed. One conclusion is that it is necessary to go beyond the
approximation of identical ionic crystal spheres if a powder spectrum has to be interpreted.

PACS numbers: 78.20.Dj, 78.30.—i, 78,50.—w

I. INTRODUCTION

In a recent paper, Clippe «al . (CEL) have
briefly summarized various theoretical approaches
to describe the broadening of the infrared (ir)
spectrum of powders with respect 'o that predicted
for bulk systems. ' They have discussed another
broadening mechanism, the clumping effect, which
takes into account the clusterlike consistency of
powders. This physical picture is, in fact, closer
to reality. In addition, their work involves sev-
eral theoretical approximations, which are clearly
stated in their paper. Some of these assumptions
are studied here.

The physical model of CEL consists of identical
ionic spheres, forming small clusters. Within
the clusters, the particles interact via the dipolar
interaction without any retardation effect. The ir-
active modes of clusters containing a few particles
(pair, linear triplet, linear quadruplet, tetra-
hedron) have been reported in Ref. 1. The long
wavelength dipolar-active modes of the infinite
linear chain, the infinite double-strand chain, the
close-packed planar cluster, and the three-dimen-
sional fcc lattice have also been given. For the
first four (finite) clusters, the eigenvectors
(which are needed to calculate the total dipole mo-
ment) have also been calculated and reported.
CEL theory is briefly recalled in Sec. II in order
to introduce the notation.

The ir spectrum of powders is analyzed using
the bulk material ir spectrum as a reference. The
bulk transverse-optical and longitudinal-optical
mode frequencies are, respectively, ~~ and ~~.
It is generally observed that the ir spectrum of
powders spans the frequency range [cur, co~] and
presents some weak structure depending on the
powder preparation. CEL have applied their the-

ory to NiO powders. In such a case, the frequen™
cies of ir-active modes calculated for the above
list of eight clusters cover 70% of t!;e interval
(u&r =401 cm ', ~~ =598 cm ').

However infinite clusters are quite unlikely. If
modes due to such clusters are not considered,
the range covered by the ir-active modes of the
finite clusters covers only about 2'l% of the in-
terval [~r, a&z], and surprisingly the lower half
of the interval is not covered at all. However,
the ir absorption spectrum of NiO powders pre-
pared from commercially available powder has a
broad peak' (above a large continuum) below 500
cm ', i.e., 2(&ur+&o~).

Thus, such a peak does not correspond to any
frequency calculated by CE L. For completeness,
let us recall that ir extinction coefficient for NiO
smoke in air has more structure, ' also unexplain-
able from the CEL set of predicted ir active
modes.

In their conclusion, CEL suggest that other
cluster geometries be investigated. Only geo-
metrical effects have indeed to be considered as
we shall discuss in'Sec. II A (and Appendix A).
Application of the theory to specific powders can
later be made through Eq. (1V) of CEL or Eq. (Al). .

In Sec. II B, much more complex clusters than
those considered by CEL are investigated. They
contain up to 24 spheres. Only results pertaining
to experimentally observable effects are reported
here. In such a respect, some attention is cen-
tered on four different points (i) the low-frequency
region of the spectrum, (ii) the upper edge of the
ir-absorption active modes, (iii) therefore the
cluster spectral bounds, and (iv) the largest "ab-
sorption strength. " The latter is defined in Sec.
II.

The ir-absorption active modes are not easily
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characterized in terms of symmetry properties
of the cluster. In particular "edgelike" and "cor-
nerlike" effects appear in irregularly shaped
cluster s.

Section III contains a discussion of our results.
It is observed that a more or less compact cluster
will have a different type of ir absorption syec-
trum. However, the spectral bounds of the large
finite clusters which we have considered all fall
within the frequency range of the peculiar infinite
extent clusters examined by CEL.

Hence, the upper (lower) half of the spectrum
can (cannot) be described in the framework of the
previous CEL theory. The peak near 500 cm ' is
here not definitively attributed to a specific clus-
ter although one can consider that it is due to ir-
regular very long chains. Several suggestions
for modifying the "all identical sphere clumping"
model are presented. Broadening mechanisms
other than the clumping effect are suggested.

Let ~„be any of the eigenvalues of T3g and xf,
i =1, ~ ' ',N the corresyonding eigenvectors. It
is clear that ~„ is a purely geometrical factor
which depends only on the geometry of spheres
within a cluster, and not on the material. CEL
show that one has -1&~„-2. By convention,
the eigenvalues are ordered in such a way that

From such a set of &„, one can
obtain readily the ir active modes ~& of the pow-
der, when the static &0 and high-frequency & di-
electric constants of the bulk material are known,
along with the value of the Fr6hlich surface mode
+~ and the dynamic polarizability of one ionic
sphere [Eg. (17) in CEL].

Finally, let(x,"), withi =1, ~ ~,N, be the set
of oscillation vectors of the 1, '",N spheres,
corresponding to the mode g (or "eigenshift" &„).
The absorption strength due to the mode p is de-
fined by

12 18

0 ~ ~ ~
21

0
3Ã

T1N

where the 3&3 matrices T&& have elements

Notice that I&& is a diagonal matrix, only if the
sphere centers form a linear chain. The magni-
tude of the dipole moment of a single sphere is
equal to unity.

II. ir SPECTRUM OF DIPOLAR CLUSTERS

A. Theory

CEL aims at obtaining the frequency spectrum
of a cluster of identical ionic crystal spheres
from the overlap between the electric field of each
sphere considered as an oscillating dipole. The
frequencies of the collective oscillations are cal-
culated by diagonalizing a 3+ by 3+ matrix, where
N is the number of syheres in a given cluster.

Let i and& label two different spheres in the
cluster, 0 and & label Cartesian components of a
vector, B be the radius of a sphere, R&& be the
distance between centers of spheres i and J, &~&

be the corresponding unit vector, &~ 8+&~ be the
dyadic obtained from the direct product of 2'f&

with itself, i.e., a matrix for which the o'& ele-
ment is &&& &&&, and 1& „be the unit matr jx.

The matrix to be diagonalized is

under the assumptions discussed by CEL.
The eigenvectors x," themselves are e~S meae-

ingfu/ quantities when eigenvalues are degenerate.
In such a case, eigenvectors depend on the sphere
labeling within a cluster. Only A~ is invariant
with respect to such a permutation of sphere la-
bels and is a meaningful quantity. Hence eigen-
vectors are not drawn nor reported here.

B. Results

A complete list of eigenvalues and eigenvectors
is available from the authors. It is only useful to
report those eigenvalues ~„ for which the absorp-
tion strength A."0 0. Furthermore, several ir-
active modes of a cluster can have a very small
absorption strength. Their observation is un-
likely except if such a cluster is highly probable
in a powder. Not much information is available
on cluster size, shape, and statistics in powders.
Hence it seems appropriate to quote only which
negative and which positive eigenvalue has the
largest A".

Since CEL found ir-active modes in the upper
frequency part of the powder spectrum, but a
smooth central peak is observed, some emphasis
must be placed on the most negative eigenvalue.
However, the most positive eigenvalue will be
reported as well for completeness. In experi-
mental work such most positive eigenvalues could,
in fact, be the most easily identified.

The absorption strength corresponding to the
spectral bounds will be also given. Such A" can,
however, be very small.

In order to characterize the syectrum and the
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mode distribution, other numbers are of interest.
Since eigenvalues can be degenerate, their multi-
plicity m will be given.

The number M of different ~"'s which have a
nonzero A" is a relevant quantity. It is a measure
of the spectrum density. These M eigenvalues are
numbered by an index P (such that &, »~ »„),
which indicates the relative position of the inter-
esting eigenvalue with respect to the extreme val-
ues for a cluster.

One-, two-. , and three-dimensional systems of
touching spheres are successively examined, ar-
ranged according to the number of particles in a
cluster and the cluster complexity or lack of sym-
metry. For the sake of clarity only the centers
of the spheres are indicated by black dots. In the
following tables, only representative clusters are
taken into account. The figures contain more data,
though in a more condensed way.

Results due to CEL are not reported, although
in Ref. 1, a few misprints are corrected.

imum A", For N even (odd), one has M =N (M =N
+ 1). Absorption strength of the spectral upper
bound is always very small.

2. Planar clusters

a. Double- and triple-strand perfect chains.
Such systems already contain some edge and cor-

TABLE II(a). Same as in Table I, -but for spherical
crystal lites forming a perfect double-strand planar
chain. (b) Same as in Table. I, but for spherical crystal-
lites forming a perfect triple-strand planar chain.

p(m)

(a)

3.767
0.0784
5.880
5.753
0.0389
7.701
7.595
0.0095
0.0385

11.255
11.174
0.0237

14.744
14.683
0.0089
0.0137

18.198
18.156
0.0060
0.0027

19.915
19.884
0.0049

3
8(2)
1
3

16
17

3
21
22

3

35
3
4

46
47

3

58
59

1
5

64
65

1
3
1
2
7
8
1
9

10
1
2

15
1
2

19
20

1
3

24
25

1
3

28
29

0.294
-0.164

0.501
0.235

-0.294
-0.399

0.426
—0.371
-0.382

0.482
- 0.476

-0.452
0.525
0.500

-0.492
-0.508

0.548
0.515

-0.516
-0.542

0.587
0.520

-0.524
—0.554

8 10
Linear clusters

This class of clusters contains linear single-
strand chains (Table I). The smallest eigenvalue
is always ~», and always corresponds to the max-

12 15

16 20
TABLE I. Characteristic eigenvalues A, and cor-

responding absorption strength A ~ for spherical crystal-
lites forming a perfect linear chain. Other symbols
(P and m) are explained in Sec. II B. 20 25

p(m)

0.125
-0.25

0.338
0.185

-0.369
0.218

-0.435
0.401
0.238

—0.201
-0.476

0.309
0.251

—0.502
0.423
0.261

-0.522
0.410
0.282

-0.565
0.444
0.288

-0.575
0.427
0.289

-0.577

2

2

0.065
2..935
2.935
3.839
3.839
0.0172
4.725
0.0172
4.725
0.0477
5.6002
5.6002
0.0069
6.468
6.468
0.0064

10.745
10.745
0.0008

13.286
13.286
0.0028

14.131
14.131

2{2}
2 6
1 1
2 2(2)
4 9

2(2)
4 12
1 1
2 3(2)

12(2)
6 15
1 2

3(2)
6 18
1 1
2 3(2}
8 21
1 2

3 5(2)
12 36

1 1
5(2)

16 45
1 2
3 6(2)

16 48

22

1
2
6
8
1
2

14
16

1
3

19
22

1
2

21
24

1
3

26
30

0.561
0.476

-0.263
-0.490

0.592
0.532

-0.339
-0.536

0.618
0.568

-0.390
-0.563

0.621
0.593

-0.425
-0.579

0.637
0.610

-0.450
-0.590

1(2)
3

21(2)
26(2)

2
3

32
36

1

39'
45

2

47
54
1.

56
63

0.129
8.660
8.056
0.057
0.1715

11.360
11.041
0.0728
0.034

14.012
13.827
0.092
0.255

16.633
16.528
0.114
0.0138

19.231
19.184
0.1401

12 16

15 22

12 12
18 24

15 16

21 30
16 16
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ner effects. : The maximum absorption strength
usually ddes not correspond to the minimum eigen-
value [Tables II(a), and II(b)]. Absorption
strengths of the extremum ir-active modes are
always very small, except for the 2 &4 and 2 &6
planar conf iguration.

b. Irregular planar chains. It is always as-
sumed that the center of each sphere is located on
a site .of a regular square lattice. This restric-
tion could be removed in further work, but does
not seem of great importance here.

Planar (single, double, triple, '') strand chains
can have various. "defects" (planar steps and other
dislocationlike structures) leading to asymmetric
distributions of eigenvalues. Table III contains
representative chains with various defects. Due
to the lack of symmetry, in such systems, the
number M of ir-active modes is close to the num-
ber of degrees of freedom (3N) of the cluster. The
maximum absorption strength always corresponds
to a positive shift.

Three-dimensional arrays

Single- and double-strand chainlike systems
which contain edges and corners have been stu-
died, along with other "bizarre" clusters. A few
representative systems are displayed in Table IV

for N~ 16. The maximum absorption strength
can lie either in the upper or the lower part of
the eigenvalue spectrum.

Cluster modes of cubic basic units are also of
interest. In addition to their theoretical simpli-
city they could be present in powders formed from
cubic materials after cutting and grinding. Table
V contains representative values for chains of
simple cubic units. A chain of two fcc units has
been also considered as well as a 22-particle
cluster made of a perfect chain of three fcc units
without external faces.

Except for the chain of one and two fcc units,
the largest absorption strength corresponds to a
negative eigenvalue. In the case of single cubic
unit chains, the spectral bounds correspond to
extremely small absorption strengths. The re-
sults presented in Tables I-V are reported on
Figs. 1—4, along with information pertaining to
all the other clusters which we have examined.
The symbols necessary to interpret the figures are
explained in the Fig. 1 caption.

III. DISCUSSION

In this section, only trends are discussed. As
long as further detailed experimental results are
not available, many of the numerical values are

TABLE HI. Same as in Table l, but for spherical
crystallites forniing a disordered connected planar
cluster. Black dots represent the crystallite centers
sitting on a square-planar lattice.

TABLE 1V. Same as in Table IH, but when spherical
crystallite centers sit on a three-dimensional cubic lat-
tice.

~ ~ ~

~ ~
0 ~

~ ~ ~

~ ~

0 ~
0

~ ~

~ ~ ~

~ ' ~ ~ ~

~ ~
0 ~

:~

~ ~ ~
~ ~ ~

' 0
~ 0 ~ 04 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0

~OO ~
~0 ~ ~
AORS
~ 0 ~ 0

. N M p p {m)

1

4 12 3 3
'l2 12

1

4 11 -3 3
11 12
1 1

6 5 10
2 3

6 12

5 13 3 3

13 15
1 1(2)

5 5 2 3
14{2)

1
3 3

13 15
5 1

5 15 3 3
15 15
1 1
3 3

13
13 15
1

6 9 2 4
9 18
1 1

16 48 6 6
. 8 48

I
' 3

16 11 I 9 38(2)
11 45 2

0.368
0.234- 0.388
0.374
0.254-0.382
0.343
0 ~ 247-0.227-0.306
0.376
0 ~ 266-0

~ 278-0.404
0.404
0.307-0.391
0.3870.257-0.334-0.418
0.404
0.275-0.442
0.370
0.277-0.303-0.315
0.389
0.283-0.398
0.444
0.291-0 576
0.595-0.318-0.513

0.224
3.8 69
2,39 3
0.012
3.865
2.219
0.078
3.896
3.054
1.515
0.2896
4.847
1,825
1.841
0.1499
4.764
1.735
0.348
4.735
2,548
2.525
0.0691
4.708
3.316
0.0028
4.806
3.4 68
0.0049
0.2486
5.5 752
5.279 7
0.004 5

14.496
13'. 321
14.919
7. 621
0.1058

fy
~ go

P. +++

N M p P (ml

1 1 0376
4 4 0 12912 11» 0267

'l 2 12 -0.328
0.393

3 4 0.0884 7 5 7 (2) -0.077
7 1 (2) —0. 317

1 0 ' 504

1 1 0.557
15 4 5 0, 227

8 9 —0.039
15 17 -0, 332
1 1 (3) 0. 479

7 3 2 8(3) 0
3 19 (3) -0.406
1 2 0.540

7 13 -0 089
3 6 ' 0 221

12 23 —0.419
1 1 0.597

15 18 —0 ~ 230
9 10 0 033
19 24 -0 483
1 1 . 0 621

19 22 —0 263
5 6 0.302

22 27 -0 497
2 0.564

12 18 )~ ~) (' g(
18 35 -0.483
1 2 0 579

16 24 211 24 - 1123 47 -0 526

0.1760
2.6159
1.0513
1.0057
0.3776
3.000
1.790
0.7807
0.0959
2.2999

(:OIl03
0,0771
2.472
5.053
0.2818
0.9 66
4.'894
1.139
0.244
5.107
5.986
0.004
0.315
5 338

6.0787
0.8664
0.485
4.075
5.031
0.02 8
0.558

10 037
0.0004

0 0015



7180 M. AUSLOOS, P. CLIPPE, AND A. A. LUCAS 18

cube 8 2

bcc 9 3

fcc 14 4

3 sc units

4 sc units 20 13

S ee (~) 22 15

2 fcc

p p. (m)

1 4 (3) 0.302
2 13 {3) —0.054
1 1 (3) 0 594
2 13 (3) O

3 25 (3) -0.433

1 3 0 717
6 19 (2). O. O91
9 35 -0.281
10 36(2) -0.343
1 2 0.767
7 21 (2) 0.110

11 45 -0.3395
13 49 (2) -0.384
1 2 0 967
7 25 (2) O. O196
9 35 -0.160
15 62 (2) -0.548
1 2 1.058
5 17 {2) 0.300
10 41 (2) -0.237
17 65 (2) -0 5 50

1.214
6.786
0,8858
6 8986
1.216
0.6632
7. 125
2.458
3 ~ 754
0.00009

7. 982
14.887

, 0.0109
7,5 x10-~

7.469
18.573
0.0009
0.1 464
11.382
14.275
0,0942
0.0588
8.758 '

6.0445
0 1062

+) %E

/ ')e.
j ~ i I~~

I
I

I
r

I I
I

/ I I
I x I +

&r
P

TABLE V. Same as in Table IV, but for crystallites
forming a cluster with axial fourfold symmetry (D4).
Crystallites are perfectly aligned along a tetragonal
axis.

not needed. It is in fact necessary to know pow-
der statistics before explicitly analyzing a given
spectrum.

We will examine successively: general trends
as a function of &, general trends for the absorp-
tion strength, general trends for the eigenvalues.

From Figs. 1-4, a few interesting points can
be noticed.

(a}The maximum and minimum eigenvalues in-
crease monotonically in magnitude with the num-
ber of atoms. The rate of increase depends on
the cluster conf iguration.

(b} The maximum absorption strength increases
with the number of atoms.

(c) In the case of planar systems, the largest
absorption strength always corresponds to a posi-
tive eigenvalue, except in the case of linear
chains.

(d) In the case of linear chains, the absorption
strength has two equal maxima. One maximum
always corresponds to the most negative eigen-
value. That corresponding to a positive eigenval-
ue moves toward the center of the spectrum as N
increases.

(e) In the case of three-dimensional clusters,
the maximum absorption strength often corre-
sponds to a negative eigenvalue (except for sys-
tems with O„symmetry, where it corresponds to
zero eigenvalue).

(f) For N( 18, the smallest eigenvalue is always
that of the linear chain.

(g) For a given N, the smallest eigenvalue of
the double-strand chain is always smaller than

0
-0.100

2 4 6 8 10
N

12 14 16 18 20 22 24

-0.150-

-0.200-

-0.250-

-0300-

-0.350-

-0400-

-0.450-

-0500-

-0.550-

-0.600-

~ p X+$ txx
0

0 ~

g x

~ 2s $

, X

FIG. 1. Variation of the
smallest eigenvalue of
ir-active modes for vari-
ous clusters according to
the number N of crystall-
ites in a cluster. Symbols
are as follows: 0 systems
defined in Table I as per-
fect linear chains: 0 sys-
tems defined in Table II(a)
as perfect double-strand
chains; 4 systems defined
in Table II(b) as perfect
triple-strand chains; 6
systems forming a perfect
quadruple-strand chain;
0 systems defined in Table
III as planar clusters;
+ systems defined in Table
IV; X systems defined in
Table V.
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* x

x

0.4-

0

Q ~
~ ~ O ~ I O ~

Q
~ ~

~ 0

0
0

20 4 6 8 10 12 14 16 18 20 22

FIG. 2. Variation of the largest eigenvalue of ir-active modes for various clusters according to the number N of
crystallites in a cluster. Symbols are explained in caption of Fig. 1.

the smallest eigenvalue for a linear chain.
(h) For N&16, the smallest eigenvalue is that

of the perfect triple-strand chain.
(i) For N& 24, the smallest eigenvalue always

corresponds to a planar configuration.
(j) It is conjectured that N must be quite large

before a three-dimensional configuration will
have the smallest eigenvalue. Indeed, CEI. have
indicated that the infinite three-dimensional fcc
lattice seems to have the smallest eigenvalue
(--0.630), but is quite close to the smallest ei-
genvalue for a linear chain (--0.601).

gr} However, in the case of clusters made of
aligned fcc units the largest absorption strength
corresponds to a positive eigenvalue.

(1}For a given N, the most negative eigenvalue
tends to be larger in magnitude for less compact
systems.

(m) For a given N, the largest absorption
strength corresponding to a negative eigenvalue
is in general that of the more compact system.

(n) A noticeable exception to (m) is that of clus-
ters made of fcc units, for which the largest ab-
sorption strength is quite small in comparison to
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22-

21

20-

19-

18-

15-

14-

13-

12-
+

10-

9

8-

6-
5-

3

+ +~g++
~ o

8 + f
3 4 5 6 7 8 9 10 11

I I I I I I I I I I I I

12 13 14 15 16 17 18 19 20 21 22 23 24

FIG. 3. Largest absorption strength corresponding to a negative eigenvalue A,„ for various clusters, as a function o
the number N of crystallites in a cluster. Symbols are explained in Fig. 1 caption.

that of planar systems and has an eigenvalue ~
close to zero.

(o) For a given N, the largest absorption
strength corresponding to a positive eigenvalue is
that of the most compact planar system.

(p) The most positive eigenvalue corresponds to
the most compact system for a given &.

(q) For a given N, the largest absorption
strength is very close to that of the one-strand
linear chain.

From statements (h)-(j) in particular, it ap-
pears that the N- cluster considered by CEL
gives the true theoretical limits for the ir spec-
trum of their, model powder. In Appendix A, we
indicate that it is sufficient to discuss the spec-
trum in terms of the set of universal parameters
A,p.

However, one can estimate the frequency range
which is predicted for a few clusters and give a
few frequencies corresponding to large absorption
strength in the case of a typical powdex, like NiO.
In Table VI, the results of an application of for-
mula (17) of CEL to the above data are reported.

(Material characteristics are given in Appendix A).
The NiO powder spectrum' which could be cov-

ered by the frequency range predicted along the
CEL model is presented on Fig. 5. The extreme
ir-active modes are at 503 and 585 cm ' for the
~& 24 clusters which we have considered, and
for the e„& and (Frohlich mode) a&, values given
in Appendix A for NiO.

Powder pictures usually show clusters which
are either compact globules or long chains with
N finite P& 30 on pictures which we have seen). '
The above range of frequencies could be some-
what modified if the values of &0, &, and ~, are
slightly modified. Indeed bulk values are used
here.

However, it seems difficult to reproduce the
complete absorption spectrum from CEL model
and its extension. Even the & =24 linear chain
lower ir-active absorption mode is situated above
500 cm '. Therefore the broad peak at 500 cm '
can only be cautiously attributed to the presence
of very long, most likely somewhat irregular,
chains.
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22-

21-

20-

19

18"

17"

16-

15-
&0

13-
+X

12-
X X +

10-

X X X

X X

Q
+ +
+ +

2 3 4 5 6

+
+
I I I I I

7 8 9 10 1.1
I I I I I I I I I I I I I

12 13 14 15 16 17 18 19 20 21 22 23 24

I

FIG. 4. Largest absorption strength corresponding to a positive eigenvalue A„ for various clusters, as a function of
the number N of crystallites in a cluster. Symbols are explained in Fig. 1 caption.

C
Cl

Vl

e0

477 503 585 592

Ni0
Powder

300 400 500 600
~~ lcm")

FIG. 5. ir absorption
spectrum of NiO powder
from Ref. 2. Shaded area
corresponds to frequency
range covered by results
in Ref. 1 and present work.
Dashed lines correspond to
extreme calculated fre-
quencies for clusters with
N&24 in Sec. H.

According to our analysis and some "delicate"
intuition, several approximatiena in our model
can be challenged.

(i}Powder spheres do not need to be identical.
Since the sphere radius enters as a scaling factor
in Eq. (2), it is easy to generalize such an equa-
tion in order to take into account a distribution of
radii. Although the Frohlich surface mode ~, is
radius independent, collective oscillations will
depend on radius distribution.

(ii} Similarly, powder spheres do not need to
have all the same dipolar moments. In fact a
scaling relation holds; since the dipole moment
of a sphere is proprotional to its volume, only

the factor P&D', has to be considered as a random
number, where D& is the diameter of the sphere
containing a dipole p, . A random distribution of
dipolar moments will be considered in future
work.

(iii) Powder components do noi need to be
spheres. Indeed, independent work on single
cubes 'and rectangular parallelepipeds has indi-
cated the need to consider edge and corner ef-
fects. ' In cubes, modes corresponding to the
single Frohlich mode of a sphere have been cal-
culated. Their position depends on &(~) also. It
was found that only a few modes have rather large
dipolar nature. They are spread over the whole
(&cr, &ul, ) range, the extreme modes having the
greatest strength. Some mode accumulation with
small strength occurs near ~-0. In fact, not too
anisotropic parallelepipeds favor an eigenvalue
close to zero.

It would be of great interest to look for collec-
tive modes of an assembly of cubes or parallelepi-
peds. However, some complication arises be-
cause the cube modes have various strengths in
contrast to the single mode with large strength of
a sphere. One might first search whether faces
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TABLE VI. Representative frequencies of ir-active modes for a NiO powder as obtained
from Eq. (A1) and from results of Tables I-V. Symbols are those of Tables I-V. Although
N and M are not sufficient to define uniquely a cluster, exact correspondence exists here
between Tables I-V and this Table.

Cluster

ir absorption
frequency range

(cm-')

ir modes with
largest A"

(cm-')

N=8, M=12

bcc unit N=9

N=9, M=22

Linear chain
N =11

N=12, M=18

Linear chain
N =16

Double-strand chain
N=16

N=16, M=24

Planar rectangle
N =20

2 fcc unit N = 23

Linear chain
N =24

Triple-strand chain

1
12

1
22

1
17

1
18

1
16

1
20

1
24

1
26

1
17

1
24

, 32

573.17
521.72

574.68
520.37

575.42
513.46

570.06
505.81

573.83
514.99

569.67
503.43

572.71
51.2.11

574.28
510.09

576.19
507.48

585.26
507.04

570.09
501.93

575.77

500.75

562.21
543.68

552.00

565.33
535.33

- 564.52
505.81

567.84
529.48

564.86
503.43

571.98
513.98

552.32
522.52

575.79
526.05

565.28
537.21

565.06
501.93

575.48
543.65
516.49

5
19

3
17

3
16

2
19

11
23

3
22

5
10

4
24

2
21
29

or edges have simple dipolar modes, say 0, ,
then apply Eq. (17) of CEL, or Eq. (Al).

(iv) More generally, other geometries are pos-
sible. ' Work on small ionic cluster and metallic
clusters has indicated the peculiar fivefold sym-
metry of such systems. 4 They are characterized
by a large amount of edges and corners with re-
spect to a given surface and volume.

(v} An interaction similar to that between elec-
trons in a polarizable medium can also take place
between fluctuating dipoles. This indirect inter-
action has been recently considered. '

(vi) Cluster-cluster interactions can also lead
to some spectrum broadening, as it will be shown
elsewhere.

(vii} Finally, higher-order multipolar interac-
tion could be considered.

In conclusion, it seems evident that the present
work has given some insight toward describing

APPENDIX A

According to Ref. 1, the ir active modes ~& are
given by

1+&„(&,—1)/(e +2}
1 +&„(e„—1)/(e„+2) (A1)

where &, is the Frohlich surface mode defined
by e(&u, )+2 =0, while &0 and e are the static and
high-frequency dielectric constants of the bulk
material.

Consider the typical case of NiO powders for
which w, =552 cm ', e =12, & =5.4, the above

some ir spectrum powder broadening, although it
falls short of fully explaining a given powder spec-
trum. Much more work is still necessary before
a powder spectrum can be easily and completely
interpreted.
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relation becomes

~u = ~& ((1+0.786 A.„}/(1+0.595 A,„)]' ' . (A2)

and consider that the relationship between +„and
~„ is approximately linear in this range. Since
&0&&, the latter relationship is indeed approxi-
mately valid when

Since -1-~„~2, the relation between ~„and ~„
is in general nonlinear. Some algebra shows that
the variation of &„with ~„ is, however, mono-
tonical in the allowed range. However, we have
found here eigenvalues such that -0.5VV~~„( 1.058 (hence a range of ur„extending from 508
cm ' till 585 cm '). Hence one can approximate
the above relation by

(As}

i.e.,
i&„[(1.2V for NiO.

Therefore it is quite sufficient for our purpose
to compare our results to a specifih (NiO) pow-
der spectrum centered on ~„=0, in terms of the
universal (geometrical) parameters &„ instead of
GOp ~

*This work has been performed in the framework of the
joint project Electronic Structure in Solids (ESIS) of the
University of Liege and the University of Antwerp.
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Physics- Belgium.

'P. Clippe, R. Evrard, and A. A, Lucas, Phys. Bev.
8 14, 1715 {1976). Notice a few misprints in tables
of this reference. In Table I, line 9, instead of 2.33,
read 2.23. In Table II, line 9, instead of-0.169, read
0.338; line 9, instead of 0.072, read 0.16; line 10, in-
stead of 3.5, read 3.83; line 15, instead of 1.7, read

0.23; line 15, instead of 0.160, read 0.119; line 16, in-
stead of —0.204, read —0.164. In Table III, line 10, in-
stead of 539.6, read 542.3; line ll, instead of 542.0,
read 566.6; line 16, instead of 559.7, read 557.8.

2A. J. Hunt, T. B. Steyer, and D. B. Huffman, Surf.
Sci. 36, 454 (1973).

3D. Langbein, J. Phys. A 9, 627 (1976).
4T. P. Martin, Phys. Bev. B 7, 3906 (1973).
5P. P. Schmidt and J. M. McKinley, Solid State Commun.

16, 1161 (1975).


