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Derivation of the temperature dependence of the order parameter
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The orientational free energy and order parameter for solid orthohydrogen and paradeuterium are obtained

using a Green's-function diagrammatic techmque developed by the authors. The orientational interaction is

assumed to be electrostatic quadrupole-quadrupole. The zero-phonon, and J = 1~J = 3 effects on the

order parameter are also taken into account. The expressions for the free energy of the orientationally

ordered and disordered phase are obtained in 1/z approximation, where .z = 12 is the number of the nearest

neighbors in the fcc lattice. An equation for the order parameter is obtained from the minimum condition for

the free energy. The orientational phase transition is predicted to be first order. The critical temperature is

found to be 3.64 K for ortho-H, and 4.63 K for para-D, . The temperature T& and T, which are the

maximum (T&) and minimum (T,) metastability limit for the ordered and disordered phase, respectively, are

also calculated. They are T, = 0.60 To and T2 = OA6 To where' To is the critical temperature obtained

from the molecular-field theory. The results are in a good agreement with experimental data.

I. INTRODUCTION

In the past ten years, there has been extensive
theoretical and experimental activity directed at
solid hydrogen and deuterium. These solids with
very high concentration of molecules in a metasta-
ble state, J =1 (orthohydrogen and paradeuterium),
have many properties in common with magnetic
systems. In.particular, at low temperatures (2.8
K for ortho-H, and 3.8 K for para-D, ), there is an
orientational ordering of the J =1 molecular orbit-
als, closely analogous to the spin ordering in anti-

.ferromagnetic systems. ' A structural change
from a hcp to a fcc lattice accompanies the phase
transition. from the orientationally disordered to
the ordered state. ' Because of a considerable hys-
teresis of the structural transition, the fcc phase
can be stabilized by thermal cycling and therefore
the orientational and structural transitions can be
separated'~ at least to a certain extent. Thus, to
consider the order-disorder phase transition in the
fcc lattice it seems to be reasonable.

In the ordered state, the axis of symmetry of a
rotating molecule in the J=1 state is oriented along
one of the [111Jbody diagonals of the fcc lattice.
The arrangement is such that for each of the four
simple cubic sublattices comprising the fcc struc-
ture, the molecular axes of symmetry are parallel.
Thus, four orientational sublattices exist in a
crystal and the space group of the system is I'a3
(T'„). Various experiments, such as elastic neu-
tron' and Raman' scattering, provide a firm basis
for this assumption. The Pas structure was also
predicted theoretically in the classical' ' as well
as in the quantum" "cases.

A quantity of particular interest for the investi-
gation of the orientational transition in solid ortho-

H, and para-D, is the order parameter, propor-
tional to (3 cos'8- 1), where 8 is the angle between
the internuclear axis of a molecule and the molec-
ular symmetry axis, and (~ ~ ~ ) denotes an ensemble
average. The nuclear-magnetic-resonance (NMR)
experiments performed on polycrystalline samples
of high concentration of para-D, (Ref. 14) show that
belovr the molecular ordering temperature the NMR
line suddenly becomes very broad and assumes the
shape of a Pake doublet, whose magnitude of split-.
ting is, accordingly to the theoretical predictions, "
proportional to (3 cos'8-1). Such a rapid variation
of the order parameter at the critical temperature
is characteristic of first-order phase transtions.
The temperature dependence of the order param-
eter for oriented ortho-H, and para-D, monocrys-
tals was also investigated via Raman scattering. '
The results are consistent with the assumption of
first-order character of the orientational transi-
tion.

Several calculations, based on molecular-field
(MF) theories, ""'s Green's-function methods
(RPA), ""cluster expansions, ""and the Kirk-
wood technique of restricted traces, '4 have been
performed to determine the temperature depen-
dence of the order parameter. All these theories
do not take into account, with a satisfactory ac-
curacy, the effect of short-range order on
the order parameter, and consequently, they over-
estimate the transition temperature by a factor
ranging from 2 to 1.3. Because of the nature of the
orientational interactions between molecules in
solid ortho-H, and para-D„"" the short-range
order is indeed important in the critical region.
An attempt to investigate the effect of correlation
on the transition temperature has been done by
Englman and Friedman. " They have used an ap-
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proximation scheme first developed by Lines for a
ferroelectric. " Unfortunately, this approach is not
suitable to calculate the order parameter.

For an efficient study of the effect of short-
range order on the order parameter for a wide
range of temperatures it is necessary to de-
velop a more general method than MF theory or
RPA. For an arbitrary spin and pseudospin sys-
tem, however, this is a rather difficult task re-
quiring a special diagrammatic Green's-function
technique. Such a diagrammatic technique has been
originally developed for a few simple models of
ferromagnetism by Izyumov et aL.' and was gen-
eralized in Ref. 29 to a large class of spin sys-
tems, using the formalism of the standard basis
operators. Unfortunately, the diagrams of the
method of Ref. 29 become rather complicated in
dealing with systems having a large number of sin-
gle-body states, and moreover, the method cannot
be applied when the singlebody levels are degener-
ate.

Another diagrammatic approach, considerably
simpler than that of Ref. 29 and applicable to an
arbitrary spin and pseudospin system, was pro-
posed by one of the authors. " The quantities con-
sidered in our method are the many-point irreduc-
ible Green's functions (IGF's) for imaginary "time"
arguments. In the present paper, we describe this
method in application to the phenomenon of orienta-
tional ordering in solid ortho-H, and para-D, . As
will be seen, the results obtained are in a good
agreement with the temperature dependence of the
order parameter, determined experimentally via
measurements of the Pake doublet splitting. '

The remainder of the paper is arranged as fol-
lows. In Sec. II we briefly discuss the Hamiltonian
of the system and define the order parameter.
Section III contains the development of our method.
%e introduce the generating functional for IGF's
and discuss the diagrammatic expansion scheme.
Special attention is paid to the diagrammatic series
for the orientational free energy in I/z approxima-
tion, where z =12 is the number of nearest neigh-
bors of a site in the fcc lattice. In Sec. IV we ob-
tain the equation for the order parameter using a
minimum condition for the free energy. In Sec. V
we calculate the orientational free energy for the
disordered phase. The temperature which is the
minimum limit of metastability for the disordered
phase is also found. In Sec. VI the results are dis-
cussed and compared with experimental data and
previous theories.

Part of our results have been reported in Ref.
31. Because of some numerical and algebraical
errors the results given in" differ from those ob-
tained in the present paper.

~ay ~2m && ~2n +g
m, n

(2.1)

where m, n=0, +I, +2; &3;=(t)„$~)describes the
orientation of a molecule at the ith site relative to
the local coordinate system. The local coordinate
system for the ith molecule is chosen in such a way
that the z; axis coincides with the molecular-sym-
metry axis

mn nm 10 (y0 )1 /21ij Ji 9

x QC(224; MN)Y4 N, „(Q,,)*
Af, n

xD~ (x~)*D~.(xg)* (2.2)

where C(224;MN) is the Glebsch-Gordan coeffi-
cient, D,„(X&) is a rotation matrix, X, is the triad
of Euler angles specifying the orientation of the z&

axis with respect to the cubic crystal axes, 0;,. de-
notes the orientation of the vector R;& connecting
the ith and jth sites, relative to the crystal axes,
and

(2.3)

where R, , =( H~&(, R, is the distance between the
nearest neighbors, and

I' = 6e'Q'/25R' (2.4)

is the EQQ-coupling parameter. Here eQ denotes
the molecular quadrupole moment. Because of the
weakness of EQQ interaction, the rotational quan-
turn number J;.of each molecule remains a good
quantum number and the Hamiltonian (2.1) can be
projected into the subspace of Ji =1 states. So,
we get"

Is&io IlloB (2 5)

where

yg&" =
y& ~

=
y~&

' "= (I/20m)A ~A„v&&"

withA0=1, A, =vs~, A, ,2 =/ , and—
O', =3(J',)' -2,
0 =J J'+Z'J
0 k2 (gk)2

(2.6)

(2.7a)

(2. lb)

(2.'lc)

II. HAMILTONIAN AND ORDER PARAMETER

It has been shown that in solid H, and D, the dom-
inant contribution to the anisotropic interactions
is an electrostatic quadrupole-quadrupole (EQQ)
coupling and that the EQQ interaction leads to an
orientational ordering. "" Following Raich and
Etters" we write the EQQ Hamiltonian for the ori-
entationally ordered phase in the form



18 DERIVATION OF THE TEMPERATURE DEPENDENCE OF THE. . . 7147

where '

(2. Id) om g mo 5 g oo (2.13b)
Hereg&, 8';, and J& are the components of the an-
gular momentum operator J; for a molecule on
site i. The axis of quantization for J, is taken
along the local ~, . axis.

Of course, in ortho-H, and para-D, crystals sev-
eral many-body effects modify the EQQ interac-
tion. These effects are"' (i) static phonon renor-
malization, (ii) dynamic phonon renormalization,
and (iii) screening effects. They lead to the re-
placement of EQQ interaction parameter I', by the
effecti.ve one I'= 0.8I',." By fitting to Raman ex-
periments one obtains'

1"„,:=0.582+0.01 I cm ' =0.84+0.02 K, (2.8a)

lD, =0.74V+ 0.019 cm ' =1.0'1 +0.03 K . (2.8b)

These values are in a good agreement with other
experimental values.

The order parameter is a measure of ordering
of average molecular quadrupolar moments. We
define it as follows

ao=~ g (Z', )', (2.14)

where
I

E zV&-xylo

and

(2.15a)

e, =-12+yoJo . (2.15b)

If the sum (2.15b) is restricted to the nearest
neighbors only, one obtains"

e0=19I' . (2.16)

Taking into account further-neighbor interactions
we have'4

e, =21.20'' . (2.17)

which follow from symmetry corisiderations, ' we
have

o = -(20m)'~' Q (Y'oo(oo;))
No

Introducing the operators

5O;. =O, -(O;) (2.18)
5, 1

(3 cos'8. —1)
2 N0

(2.9) of the deviations of 0& from their average values
we write the two-body part of H (2.5) in the form

o = -~o (3 cos' 8 -1), (2.10)

where N, is the number of molecules in the crys-
tal, and ( ~ ~ ~ ) denotes the ensemble average Be-.
cause of the symmetry of the Pa3 space group we
have that (I"»(oJ,))is the same for each orientational
sublattice, and therefore,

V= ggy, ,"50, 5O," .
iy - fnn

(2.19)

In the following, we will assume that y&&" 0 only
for nearest neighbors. The total Hamiltonian can
be written as follows

where the axial angle 8 is related to any molecule.
In the manifold J;=1, we obtain

II =E+H, +V,
where

(2.20)

mph~rot J=l (2.12)

The problem now is to separate the effective
single-body part Ho from the Hamiltonian (2.5).
Using relations

o, = g(0')=(0') . (2.11)
0

Because of a small admixture of J, =3 states to J,
=1 state, o differs only slightly from 0'~, . The
correction due to J, =1-J, =3 virtual transition
can be taken into account by multiplying of o~, by
a factor g„, equal to 1.025 for 8, and 1.063 for D,
(see Appendix A). The further renormalization of
o'g=& is caused by the interaction of the "zero-point"
phonon modes with librational degrees of freedom.
Harris" "found that then the order parameter is
reduced by a factor )oh =0.98. So, we have

8 =-o,(o, +4) gy'„' (2.21)

is the energy of the mean-field ground state.

III. ME'SHOD

The quantities, employed in our method, are the
many-point IGF's. They can be defined by means
of the generating functional as follows:

K(x„.. . , x,)=
( ~ ( )

. , (3 1)
5'@[q]

5qx~ '''6qxg, ,(„) 0'

where &(x„.. . , xh) is the k-point IGF, x,
= (i „m„7,) (1 & I & k), i, denote a site in a crystal
lattice, m, = 0, +1, +2 and 0 ~ v ~ p is the thermo-
dynamical "time", q(x) is a test function, and 4 [q]
is the generating functional defined as

(Of ) 5 ooj'=1 (2.13a) 4 [q] = in@[q], (3.2)



K. %ALASEK AND K. LUKIKB, SKA-WALASEK 18

where

Q[q]=Tre 8"T,e'o' (3 3)

H is the Hamiltonian of the system defined by Eq.
(2.5) or (2.20), P is the inverse temperature, T
denotes the v ordering operator,

where x= (i, m, v) and y = (j,n, r ').
It is easy to see that the left-hand side of Eq.

(3.7) can be represented in the functional form as
follows:

Q[q]= e+ Tr e ()

(llo, q) = fdxqo(x}q(x)
X eXP — y = &Oo 4f

6q '
5q

(3.13)

(3.4)
S

qT tlo, (v)qp(7) .
t t

50(x) = 50; (r) =e'H50(e '" is the operator 50(
(2.18) in the Heisenberg representation, and

f dx ~ ~ ~ denotes the "integration" over the x argu-
ment, i.e.,

where

(
5 5

5q
'

5q
' 5q(x) 5q(y), y = dxdyy x, y)

" 5q", (~) 5q,"(&) '

(3.14)

(3.5} 4 .[ql = »Q. [q] (3.15)

From Eqs. (3.1)-(3.4), it is easy to see that

K(xll ' ' q x)q) K( lq mlq ~lq ' ' ' l )qq m(}q ~l))

=(T,50(,l (v, ) . . .50; ) (v),)) for k a 3,
(3.6)

where( ~ ~ ~ ) =Tre HH ~ /Tre HH. For k&3 the
relation between (T,50( l(r, ) ~ ~ ~ 50()'(TH)) and IGF's
is similar, but more complicated than the relation
between the statistical moments and cumulants,
respectively.

It is a standard procedure- to obtain the functional
Q[q] (3,3} in the interaction representation, i.e.,

Q[q]=e Tre "'T,exp (50,q) — I dw p(y)
0

Q [ ] T WHp~ (PO, (q) (3.16)

The expansion of exp[-(5/5q, y5/5q)] into a power
series with respect to y leads to a complicated
series for Q[q], containing such quantities as the
coupling y(x, y), the test functions q(x) and zeroth-
order irreducible Green's functions (ZOIGF's) de-
fined for 0 variables x„.. . ,x„as follows:

5'e, [q]K,(x„.. . , x,)=
( )

'
( )

(3 17)

Note, that K,(x„.. . , x„) is restricted to a common
site in a crystal lattice, e.g.,

I ~

Kp(xl ~ ~ ~ xH) ™p($lml Tl . ~ ~ Z)}, m() f)q}

=e 8 Tre 8"pT exp[(50, q)-(50, y, 50)],

where
(3.7)

I ~x K()(lq ml, 1 l,'. . . q lq m)q y)) .
(3.18)

(qo, q)= f qxqo(x)q(x),

50(x) =50, (7) =e'Hp50, e '"',
(3.8)

(3.9)

This fact can be easy proved. The functional

Q, [q] (3.15) can be written as follows:

Q.[ql = II Q.[q ] (3.19)

H p is the mean-field Hamiltonian (2.14), the con-
stant E is defined by Eq. (2.21),

I)'(~) etHpye tHp (3.10)

where I)' is the interaction Hamiltonian (2.19),

(50, y50) = t y (x, y) 50(x)50(y) dx dy

y(x y) =yP;"5(7' -t') (3.12)

g yg&" dk 50~ (7')50&(s), (3.11)
j mn 0

and y(~" is an EQQ coupling constant. Here y is an
integral operator with a kernel y(x, y) defined as

where

Q [q ] Tr e (}Hp((&T e(()(((}(()

with

e„(i)= ~(z;)',
and

B

{IIOg,ql}=g f q IIOr(q)q;( ).

Now, ep[q] takes the form

+.[ql= 2 4'.[q ]

(3.20)

(3.21)

(3.22)

(3.23)
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where

(3.24)

From Eqs. (3.26}, (3.2V}, (3.2), and (3.3) it is
easy to see that

where G„denotes the expression associated with
the connected diagram G„having n interaction
lines, Z «~ &

denotes the summation over all con-
nected and topologically distinct diagrams with n
interaction lines, and P(G„) is the number of the
transformations of the diagram G„ into itself. We
note, that the coefficient 2"n!/P(G„) is the number
of the diagrams being topologically equivalent to
the given diagram G„. It is easy to see that each
diagram for the &-point IGF defined by Eq. (3.1)
must contain k external vertices, "representing
the variables x„.. . , x~ and no q(x} line.

At this stage, we can discuss the diagrammatic
series for the orientational free energy defined
as

E= -P'lnQ,

where

Q = Tr e"".

(3.26}

(3.2V)

Taking into account Eq. (3.1V) we obtain Eq. (3.18)
as an obvious consequence of Eq. (3.28).

The functional series for Q[q] can be represented
in a simple form using a graphical notation. We
introduce the elements (a), (b), and (c) shown in
Fig. 1, which correspond to y(x, y), K,(x„.. . , x~),
and q(x), respectively. Each term of an expansion
for Q[q] can be represented as a diagram in which
the oval blocks [Fig. 1(b)], are connected by the
interaction lines [Fig. 1(a)]. Some vertices in the
oval blocks contain dotted lines [Fig. 1(c)]. The
vertices in such a diagram are not labeled. This
means that the "integration" in the sense of de-
finition (8.5) over the variables assigned to these
vertices must be performed. The functional Q[qJ
can be expanded into connected as well as dis-
connected diagrams. By virtue of the Mayer theo-
rem (cf., for example, Ref. 35) the diagrammatic
series for the functional 4[q] (8.2) does not. contain
disconnected diagrams. 'The diagrammatic series
for 4 [q] can be formally written as

2)n 2n+«
C'lq]=-PE+4'olq]+Z

( )
Gn~ (8 25)

n~l n {+ )

E = -P'C [q = 0] . (3.28}

Taking into account Eqs. (3.28) and (3.25}we can
write

E-E+g
where

E,=-p'C [q=0]=-p 'ln Tre z"o

(3.29)

(3.30)

~

~( ~ ~ ~ ) dg ~ ~ I dg (3.32)
0

From a rough estimation based on the MF theo-
ry"'" it follows that the inverse critical tempera-
ture P, of the orientational phase transition is of
first order in 1/z. Thus, when P= P, the integral
(3.82) is of nth order in 1/z. Each summation over
nearest neighbors gives the contribution proportion-
al to s. When a given diagram has n interaction
lines and the expression associated with it con-
tains m summation over nearest neighbors then .

the resulting factor in 1/z is (1/z)" ". The cor-
rections of first order in 1/z to th'e free energy
corresponds to the sum of diagrams shown in
Fig. 2. The number P(G„) for such a diagram with
n interaction lines is 2n. Introducing the Fourier
transform of the ZOIGF K,(i, m, r;i, n, &'), defined
as

(3.31)

Here. &C [q = 0] is the sum of the diagrams without

q(x) lines and external vertices. The diagrams
can be classified according to powers of 1/z,
where a=12 is the number of nearest neighbors
of a site in fcc lattice. " The 1/z expansion,
scheme, which we shall discuss, is valid near the
temperature of the orientational phase transition.
It is clear that the diagram with n interaction
lines corresponds to an expression in which an
n-fold integration over "times" &„.. . , &„ must be
performed. This is an obvious consequence of the
locality of EQQ coupling y(x, y) with respect to the
& arguments [see Eq. (3.12)]. Therefore, the ex-
pression associated with the diagram having n
interaction lines is proportional to the integral

, (a) (c) + ~ ~ o

FIG. l. (a) Diagrams representing the coupling y(g, y),
(b) many-point ZOIGF K()(x&, .. . ,z&), and (c) test func-
tion qg).

FIG. 2. Sum of the diagrams representing the first-
order correction in 1/z to the orientational free energy.
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Kp(i)m)'Lln)pl„) =;d'T e + Kp(il mi i n' 'r)
'S

0
where pl„=2vv/P, v=0, +I, +2, +3, . . . , and

(3.33)

(3.34}
we attribute to G„ the following expression:

,(i, m;i, n; r)=K, (i, m, r; i, n, 0) =&T O~(v)Op&

&0", &,&0",&„

1 p K (i, m;i, n; &o„)y",'~KK, (2„n,; 2„m,; pl„)
m, m1, ..., mz 1 te, nl""'"n-1 «' «12'"a«n-1

)( ~ tft1fl 2, ~ ~ sg ( mz 1,ny «1«2 0'in-17 nn-1t in-1P ntn-ly (OV Iy «„1 (3.35)

IV. FREE ENERGY AND ORDER PARAMETER

FOR THE ORDERED PHASE

K,(i, m;i, n; Pl„}= dv e'"+'&T,O", (v)O",&p
0

p&o", &,&o",&,5„„.
After straightforward calculations one obtains

(4.1)

Kp(i, m;i, n; &o„)=5 +p(m, ra„),
where

Kp(+Iq (d„) = 20'pE/L(imp~) —E ]
K,(a, ~„)=--,'P(o, +2)5„,

and

(4 2)

(4.3)

(4.4)

First, we calculate the Fourier-transformed
two-point ZOIGF's which are represented i.n Fig.
2 by the oval blocks. Taking into account Eqs,
(3.17), (3.33), and (3.34) we have

The value of (4.7) is well estimated by

~-1 fftl 2 + tg, -1 2 (4 8)

b E= —
4 Q Q Q ~y;~ [2Kp(m, pp )Kp(n, pp„) .

mn

Taking the y constants from Ref. 33 we obta, in that
(4.8) is of the order of 0.1, and therefore, it can
be treated as a small parameter. From the con-
siderations above we conclude that the first dia-
gram from Fig. 2 contributes mainly to hE since
it is of lowest order with respect to the small
parameters (4.8) and(op+2). 'Iherefore, it seems
reasonable to simplify our problem retaining only
this diagram and neglecting the contribution of
other diagrams containing three or more oval
blocks. Of course, this approximation is valid
for the ordered phase. The expression for hI' is
then the following:

Kp(0, (u, ) = P(1 —op)(op+ 2) 5„,,
where

o =-2(ea' —1)(es'+2) '

(4 5)

(4.6)

(4.9)
After straightforward although tedious calcula-
tions Eq. (4.9) takes the form

From Eqs. (4.4) and (4.5) we see that the ZOIGF's
Kp(m, &o,}for m=0, + 2 are proportional to op+2,
which is a small parameter, as it will be shown
below. Therefore, the contribution to AI', dub to
a given diagram from the series shown in Fig. 2,
decreases as the number of the oval blocks as-
sociated with Kp(m, pl„) for m = 0, +2 increases. In
order to estimate (o, +2) we assume that near the
orientational phase transition cr = -1.7 and the
critical temperature T, is approximately equal to
0.5T„where T, = op/4ln2 is the critical tempera-
ture obta, ined from the MF theory. " 'Ihe straight-
forward calculation yields that ap+2 is the order
of 0.1 and it is really a small parameter.

'Ihe next problem is to estimate the contribution
due to the oval blocks from Fig. 2 representing
K,(m, pl„} for m = +1. Note, that such a block with
two adjacent interaction lines corresponds to the
expression

20'pE g'( eely
l Fl+ylS lylp)

b,F 2p

(
Bf + 2)2 M - en+en(P }t (4.10)

where~ n 0 1 2 'Np ls the number of molecules
in the crystal, I' is the EQQ-coupling parameter
(2.8a) or (2.86b),

Z„(x)=16,

E„(x)=32x '(e" —1),
E2p(x) =72e*(e"+2) ',
F„(x)=4x '(e'"+2xe* —1),
E„(x)=72x 'e*(e"—1)(e'+2) ',
EM(x) =Ble'*(e"+2) ',

(4.11a)

(4.11b)

(4.11c)

(4.lid)

(4.11e)

(4.11f)

2+ y
ffl2

I (4, 12)

The sum in Eg. (4.12) runs over the nearest neigh-
bors of the ith site. In order to calculate c „, the
following relations are helpful (cf. Ref. 33):
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and

24
I

00
I
2

12(l 11I2
I

1, ll2)

c =12(ly "I'+ ly" 'I')

c..= »(Ir "I'+ lr '*I')

c„=12 (lr "I'+ Ir "I')

(4.13a)

(4.13b)

(4.13c)

(4.1M)

(4.13e)

tions represented in Fig. 3 by the lines A, B, and
C. The solution C is zero at all temperatures
and corresponds to the phase with no long-range
orientational ordering. The nonzero solutions A
and B exist below the temperature Ty =0 60 To,
which is the maximum limit of metastability for
the ordered phase.

V. FREE ENERGY AND THE PROBLEM OF STABILITY
OF THE DISORDERED PHASE

6( I y
2 1

I

2 +
Iy

12
I

2 ~
I y

2 1
I

2 +
I y

1 J2
I
2
) (4 1 3f)

where y is the constant of the EQQ interaction
for the sites connected by the vector(-,', -'„0).

In order to obtain the «tal free energy F (3.29)
we must calculate the n ..ecular-field free en-
ergy F, (3.30). Taking int~ account Eqs. (3.30)
and (2.14), we get

In order to calculate free energy in 1/z approx-
imation for the disordered phase (o=0), we must
sum the whole diagrammatic series shown in
Fig. 2. In general, the problem is complicated,
however some simplifications can be made. Note,
that for o =0 the ZOIGF 's (4.3)-(4.5) takes the
form

and

F0/N01'=-(pI ) 'ln(l+2e ') (4.14)
K0(+I, 10,) =K0(+2, &u„) = 2P 5...
K0(0, 01,) = 2P5„0 .

(5.1)

(5.2)
F

&x=1(&a=1+4}N I' 12I'

1 ln(1+2e ') +
PI' 0

(4.15)

'Ihe equation for the order parameter oJ, is
obtained using the condition

The constant y, &'
" can be written as follows

[cf. Eqs. (2.6) and (2.2}]

(5.3)y 1q'
"= (—I)"A A (D+(j1)a, ,D(j1))

where D(lI, ) and a„are the 5x 5 matrices defined
as follows:

(4.16}
8j'
+J=l

After straightforward calculations in Eq. (4.16)
takes the form

{D(., )]«,.=-"«.(:.,} (5.4)

o~-, = —2(es' —1)(es'+2) '

+ 12p2(e 22+ 2) ~ g c~f~(pe),

where m, n =0, 1,2,

(4.17)

x I'ig C(224;M, -N}F2 ««(gi()2', (5.5)

where m, , M, N=O, +1,+2.
Now, it is convenient to attribute to the oval

blocks in diagrams from Fig. 2 the following quan-
tity:

f„(x)= 16e", (4.1&a)

f»(x) = 16x '[e2"(x+ 1) —e'(4x —1) —2], (4.18b)
0.0--

f,0(x) =72e'(e* —1)(e"+2) ',
f»(x) = 2x '[e'"+2e"(x —1)

—e'(4x'+2x+ 2) —2],
f,0(x) = 36x 'e*[e'*(x+1) —e*(6x—1)

+2(x —1)](e"+2) ',

(4.18c)

(4.18d)

(4.18e}

19
-0.5—

LLI

LL}

X
-~.o—

f00(x) = 81e"(e*—2)(e"+2) 2. (4.1&f)
-2.0

0.0

A

0.2 0.4
I

0.6

Equation (4.17) was solved numberically for
&, =21.2F. The values of constants y " are taken
from Ref. 33. The plot of OJ, versus the reduced
temperature T/T, is presented in Fig. 3, where
To denotes the critical temperature obtained from
the MF theory. " Equation (4.17) has three solu-

R~TUaE T/T,

FIG. 3. Order parameter 0 J &
vs the reduced tem-

perature T/T0. The lines A, B, and C represent the
solutions of Eq. (4.17). The vertical line marks the
first-order phase transition.
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(-I)"K (m, (g„)A.„A = 2P5„

instead of Xo(m, co„). Then, the interaction line is
connected with

kD'(X~)auD(X )) .' (5 7)
In the terms of the matrices D(X,) and a«, the ex-
pression associated with the diagrammatic series
for hI can be written as follows:

Z „Z»[D'(X;)a«,D(«,)" D'(Xi„,) (a~„,, i D(X~)]
n=Z

oo
( 4p)n+ ],

Tr(a, »,
" a, ~,c).

n=1 g, a1. ~ ~ &„
(5.8)

%e now introduce the Fourier-transformed rea-
trix a(k) defined as lndet[l+4pa(0)] = Q ln[1+4pa„(0)],

X=1
(5.13)

a(k) = Q e'"'Ua„, (5.9)
Rgy

where ZR, is the sum over the nearest neighbors
of the ith site. The elements of a(k) are tabulated
in Appendix B. Using the matrix a(k), we can write
Eq. (5.8) in the form

aF = —Q Q Tr[a(k)]"

T, = -4minqaq(0) . (5.14)

Since the minimum eigenvalue of 4a(0)/T, = -0.46
(see Appendix B), we have

where a„(0) is the eigenvalue of the matrix a(0).
The quantity (5.13) has a real value when [1
+4Pa„(0)]&0 for each X= 1, . . . , 5. This condition
is satisfied at temperatures higher than the certain
temperature T, which is determined as

g Tr In [1+ 4pa(k)]

=—g ln det[1+4Pa(k)] .
2P

k

If we take into account that

a(k) =a(-k),

(5.10)

(5.11)

T2= 0.46TO. (5.15)

It is easy to see that for T &T„AF (5.10) has a
real value and T, may be regarded as the mini-
mum limit of metastability for the disordered
phase. The same result one obtains by investigat-
ing of the isothermal susceptibility for k=0 which

is made in Appendix C.
Note that Eq. (5.12) is equivalent to the following:

+ —g In/det[1+4Pa(k)]}', (5.12)

where Zg«runs over half of the Brillouin zone
for the fcc lattice.

The temperature T, which is the minimum limit
of metastability of disordered phase can be ob-
tained from the following considerations. Let us
write lndet[1+4Pa(0)] in the form

the expression for AI' can be rewritten as follows:

1
— ln det[1+ 4Pa(0)]

2

Q In~det[1+4Pagk](
k

fd~Ololdot[1+ opolR)j I,
2p 2m

(5.16)

k= X1K1+X2K2+ $3K3 y (5.1V)

~here K„K„K,are the basis vectors of the in-
verse lattice and -2 & x1 x2 F3&2 we transform
Eq. (5.16) to the form

where A is the volume of the elementary cell of
the fcc lattice. For the numerical calculation of
nF/N, I we use Eq. (5.16). Putting

1/2 1/2 1/2

dx, In[ edt[ I+4pa(x„x„xn)] I
~

Nn 2P ~/n -z/n -i/n
(5.18)

In order to calculate the threefold integral in Eq.
(5.18) we apply the Gauss method with n = 2 (cf.
for example, Ref. 38) for each integration. The
total free energy per one molecule is the following

F/N, = -(1/p) In3+ nF, (5.19)

where (-1/P) ln3 is the molecular-field free energy
of the disordered phase.
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VI. DISCUSSION AND RESULTS

(6.1)& D2 ~ph~tpt&Z =t &

where („t(D,) = 1.063 (see Appendix A) and $,„
= 0.98."3 The dashed line in Fig. 5 shows the
variation o D, with T/T, obtained via measurement
of Pake doublet splitting" and extrapolation of the
data to pure para-D, . We see that our results are

The stability of the three phases A, B, and C
corresponding to the solutions of Eq. (4.17) (see
Fig. 3) are investigated by comparing of the free
energies of these phases. The plot of F/NpI' ver-
sus the reduced temperature T/T, i,s presented in
Fig. 4. The lines A, B, and C refer to the phases
A, B, and C, respectively. At the temperature
T, near the maximum limit of metastability for the
ordered phase T,=0.60T, line C intersects line A.
When the temperature is less than T„phase A is
stable, whereas above T, phase A destabilizes and
disordered phase C becomes stable. At T, two

phases A arid C coexist. From Fig. 3, it is seen
that at T„marked by the vertical line, the order
parameter a&-, varies discontinuously from the
value characteristic for the phase A to zero.
Thus, we conclude that T, is the critical temper-
ature of the first-order orientational phase transi-
tion. The value T, is estimated as T, =0.57T,.
Phase B is not stable and rather does not corres-
pond to the physical situation. Therefore it does
not matter that curve B implies a negative heat
capacity.

The plot of o D vs T/T p is represented in Fig. 5.
Here a D, denotes the order parameter for solid
para-D, with zero-phonon and J& = 1 J& = 3 correc-
tions calculated as

-1.6

el

-1.V—
CL
LLI

LLI

X
g -18 —.

LLI
C5

o -1.9—

—2.0
0.30 . 0.40 0.50 0.58

in a good agreement with the experiment. Taking
the EQQ-coupling parameters as 1'„=0.84 K and

2

FD, = 1.07 K we obtain the following values of
transition temperature

T, (H,) = 3.64 K and T, (D,) = 4.63 K,
whereas the values obtained from the extrapolation
of experimental data are

T, (H,)=2.8 K and T, (D2) =3.8 K.
The comparison of our results with previous theo-
ries is shown in Fig. 6, where the plots of cd~-,
versus reduced temperature T/T, are presented.
The lines A, B, C, and D are obtained from our
theory (A), cluster expansion method~ (8), the
Kirkwood technique of restricted traces" (C), and

TEMPERATURE T/Tp

FIG. 5. Renormalized order parameter g of solidD2
para-D2 vs reduced temperature T/Tp (solid line). The
order parameter 0 D2 obtained from NMR experiment
(Ref. 14) (dashed line).

I
/

I

I

I
f

I 1.0

o -6.50
Z;

UJ

-8.50
o

z'.
LLI

IXo -9.50

0.46

I I I I I

0.50 0.54 0.58 0.62

0.5

LO
0.0 ————-t-.

LLI

-0.5 —-

-1.0
lU
CI

—1.5

0.60 1.00 1.10

TEMPERATURE T To

FIG. 4. Orientational free energies per molecule
scaled by EQQ coupling-parameter I' vs the reduced
temperature T/T p. The lines A and B correspond to
the branches A and B of the solution of Eq. (4.17), and
line C represents I'/N pI' for the disordered phase.

TEMPERATURE T/Tp

FIG. 6. Order parameter ~ z &
vs the reduced tem-

perature T/To. A —present theory, S—cluster-expmI-
sion method, {Ref. 23), C—the Kirkwood technique of
restricted traces {Ref.24), and D—molecular-field
theory {Ref.17).
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MF theory'7 (D). The vertical lines mark the
first-order transitions. From Fig. 6, we see that
the present method yields the most exact value of
~C

In summary, we conclude that the diagrammatic
method presented above is a useful tool for the
systematic investigation of cooperative phenomena
in syinlike systems. This method can be also ap-
plied to study of the elementary excitations which
can be done by the diagrammatic expansion of two-
point IGF's. We hope that this approach will be
helpful in derivation of the libron spectrum in solid
Ortho-H, and para-D, at nonzero temperature,
This work is in progress.

expression for AE:

hf N Eg g
—Eg-3

(3x'/10B},

where E~ = BJ(J+ 1). A splitting of the rotational
levels is neglected here. With the help of Eqs.
(A4), (A8) and the relation

X = — 0'g1
6 0~ (A 10}

where e, =-12+,. y', ~=21.21;, with the further
neighbor interaction taken into account, - we obtain
the following expression for o'.

APPENDIX A: EFFECT OF J= I ~J=3 VIRTUAL

TRANSmON ON ORDER PARAMETER

Let us write the Hamiltonian (2.1) in the form

c =o' — +2.12(I' /B)o,
where

(A 11)

H =Ho+H~,

where

H, = -(20w)'~'x Q I'2O(&u, )

is the mean-field part of H, H, =H —Ho and

z=2ogy„.

The order parameter cr can be written as

(A1)

(A2)

(A3}

Hence, we obtain

~rot ~= » (A12)

where $,«= (1 —2.121,/B) '. Putting I', =0.698
cm ' and B=59.34 cm ' for H» and I', =0.8931
cm ' and B=29.91 cm ' for D»" we get

$,«(H, ) = 1.025 and )~t(D, ) = 1.063.

(A4)

where E=-p 'ln Tr exp[—p(H, +H, )]is ihe free en-

ergy of the system. Let us split the Hamiltonian

(2.1) into two parts

e=H, ,+ &H, (A5)

where H~, is the projection of H into J;-=1 sub-
space [see Eq. (2.5)] and

4H=H -H (A6)

'Now, the free energy of the system can be written
as follows:

F=E~-j+ &E, (AV}

where E~, = —p
' ln Tr exp(- pHz, ) and 4E= E

—Ez,. Since I'o/8~1, where 10 is the nonre-
normalized EQQ coupling parameter and B is the

rotational constant of the H, or D, molecule, we

can treat 6H (A6) as a small perturbation. We
take de in the following approximated form:

H=(1 —P)H P, (A8)

where P is the projection operator into J, = 1 sub-
space and H, is the mean-field Hamiltonian (A2).
Applying the thermodynamical perturbation method
(see, for example Ref. 39) we get the following

This result differs slightly from that given in

Ref. 32, where the rotational renormalization of
o was calculated for 7' =0.

APPENDIX B: TABULATION OF 4 a(k)/To

(a(k)], , =—', (a(k)], ,= ——,
' (a(k)}...

(a(k)];, = -W6 fa(k)}. ..
('(k6, , ,=-~1 (kb. ..

(B2)

(B3)

(B4)

Thus, we must to calculate five independent ele-
ments of 4a(k)/T, which are the following:

(4/T )(a(k}] =0.0653C~C~ —0.1413C~C4CS,

(4/T, }]a(k)), , = 0.0544(S, + iS,)S, ,

(4/Tg(a(k)), , = 0 6674C,S~S., -i0.2669S,S, ,

(4/T,}(a(k)), , = -0.3814(S,+ iS,)$, ,
alld

(4/Tga(k)J, ,= 0.38 14CSC C, —O.V628C, C, ,

%he elements of the 5X 5 matrix a(k) are given

by Eqs. (5.5) and (5.9). In order to calculate the
matrix 4a(k)/To we use the following relations:

4a(k}]~. = (a(k)4*.u= (-»"'"(a(k6-~.-~
and
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where C, =cosv(x, +x,), C, =cosv(x, —x,), C,
= cosx(xq+ x2 —2'), C4 = cosvxg, Cs = cosvx2, Sq
= sinn(x, +x,), S, =sinv(x, —x,), S, =sinw(x, +x,
—2xs), S4=sinwx„S5= sinvx„and k=x ic,+x27&,

+ x3i(3 where Ky K2 and Tc, are the basic vectors
of the inverse fcc lattice, and —,'-&xg x2 x3
The eigenvalues of 4a(k)/T, for k =0 are the
following: a, =0.3054, a, =a, =0.3040, a4 =0.4560,
and a5 =0.4574.

APPENDIX C: THF ISOTHERMIC SUSCEPTIBILITY

FOR DISORDERED PHASE

+ ~

+ ~ ~ ~

FIG. 7. Sum of the simplest reducible (with respect
to the interaction line) diagrams for the two-point
IGF E(i,m; j,n; cop).

In order to calculate K(i, m;j, n; &o,), we sum the
diagrammatic series shown in Fig. V. The re-
sult is the following:

8

y P,
= d7K(i, m, ~;j, n, 0),

0
(CI)

where K(i,m, v;j, n, 7') is the two-point IGF de-
fined by Eq. (3.6) for k =2. Introducing the
Fourier transform of K(i,m, v;j, n, 0), e.g. ,

8
K(i, mj, n; &u„) = d~K(i, m, w; j,n, 0)e'~'

0

we have

(C2)

mn
X&;

= ~ K(i, m;j, n; ~„) (C3)

In this appendix, we show that investigating the
isothermic quadrupolar susceptibility the same
result for 7.', as presented in Sec. V is obtained.
The isothermic quadrupolar susceptibility y &&"

(m, n =0, +1,+2) for solid ortho-H, (para-D, ) we

define as follows

where X„. is the 5&& 5 susceptibility matrix deter-
mined in the cubic crystal coordinate system de-
fined as

X&
= — e '"'"Xk

0 k'

where 8,&
is a vector of fcc lattice,

X(k) =2P/[I+4Pa(k)]

(C5)

(C6)

is the 5 &(5 susceptibility matrix transformed to
the inverse space and o(k) is defined by Eqs. (5.9)
and (5.5). In order to calculate the temperature
T, we consider X(k) for k =0. Using the eigen-
values of 4a(0)/T, tabulated in Appendix B we see
that the maximum temperature at which X(0)
diverges is T, =0.46TO. Hence we conclude that
1', is really the minimum limit of metastability
of the disordered phase.
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