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Quantum-mechanical features of helicon wave propagation in n-type InSb
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The role of quantum-mechanical oscillatory relaxation time and high-frequency conductivity in the presence
of a strong magnetic field has been studied. Accounting for the oscillatory relaxation process and high-

frequency conductivity, the dispersion equation for helicon wave propagation has been derived. The
dispersion equation thus obtained has been used to construct the. refractive-index surfaces. The effect of
magnetic field and the helicon wave frequency on the refractive-index surfaces is shown to introduce
deformation which offsets the focusing of the propagating helicon waves; The focusing and the interference of
the helicon wave along the magnetic-field direction have been discussed in terms of the energy gap between
the Fermi energy and the various Landau levels. The analysis of the dispersion equation for real ao and
complex k has been carried out to study the role of convective instability in the InSb sample. The relative
growth rate of helicon waves propagating through InSb at 4.2'K has been computed for different values of
the applied-magnetic-field strength. It is shown that the helicon waves propagating through the sample
undergo a typical oscillation. These oscillations can be used as a diagnostic for determining various
parameters of the sample.

I. INTRODUCTION

The propagation properties and diagnostic fea-
tures of helicon waves are well known. ' ' The
electron gas in thermal equilibrium supporting
the helicon wave interacts through the full set of
Maxwell's equations and conforms to the general
stability theorem propounded by Newcomb. ' As a
first approximation, it is assumed that the heli-
con-wave dispersion is free from the effect of
orbital quantization of gyrating electrons. How-
ever, in the strong-fieM regime, co,w»1, the
energy levels with large quantum numbers are
characterized by electron-density discontinuities
and the helicon waves propagating through the
electron gas show strong Shubnikov-de Haas type
oscillations. '~ This situation is best visualized by
the generalized Landau quasiparticle picture for
fermions where scattering of helicon waves is ex-
pressed in terms of fluctuation of Landau quasi-
particles. " With increasing magnetic field the
distortion in the Fermi surface increases. The
scattering-matrix element is further affected by
the discontinuities or electron population corre-
sponding to higher quantum numbers, which cumu-
latively results into observed oscillations associ-
ated with the damping of helicon waves. ""

It is well established now that the oscillatory
contribution to the helicon-wave dispersion orig-
inates primarily in the frequency-independent el-
ement of the local conductivity tensor and is dom-
inated by the relaxation phenomena governed by
the detailed scattering mechanism. The quantum-
mechanical expression for the tensorial conductiv-
ity which accounts for electron-electron interac-
tions in the self-consistent-field approximation is

highly appropriate for studying helicon-wave dis-
persion and propagation features. "" In the quan-
turn limit we consider that the electron-electron
interaction basically perturbs the density of quan-
tum states which in turn governs the relaxation
process in the system. The expression for the
phenomenological collision frequency thus derived
exhibits an oscillatory behavior and is obviously
an inherent source of oscillations in most of the
dispersion and propagation features associated
with helicon waves. In Sec. II of this paper the
quantum theory relevant to helicon-wave propa-
gation has been briefly described. An appropriate
dispersion equation has been chosen and its appli-
cability to helicon-wave propagation and damping
has been discussed. Utilizing these features of
the dispersion equation and the oscillatory behav-
ior of phenomenological collision frequency dis-
cussed in Sec. III, we have studied the nature of
refractive-index surfaces. In Sec. IV, we have
discussed the various features of the helicon wave
propagating through n-type InSb. It is further
shown that the refractive-index surfaces thus com-
puted give rise to focusing of the helicon wave
along the static magnetic field. It is argued that
the oscillatory nature of the phenomenological
collision frequency and conductivity distorts the
refractive-index surfaces in such a way that the
helicon waves propagating along the static mag-
netic field are modulated or bunched. The dis-
persion equation has been analyzed in Sec. V to
study the instability of propagating helicon waves
through InSb. An expression for the growth rate
of the convective instability has been obtained and
the variation of the growth rate with frequency has
been shown. This depicts the oscillations which
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primarily arise due to the quantum-mechanical
phenomenological collision frequency. Their
physical significance and their role in possible
diagnostics in the study of solid-state plasma. in
general and InSb in particular have been discus-
sed. With the limited available data for InSb it
is shown that the various features of quantum os-
cillations may depict important features of the
band structure, the Fermi surfaces, the contribu-
tion of additional relaxation sources, and many
other related features.

II. BASIC QUANTUM-MECHANICAL THEORY

The helcion-wave propagation through solid-
state plasma under the strong-magnetic-field re-
gime can be best treated in terms of quantum-me-
chanical perturbation theory. The energy of free
electrons in a specimen of thickness d from quan-
tum-mechanical consideration is written as

mlE« = Su, =(n+ z)g&o, +
2@le d

where u, is the cyclotron angular frequency, n and
l are the principal and azimuthal quantum num-
bers. In a solid-state specimen, the electromag-
netic field is determined by the set of Maxwell's
equations and the relevant boundary conditions.
The electric field of the wave produces the nec-
essary perturbations in the vector potential, which
gives the required change in the energy of free
electrons

6E = kk&d)V= g((d~~ v —4P„))

(2)

where E' is the perturbed azimuthal quantum num-
ber. In a thin slab specimen, the electric-field
and current distributions are easily decoupled and
the Schrodinger wave equation can be salved. In
a rather standard notation the expression for the
current density arising from vector-potential per-
turbations is written as"

J(z, t}= —,—~Re (Q*„,—. V+ —A P„'
e

n, m, l

where the vector potential A=A, +A, (z, t); A, and

A, (z, t) correspond to the static magnetic field
and the helicon wave, respectively. For linear
response, we allow A, (z, t) «A, . The perturbed
wave function in the case of helicon-wave propa-
gation through a thin specimen has been given by
Turner and Cochran. " The total number of occu-
pied electron states is defined as

c k CO~

a =&I+
&d &d(4)~ COS e —(d+ tV)

(6)

where &@~2 = 4mn, e'/m*, is the plasma frequency and
v = 1/7 is the phenomenological collision frequen-
cy. This equation is similar to the classical eq-
uation often used for various properties of heli-
con-wave propagation. The basic difference
arises because of the involved dependence of the
quantum-mechanical perturbation on the relax-
ation process associated with the system.

III. PHENOMENOLOGICAL COLLISION FREQUENCY

InSb has been chosen to investigate the role of
quantum oscillations and study its effect on the
helicon-wave. propogation. The effect of binary
collisions to a very great extent is removed by
choosing a specimen with very high purity and
subjecting it to very low temperatures. Further,
InSb has a very small energy gap, high mobility,
and a small effective mass which are useful in
manifesting the quantum effect when the specimen
is subjected to a high magnetic field. In an ordi-
nary specimen with impurities, the relaxation
rate which enters the formulation of the conven-
tional conductivity is defined in the Born approxi-
mation as

2wc,N(E„)
8

where c, is an energy parameter of the dimension
of the energy square and N(Ez) is the density of
states. The density of states in a system sub-
jected to a high magnetic field is written as2

2v 2 (ea)3~2

(2 )' z'8c" '(u
C

&& [(I+a+-')"'+-'rv"' (~+-') '] (8)

nmf

Therefore the perturbing potential in a system is
effective only when the initial states are occupied
and the final states n'=n+1 are empty. The re-
laxation time w poorly depends on n, l, and B.
Running the summation over all terms except P
= k+1 the contribution of the potential perturbation
to the high-frequency conductivity was obtained
by Turner and Cochran as

g~e T

mz[l+ Z((0+ (dz}1 j

Accounting for the lattice contribution to the re-
fractive index and allowing helicon-wave propa-
gation at an angle 8 to the static magnetic field,
we write the full dispersion equation as
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The Fermi energy in the quantum limit is express-
ed in terms of a nondimensional equation,

Ez/Na& =I+ d+e .
Making appropriate substitutions from Eq. (9) into
Eq. (8) and rearranging the resulting equation we
write

0.9-

o.6- *

InSb at 4.2 K

&0 = 9 lO rad sec9
E =0.5 rn evF

—~i1/e (g+ L)1/2
bl (E/, )=N (E ) 1+ (1O)

& o

0.3-
This equation conforms to a perturbed quantum-
mechanical density of states often times written
as

N(EJ, )= Ne(E~) + N, (Ep),

where the equilibrium density of states is defined
as

OQ

-0.3- 4

From the basic definition of the relaxation rate
given in Eq. (7), we obtain the corresponding per-
turbation in the phenomenological collision fre-
quency for the specimen,

e(o0 c [i ~ i/e . (g i )1/ej (13)
Vo Vo E~

It is obvious from this equation that v = vo for a
critical value of the energy gap between the Fermi
level and .the Landau level conforming to

i g 1/2 (g+ i )i/2 0

or

4= 0.3.
The energy-width parameter & oscillates between
the limits 0 and 1 and in so doing the effective col-
lision frequency oscillates around the classical
value v, . We have chosen the experimental param-
eters for ~nSb at 4.2'K as shown in Table I. Using
these yarameters the perturbation in the phenom-
enological collision frequencies was computed and

TABLE I. Experimental parameters for InSb at 4e2 'K.

Sample no. Parameters Chosen values

1
2
3
4

Mp

Up

m~e

4.5x 10~2 radsec '
9.0x10 radsec
0.5 meV
0.013mp

4vm „,(2m
(2vI')'

Comparing Eqs. (10) and (11)we obtained the rela-
tive perturbation produced in the system,

e~ ~~2i( E) c [i g i/2 (g+ i )I/2] (12)

-0.6
I-0

I=I
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&.0 3.0 4.0
u&c(IO rad sec )

FIG. 1. Variation of the phenomenological collision
frequency with applied magnetic field.

its variation with magnetic field is shown in Fig 1.
As the magnetic field changes, the quantum levels
accordingly undergo a distributional change which
manifest itself in the form of oscillations of vari-
ous parameters such as the collision frequency,
the conductivity, and the conduction current. As
the magnetic field in the specimen increases, the
magnitude of the oscillations increases and be-
comes very large for 1=1, as shown in Fig. 1.
With decreasing magnetic field the collision-fre-
quency oscillations decrease iq magnitude and are
seen to cluster with increasing quantum numbers.

IV. ROLE OF REFRACTIVE-INDEX SURFACES

The dispersion Eq. (6) accounts for the oscilla-
tory nature of the collision frequency. The energy
separation between Fermi energy and a particular
Landau level has been shown to control the mag-
nitude of the oscillations. Usi.ng the method out-
lined earlier' we have constructed the refractive
index surface from the dispersion equation. For
a fixed value of I, the refractive surface is seen to
show a curious variation with changing 0 = &o/co,

(Fig. 2). The refractive-index su'rface depicts a
mell-defined point of inflexion at 0 = 0.20 whereas
the point of inflexion for lower values of 0 loses
its significance. The effect of quantum oscillations
is shown in Fig. 3. The refractive-index surfaces
for a fixed-frequency helicon wave are shown for
varying values of energy width between Fermi
level and Landau levels. For 4= 0.3 the collision
frequency v is equal to v, . As 4 increases beyond
the critical value the associated resonance peaks
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FIG. 2. Frequency dependence of refractive-index
surfaces for a helicon wave propagating through ~sb.
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FIG. 3. Quantum oscillations in helicon-wave reson-
ances.

osci.llate as depicted by the dashed lines in Fig.
3. Unlike the picture in Fig. 2, the inflection
points in the refractive-index surfaces do not lie
along a line and show a significant shift with in-
creasing & values. This clearly shows the smear-
ing property of the helicon waves as they propa-
gate in the specimen. The curvatures of the in-
flection also change wwith changi. ng values of 4.
Therefore, the propagating helicon waves diffract-
ing differentially from different surfaces interfere

FIG. 4. Effect of band structure on refractive-index
surfaces.

so as to produce the oscillatory character of the
received helicon waves. A dominant part of this
oscillatory behavior arises from the oscillatory
nature of the collision frequency which manifests
the shape of the refractive-index surfaces and the
observed features of the helicon waves propagating
through the solid-state specimen.

We have shown that 4 varies between 0 and 1 for
each value of I. In Fig. 4 we have shown the vari-
ation in the refractive-index surfaces with values
of 4 varying from 0.05 to 0.95. The lower values
of 4 do not depict the refractive-index surfaces
with points of inflection, whereas higher values
of ~ show a marked point of inflection which focus-
es the helicon waves propagating along the static
magnetic field in the specimen. For a fixed-fre-
quency helicon wave, +=4~ 10" radsec"', the
points of inflection are seen to change with chang-
ing values of h. For 4=0.95 the point of infle. ction
occurs at p,~= 28.8 whereas for 4= 0.75 the point
of inflection shifts t;o p,„=24. A v, is taken for the
specimen and v = v, for 4 = 0.3 has been used. For
higher values of 4 the change in collision frequency
has been evaluated and accounted for in construct-
ing the surfaces shown in Fig. 4. The refractive-
index surfaces seem to be'a possible means of
manifesting the nature of the helicon wave propa-
gating through the solid-state specimen. The pre-
cise knowledge of these surfaces governs the scat-
tering, interference, and focusing of the helicon
waves. Diagnostic studies of the helicon-wave
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amplitude and phase varying with the magnetic field
and temperature can yield very useful parameters
for solid-state specimen, namely, carrier den-
sity, electron collision frequency, and relaxation
parameters. It is well known that the refractive
index has a singularity in the absence of colli-
sions. However, in the presence of collisions we
find that the resonance feature disappears and the
refractive index is limited to a lower value. For
a given parallel refractive index there are two
perpendicular refractive indices which are char-
acteristic of two modes of helicon-wave propa-
gation. The resonance nose is seen to vary with
varying values of 4. For highest value of 4
=0.95 the nose appears at (p,„=36, p,,= 240) and
is seen to decrease gradually with decreasing
values of 4. The resonance nose is narrow at
higher 4 values and becomes broad at lower 4
values.
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V. INSTABILITY
FIG. 5. Variation of relative growth rate with cyclo-

tron frequency.

The helicon wave propagating with small attenu-
ation through the semiconductor plasma grows
either in space or in time. %hen the amplitude of
the propagating-field vectors increases with time,
the resulting instability is said to be an absolute
instability. The growth of propagating-field vec-
tors in space is known as convective instability.
The instabilities of the helicon wave under various
conditions have been studied by many workers. ""
The boundary conditions encountered in solid-state
plasma often exhibit the onset of absolute insta-
bility. Therefore, in this section, we have studied
the role of convective instability which arises due

to the change in collision frequency in the presence
of a static magnetic fieM. We have analyzed the
dispersion Eg. (6) for real ur and complex k. Sub-
stituting k=k„+ik, and separating the real and

imaginary parts, we obtain an expression for the
relative growth rate of convective instability,

turbed effective collision frequency. Using the
above equation and the parameters for InSb given
in Table I, we have computed the relative growth
rate of the helicon wave as a function of the ap-
plied static magnetic field for fixed values of the

. helicon frequency. The variation of the relative
growth rate with helicon-wave frequency is shown
in Fig. 5. The amplitude of the quantum oscilla, -
tions is seen to be more pronounced for higher
values of I. In the presence of a longitudinal mag-
netic field the spherical Fermi surface is modifi-
ed, which we have not accounted for in this paper.
The oscillations seen in the relative growth rate
depicted in Fig. 5 arise chiefly from the quantum-
mechanical effect which governs the relaxation
processes in the solid-state specimen. A com-
parison of the nature of the oscillations as depicted
theoretically and observed experimentally will re-
veal interesting diagnostic features.
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