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It is shown that the variation of the total energy, as constructed in density-functional theory, with respect
to an orbital occupation is equal to the eigenvalue of that orbital, independent of the detailed form of the
exchange-correlation functional. This leads to a rigorous connection between the ground-state energies of N-
and (N + 1)-particle systems, which is useful in the calculation of certain excitation energies.

In the density-functional theory (DFT) of Hohen-
berg, Kohn; and Sham' ' it is shown that the total
energy is a unique functional of the charge density
p(r), and is minimized when evaluated for the true
ground-state charge density. These theorems
have been proven only for the ground state, and it
is not known whether, or how well, the density-
functional formalism applies to properties of
excited states. Nevertheless, the theory can be
used to calculate some excitation energies; for
example, the ionization potential of an atom is
the difference of the ground-state energies of the
atom and of the ion. In this Comment, a simple
proof is given that the derivative of a generaliza-
tion of the total energy with respect to the occupa-
tion of an orbital is equal to the eigenvalue of the
effective one-electron Hamiltonian for the orbital.
This is the DFT version of a theorem originally
proved by Slater' for the XQ. method, which he
applied to the calculation of excitation energies
by introducing the "transition state. "' Apparently,
it is not universally realized that a similar state-
ment is true in DFT, regardless of the detailed
form of the exchange-correlation functional E„,[p].
This extension of the transition-state concept to
DFT has applications for a broad class of prob-
lems, such as ionization potentials and electron
affinities of atoms and molecules, and the work
function of solid surfaces.

We first give a short summary of DFT, then
introduce a generalization of the total energy E,
which is defined for fractional total number of
particles. This permits the investigation of deri-
vatives of E with respect to occupation number.
We then use E to connect the ground-state energies
of N and (N+ 1)--particle systems, and to investi-
gate an unusual situation which arises in "local-
density" calculations for atoms.

In DFT, the total energy is a functional of the
electron density p(r):

&[p]=T.[p]+ IJ[p]+&..[p]

where T, is the kinetic energy of a noninteracting
electron system with the same density p(F), U is
the classical Coulomb energy, and Z„,[p] is the
exchange-correlation functional. While E„,is at
present only imperfectly known, the utility of DFT
lies in the fact that F.„,is amenable to approxima-
tion, e.g. , in local-density theory it is taken to be
the integral over r of the same function of p(r)
as it would be of this local electron density in the
homogeneous electron gas. ' '

Minimization of the total energy with respect to
p(r) leads to the effective one-particle equation
(in rydberg units)

[-V'+ V„(r)+v„(~)]g; = e;y, ,

where V„(r)=—5U/5P(r) is the classical Coulomb
potential and v„,-=5E„,/6p(r) is the exchange-
correlation potential. Equation (2) is to be solved
self- consistently given the condition

(2)

j j ~j j H xo

in terms of which the kinetic-energy functional
T,[p] is defined by

T.[p]=g &»

j'~ 1

for an N-electron system (in other words, given
the self-consistent solutions of Eq. (2), one con-
structs the t, from Eq. (3), and then co. nstructs
T,[p] by summing up the t, of the lowest N states).
Since the definition of T, is important in all that
follows, we emphasize that it iq defined only in

N

p(R= g ~q;(~) ~', (2a)
j=l

where the sum goes over the lowest N normalized
solutions of Eq. (2) for an N-electron system If.
v„,were the exact exchange-correlation potential,
the self-consistent solution of Eqs. (2) and (2a)
would lead to the exact ground-state charge density
of the system. We introduce the quantity
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terms of the lowest N solutions of Eq. (2), under
the self-consistency condition given in Eq. (2a).

The theory outlined above applies only to the
ground state; since the state in which the occupa-
tion of one of the single-particle states has been
infinitesimally changed is not necessarily a ground
state, this theory cannot be used directly for the
calculation of derivatives with respect to occupa-
tion. However, a suitable generalization of the
theory can be constructed by introducing occupa-
tion numbers n; for each of the states, and de-
fining a charge density by

p(r) = Q ~;
~
q)(r)

~

'. (4)

If we think of the n,.'s as parameters, it is clear
that a self-consistent solution of Eqs. (2) and (4}
can be found for almost any' given set of n, 's,
including nonintegral values of some of the n, . We
define

nest;.

Then, for a given set of n;, the self-consistent
solution of Eqs. (2) and (4) will make

E = T+ U[ p]+ E-„,[p] (5)

stationary [U and 8 depend on the n, 's through
Eq. (4)]. This is easily proved by varying E with
respect to gf, subject to the constraint that all the

P, are normalized. While it is well-defined math-
ematically, E is not equal to the total energy E in
general, because T,[p] is not equal to T for an
arbitrary set of n, .' When the n,. have the form of
the Fermi-Dirac distribution, however, E is nu-
merically equal to the total energy E by construc-
tion. Thus Eq. (5}defines a quantity which is a
continuous function of the n, , which is stationary
with respect to variations in electron density for
an arbitrary set of n, (including nonintegral values)
whenever Eqs. (2) and (4) are satisfied, and which
takes on a value equal to the true total energy
whenever the n, assume the form of the Fermi
distribution. E plays an important role in any
problem in which it is useful to introduce fractional
occupations or a fractional total number of elec-
trons (The Hohenberg-Kohh', total energy is defined
only for integral total number of electrons, being
the total energy of a real electron system. ) For
example, E defines a function which can be used
to make an exact, continuous connection between
the ground-state energies of the N and (N+1)--
particle systems, by introducing a.gradually
increasing fraction of an electron into the lowest
unoccupied level of the N- particle system. As in
Slater's transition state, ' an "interpolating" ap-
proximation to the difference between the ground-

state energies of the N an-d (N+1} particle
systems can be obtained from partial derivatives
of E evaluated at a state halfway between. Since
E is an auxiliary mathematical quantity, defined
for fractional occupations, this is a perfectly
legitimate procedure" within the framework of
DFT.

We now prove some useful properties of E.
Consider the variation of E with respect to one of
the n, , allowing the orbitals to relax [i.e. , solving
Eqs. (2) and (4) self-consistently in the presence
of the variation]. From Eq. (5), we have

~t&—= tg+ j ng—
8 , , 8-'

+ VH+v c ~
2+ n~

~ dr. 6B/q, f')
H xc f j

Introducing the second part of Eq. (3) into this,

—=e,+ ~, —'+ (&,+~„,) ' drl (I)
aZ Bf B~g~

Now, according to the first part of Eq. (3),

' (-V')q,.dr+ c.c. , (8)
an, ,- an,.

where c.c. denotes the complex conjugate of the
preceding term. Putting this into Eq. (7), one
finds

—=. r, r rr,.
~

'(—v'r V„rr„,jggrrr. r).
~n]

(9)

However, according to Eq. (2), the last term is

rr, —f ~g, ~~*uF=O,
&n;

because g,. are normalized. Thus one has

g
Bng

independent of the detailed form of E„,[p].
An alternative derivation of this result can be

given: thinking of E as a function of the n,. and as
a functional of p, one has

BE IBE BE Bp

lBn; n Bp(r) Bn;

Now, E is stationary with respect to variations in

p when Eqs. (2} and (4) are satisfied; it follows
that BE/Bp(r}=0. Thus, only the first term in Eq.
(11) survives, and it can be shown [either from
Eqs. (5)—(9) or from first-order perturbation
theory] that this term is equal to q, Since the
Hohenberg-Kohn' theorem applies only to varia-
tions in which the total particle number is fixed,
this derivation shows explicitly how Eq. (10) is
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q;n dn.
0

(12)

Rather than actually calculating «(n) for all values
of pg between 0 and 1, approximations based on
numerical techniques for performing integrals can
be introduced; for example, the transition state'
corresponds to the lowest-order approximation of
evaluating the function inside the integral at only
the midpoint n= &. Higher-order approximations
can also be used. "

an extension" of Hohenberg-Kohn-Sham theory,
because the first term in Eq. (11) is the change in
E due to the change in the particle number (the
second term in the change in E due to the change -in

the charge density).
The minimum value of E for fixed total number

of electrons (and for each n, between zero and one)
occurs eithe~ when

—+X=0BE

B1Zg

(X being a Lagrange multiplier arising from the
constraint on the total particle number) or at the
"end points" (each n,. equal to zero or one). It
follows from Eq. (10), however, that E is mini-
mized at the end points, when the n, have the form
of the Fermi-Dirac distribution (and, by construc-
tion, it is then equal to the true ground-state total
energy of the system). This is true because,
according to Eq. (10}, transferring an infinitesimal
amount of charge from an occupied to an unoccu-
pied state can only increase E, inasmuch as the
eigenvalue of the unoccupied state must be higher
than that of the occupied one. Conversely, no
configuration with holes below the highest occupied
level can correspond to the minimum value of E,
because the value of E for any such configuration
can be lowered by transferring an infinitesimal
amount of charge into one of the empty States.
Suppose this is done, and'Eqs. (2) and (4) are
are solved self-consistently for this new configura-
tion. The eigenvalues c, will shift positions, but
E can be lowered still more if any holes rem@in
below Qe highest occupied level; this argument
can be continued until no holes remain, where E
assumes its lowest value (one can lower E still
more by introducing more than one electron into
the lowest occupied state, but at this point the
connection with the true total energy of Fermi
systems is lost; since the g, 's no longer corres-
pond to a Fermi distribution in this case, Ee E).

Consider using Eq. (10) to connect the ground
states of the N- and (N+1)-particle systems, by
introducing n (0 & n& 1}electrons into the lowest
unoccupied level. Since E is equal to the true
total energies for &=0 or 1, one has exactly

It follows from Eq. (10}or Eq. (12) that the
Fermi energy of an extended system (q, for
the highest occupied state relative to vacuum) and
the chemical potential (E~., —E„)are equivalent, "
because q,. for the highest occupied state will
change only infinitesimally upon the addition of a
single extra electron to an extended system already
containing a large number of electrons.

We now turn to an interesting situation which,
in contrast to the derivations given above, is not
yet completely understood. This situation (in
which E is of use as conceptual tool} arises in
the application of the spin-polarized local-density
approximation'4 to finding the ground-state energy
of atoms when the calculations assume spherical
symmetry. " In some cases, notably iron and
cobalt, "a self-consistent solution of Eqs. (2} and
(4) for the d"s' configuration leads to an empty
s state below the partially filled d states, while
g, calculation for the d" s conf jguration puts the
d levels below the s levels, so that the d levels
have holes. Since neither of these configurations
corresponds to the Fermi distribution, ne:their
gives the minimum value of E, and neither gives
the local-density Approximation to the ground;:—
'state energy following from Eq. (1) (because 2',
e T in either case). It is not" clear whether this
situation arises because of the use of the local-
density approximation, or whether it is due to the
assumption of spherical symmetry. However, as
was first done by Slater and co-workers, '~ the
situation can be investigated by studying E foi the
configuration d" "s""for x between zero and one,
introducing these fractional occupations (with Zn,
fixed} in order to search for a minimum of E.
What happens is that the s and d levels cross for
some nonintegral value of x." At this point, E(x}
is minimized, since its. derivative with respect tc
x vanishes according to Eq. (10). The true total
energy is still not necessarily equal to E at this
value of x, however, because this configuration is
a generalization of the Fermi distribution, with
unequal fractional occupations of the highest levels,
and it has not been proven that T for such a con-
figuration is equal to T, for the corresponding
charge density. In a strict interpretation of Kohn-
Sham' theory, this means that there is n0 charge
density for this problem which minimizes the total
energy and which is generated from a Fermi
distribution.
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