
PH Y SIC AL RE VIE% B VOLUME 18, NUMBER 12 15 DECEMBER 1978
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The theory of the intraband magnetoabsorption is derived in the quantum limit for semiconductors with
ionized impurities. The 0~0 and 0~1 transitions are considered. For cyclotron-resonance-inactive
polarization a logarithmic divergency of the absorption coefficient at cyclotron frequency is obtained. No
such singularity exists for parallel polarization.

I. INTRODUCTION II. MAGNETOAPTICAL TRANSITION RATES

In the last few years, many observations of
cyclotron-resonance harmonics in semiconductors
were reported. Some of them were ascribed to
the electron-impurity interaction (see, e.g., Ref.
1). Magnetoabsorption due to this interaction was
studied theoretically by several authors. ' ' Usual-
ly, electrons were treated as bound to impurities
and the transition rates between their discrete
states were considered. " The present authors
have recently calculated the magnetoabsorption
in the quantum limit for free electrons, i.e., as-
suming that the impurities are ionized. 4' This
t'reatment is justified for high concentrations of
impurities, and also if kT is of the order of or
higher than the binding energy in a magnetic field
(but much lower than k&o,). These conditions are
usually fulfilled in narrow-gap semiconductors.
Transitions 0-n' for n'~ 2 were studied, and it
was shown that logarithmic divergencies of the
absorption coefficient appear at all ~ = n'~, for
both cyclotron-resonance-active and -inactive
polarizations, but not for parallel polarization.
The contribution given by the composition fluctua-
tions in mixed semiconductors was also calculated.

A magnetoabsorption peak for cyclotron-res-
onance-inactive polarization was observed also
for ar = ~,.' The purpose of the present paper is
to extend the results of Ref. 5 (hereafter referred
to as I), to the case of impurity-induced trans-
itions 0-0 and 0-1 for both cyclotron-resonance-
inactive (CRI) and parallel (E

~ ~
H) polar izations.

Therefore, we consider the free electrons in the
quantum limit, interacting with the radiation field
and with some random time-independent potential.
This potential will then be identified with the po-
tential due to the ionized impurities distributed
at random. The case of a mixed semiconductor
with fluctuations of band edge due to composition
fluctuations will also be considered. We assume
a nondegenerate parabolic and spherical conduc-
tion band and we neglect spin effects. Plasma and
screening effects will not be taken into account.

In the weak-radiation approximation, the effec-
tive-mass Hamiltonian for an electron of the
charge -e and the effective mass m* in the static
magnetic field H along the z axis, can be written
in the form

X=AD+ U+X„,

where

I'2 B2 g B 2 B2

2m 4 Bg 2 g By Bg2

U=g vexp(iq r),

X = —i Im(sp '"'). ke
m *40 Bx

+lm(Z e '"') i—+-
X2 By

+lm(E e "')—B
Bz (4)

A(r, f) = (0, Hx, 0)+ (c/(o) Im(Ee '"'), (6)

and the scalar potential of the radiation vanishes.
A. = (cIi/eH)' ' is the usual magnetic length. v(q)
are the Fourier components of the random potential
due to crystal imperfections. In Eq. (3) the sum-
mation runs over all q+0 allowed by a periodicity
box.

q =(2w/I )Q (n =x, y, z},
where Q are integers. To keep U real we have
to assume

v(-q) = v*(q) .

We have assumed here a uniform oscillating
electric field of radiation of the form

Re [E exp(-iM}j, u»0,

where E is a complex vector. The vector potential
is chosen in the form
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The eigenstates of Xo are the Landau states lkp, n&

of the energies

h» „=k(o, (n+ -,')+ I 'k', /2m»,

where n = 0, 1, .. . and v, = eH/cm, *. k„and k, have
the form

be written in the form

X cos&ot+X, sinart+ U.

Let us define

X XJ 6 $X»

(12)

(13)

k =(2w/L )K (n =y, z), (10}

-L„/2X2&k ~L„/2A~.

The perturbation given by Eqs. (3) and (4) can

where K are integers. If the electron is in the
periodicity box, its center of the orbit should be
in a position between -2I.„and —2I ~ This yields
a condition

We will use the second-order perturbation calculus
and neglect terms of higher than second order in
U. We assume ~~, and consider only CRI or
E

II
H polarizations, i.e., we put

(14)

Denoting

E =2 '/'(E„+iE )=2'I'E

we have

&k„"'k."n" IX, Ik„"k".n"&= -(heim+~)6»„. ~. 6»...,., I~ k 6, „,. + (1/x}E.n"'"6,.„,] (16)

&k„'"k',"n IX I
k„"k,"n"& = (Se/m *or-)6»„,»., 5»...„,[ iE»~k", 5„„-.„., + (1/A)E,*n'"' ~'6~„„„.,]

With our assumptions, it follows from Egs. (16)
and (1V) that for 8»...„„,& h»„„.,

For Sk„„„=8k

&k,'k~' Ix, Ik„"k,"n"&= o.
&k k'"n"IX. Iklk,"n"&=O.

For ~k-.- ~@k-n-
g

&ke.k,«n.« IX Ik«k» «& 0

(18) . Fol Bk ~, —Sk„,

&k k n lx, lk,k.n&=o. (21)

Thus, the second-order perturbation calculus
gives for Sk& &8k „, i.e., for absorption process,
the transition rate

-r I
«))„),.)-),„.,„,(, ) =2», )) )) —»(h) „~—S) „)) — Q &»,+q„, k,+))„))'~)e,~k„")),")) )k" k" n"

)

x (k„"k,"n" IU I kg„n)(S„,~, - 8» „) '

&k„+q„, k, + q„n'
I
U

I
k„"k,"n"

&

kc tt. k ~+ Ng 4 g

&k;k:n-IX. lk,kJ &(s„, „, a„,„..)- '.
(22)

We consider here only the case of quantum limit
at low temperatures. Therefore, only transitions0-n' with photon absorption are possible. As al-
ready mentioned, we restrict our calculations

0 0 and 0-1 transitions.
Contributions to the transition rates are visual-

ized on Fig. i.
The matrix elements of U are (see paper 1)
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&k„+q„, k + q, n"
I
U Ik„k 0& = ( ~ x )"" 2(n !) ' ~ 2 g exp (-iA k„q„)

&& exp(--,'BPq, q„)(iq, + q,)~ exp(- —,'X'q', )v(q), (23)

where summing over q„we omit q„=0 if q, =q, =0.
%e have denoted

(16), and (23), into Eq. (22). Using the formula

q'=q„+q, (24} P exp [i&'(q,' q„—)k,.]= (25)
As we want to calculate the absorption, we need

only the value of 8')y
g g) )y, y ) averaged

over all k„. We will denote it by 8"(k„0;q„,q„n')
To obtain W, we use Fig. 1 and insert Eqs. (9),

strictly valid for L /2w'~'X, n = x, y, being inte-
gers), we find for n' =0, 1

2
(-'&'q')' em(--'~'q')

I &(q) I' IE, I' ' „~+ IE.I' „:
~x C

2z/2
+

~

'
~

[q, e(ERE")+q I,m(Z, ,E~)]) . (26)

III. INTRABAND MAGNETOABSORPTION
IN THE QUANTUM LIMIT

jp ~=F21 N~ (27)

In the quantum limit, electron occupy only all
the states with n=0 and Ik, I -k,~, where

and N, is the electron concentration. The condi-
tion of the quantum limit reads

k(u, & h''k~g~ /2m *

or

—Xk p&1. (29)

I
I

I
]g I

t
II

0~0 0 1

FIG. 1. Contributions to the transition rate [Eq. (22))
for transitions 0 0 and 0-1. Vertical transitions are
due to radiation and the oblique ones to the potential of
crystal imperfections.

&I ~(q) I'&=I..L,f.&I ~(q) I'&- (3o)

and replacing the summation over q by integration
we obtain finally

Power absorbed per unit volume because of
transitions from all occupied states (of n= 0) to
all empty states of quantum number n' (n' =0, 1)
will be denoted by I'„,. To calculate it, we have
to multiply the expression (26) by h&u, to sum over
al], occupied states (accounting for spin degener-
acy) and over all final empty states, and to divide
by L„L,L,. Then we can perform summation over
k„and replace the random variable

I v(q) I' by its
value & I v(q) I'&„.' Taking into account Eq. (6),
using the notation
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8 ()0

~ 168@'~
Cz4 @k2 Qge

d'q, exp(--,'x'q', ) dq, -& ~&2 '~ dq,
Cg3 '2g 5

2 21/2q
xq" E + E —g+ '

q ReEE++q ImEE* pq
C C

Sk F=E. (d (d —
2 + ~ 327t @ ()t d qjq exp -2

2 21/2
~ Ik, l*k.';. . + Ik. 1*~k +...'. Ik.~ (EP".)+k.™(kk.*)l)&)~&el*) (32)

We have denoted here

k = )k, —.(k*,z+ k &rd —ro.))
"'),

q k + k2 + ~ ~ 1/2

2m+2
qg3 = -kzF+ kgF+

\

2m+2
qz4 kgF + kgF +

@
Q7

2m*2q, =k„—k F—

(33)

(34)

(35)

(36)

(3'I)

teger). Neutrality requirement yields the con-
dition

g)N) =N (42)

& I ~(q) I') =16+e'»./~q' (43)

where ~ is the dielectric constant of the crystal
and

Using the Poisson equation and assuming a per-
fectly random distribution of ions, we obtain

2~+
q ge= k gF+ kzF— (38)

Z ) ~

N,
(44)

i(d —(k) i/(k) && qX k»
there is

(39)

By definition & =1 if the indicated inequality is ful-
filled, and equals zero otherwise.

For (d = &d, tP, has a divergency. Close to &e= (o„
i.e., for

It is always D ~ 1. D = 1 only if all Z, =+1. If
all Z, = Z (Z&0) then D = Z. Suppose, finally, that
there are both positive and negative ions of the
charges Ze (Z&0) and -Ze and concentrations,
N, and N, respectively (ZN, —ZN =N,). Denoting

2 —&'k

256m h ye*(o

C =N„/N, (45)

d'q, q', exp(- —,'X'q'„)(~ v((L) j'), (40)
(C is the compensation ratio if all donors and ac-
ceptors are ionized), we have

where D= z(1+c)/(1 -c). (46)

q.= (q., q„o) . (41)

There is no divergency of I', for any (d &0.
We will identify now the potential U with the po-

tential given by ionized impurities (point defects)
present in the semiconductor. Suppose there are
S types of such ions. Z,e and N, (l= 1, . . . , 8) are
the charge and concentration of the l-type ion, re-
spectively, (Z, may be a positive or negative in-

67(/c)('"([E, ('+ ~s.('), (4V)

we obtain the absorption coefficients K,' and K',

due to 0-0 and 0-1 transitions, respectively,

Inserting Eq. (43) into Eqs. (31) and (32), and

multiplying by
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2 ()t)+ 4) I

A(2&'q»} -A( 2'X'q„)+exp( 2'X'q„) Ei(--2'X'q„) —exp(2'X'q~) Et( —,'. 'q'„)

+, exp(2'X'q'„) Ei(--2'X'q'„) -exp(2'X'q'„) Ei(--2'X'q'„) —6. (6 &
(0

'4 '4 " " 2m +

&& [exp(2'X'q'„) Ei(--2'X'q'„) —exp(2'X'q', ) EI(-2'X'q,',)] (48)

2

x ',
2 1+2K q exp 2A. q 2 Ei -2X q 2

—1+ 2X q,~ exp 2X q~ Ei -—,'X'q,

2
+ ' [-,Xq'„exp(—,'Xq ) Ei(——,i q„)——,iq, exp(-, iq, ) Ei(--,e~q, .,)]) . (49)

oo
1

Ei(x) = — —e 'dt. (50)

The exponential integral function is defined (for
x&0}

If we identify the potential U with the position-
dependent band edge in a mixed semiconductor with
composition fluctuations, then for a perfectly ran-
dom alloy (see paper I)

We have also denoted (for x&0) & I &(q) I') = pl ~ ~.(1-~.) (53)

A(x) = ln(1+t)e *'—-x& dt

IE I2(Iz I'+ Ig I')-'

For ~ close to co, there is

(53)

N is the number of unit cells per unit volume, v,
is the average composition of the alloy of the type
A, „B (orA, ,11„C, etc.), and p, is a material
parameter. For simplicity, we have assumed that
another material parameter appearing in Eq. (53),
y6, is equal to zero. Inserting Eq. (53) into Eqs.
(31) and (33), and multiplying by expression (4V),
we obtain the absorption coefficients Ko and Ky
due to 0-0 and 0-1 transitions, respectively,

lf 6 e pov()(1 —vo)m (q)q
( ~E ~2+ )@ [2) 1 q ]nq64 4 (g & 6F ]nq66

0 ' V2eg6~~1/2~ I
'

+ I I 6I ((6+(6 )2 q
'

2~4e q

+ ',
,

—.X(q.,-q. ,)-e e& „-*i(q -q..) I,
"&'Z ~ 2

(54)

ku2
)~ ~ 2p2 1 g2~3 ~2~/ 5NK~ j 24)

x(IE I'+ I~ I'}' I"'+2IIE l2 IE I2,
((6+ (O )' 'q (d2

(55)
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For co close to &, there is

K'=[e P vo(l —vo)m~'/2m ck'Nw' j
1 2 2

x )E I2( (E, (2+ [E, (') ' ln
C

(56)

l000

800

IV. DISCUSSION

Summarizing our results, for both CRI and EIH
polarizations and for all frequencies the absorption
is nonvanishing due to the presence of ionized im-
purities (point defects) or/and composition fluc-
tuations. For CHI polarization there is a loga-
rithmic divergency of the absorption coefficient
at (d = (d, .

To estimate the value of the absorption coef-
ficient due to ionized impurities (point defects)
let us consider the following numerical example
corresponding roughly to n-type Hgo 75Cdp 25Te
at low temperatures: ~ = 10, m* = 0.02m„N, = 6.8
x10'6 cm ', D=S (as for, e.g. , Z=I and C=0.5),
and H= 50 ko. Plasma effects should not be im-
portant for the normal incidence on a-semicon-
ductor plate, as ha&~= 21 meV (or~ is the plasma
frequency) and K, =29 meV. The quantum-limit
condition is fulfilled as 2~'k',~=0.5. The magnetic
length X=115 A. Ko'+K~ for E;-0 (CRI polariza-
tion) is plotted on Fig. 2. It seems that the diver
gence should be rather easily observable.

Using the above parameters, and taking pp 0 25,
N = 1.5 x 10"cm ', and Po= 0.5 eV, we obtain from
Eqs. (52) and (56) that for a& close to &o, there is
Kf/E,'=2.2 x 10-'.

In the present paper we have not taken into ac-
count the scattering-induced broadeni. ng of the

600
E

~ 400+e~ Q
hC

200

0 I I I I I I I I i I I I

0.2 0.5 1

FIG. 2. CRI absorption coefficient due to ionized im-
purities (transitions 0-0 and 0-1) vs frequency for the
numerical example discussed in the text.

Landau levels. This broadening may seriously
affect the shape and magnitude of the absorption
at co=~,. Because of that we cannot compare
quantitatively our results with the experimental
data of McCombe et al. ' The other reason is that
the sample presented in Ref. 6 is not degenerated
enough (as 5'k2~/2m*=kT). Nevertheless, if the
parameters of this sample are inserted in our
Eq. (52) (with D =1), the absorption coefficient is
of roughly the same order as in Ref. 6.
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