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Determination of the conduction-band structure of the III-V semiconductors subject to
mechanical strain from measurements of the reflectivity spectrum
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In an earlier paper, the authors proposed a model for the conduction-band structure of the III-V
semiconductors subject to mechanical deformation. This work presents the theoretical basis for the
experimental study of the deformed band structure from measurements of the reflectivity spectrum in the
plasma region. The analysis involves two related subjects: the Maxwell equations for optically anisotropic
material and the conductivity of the carriers in the deformed solid. The former determines the reflectivity

spectrum, whereas the latter furnishes the means by which the carrier eigenstates aftect the optical
properties. The advantages of this technique are outlined.

I. INTRODUCTION

In an earlier paper, ' the authorspresented a
theoretical determination of the effect of mechan-
ical strain on the I'-point conduction-band mini-
mum in the III-V semiconductors. In this paper
we show how these predictions can be checked ex-
perimentally from the measurement of the reflec-
tivity spectrum. It should be pointed out that care-
ful design of this experiment can greatly enhance
the value of the experimental results. For ex-
ample, consider first the importance of choosing
a proper operating frequency. For sufficiently
high frequency, the details of the carrier scatter-
ing mechanism become unimportant in many opti-
cal phenomena. An upper limit on the frequency
is imposed so as to exclude band to band transi-
tions which are not very suitable for the detailed
study of a single band. In quantitative terms one
wishes to maximize the frequency-relaxation time
product without inducing band-to-band excitations.
Often frequencies around the plasma minimum
adequately satisfy these constraints. A second,
experimentally controllable, parameter worthy of
consideration is the occupation statistics of the
carriers in the band under study. A marked ad-
vantage results if degenerate carrier statistics
are applicable as one can then study the eigen-
states at a fixed energy (the Fermi energy).

In Sec. II, Mmcwell's equations for the propaga-
tion of electromagnetic radiation in an anisotropic
semiconducting solid are considered and the reflec-
tivity spectrum is determined. The influence of
the free carriers naturally enters through their
electrical conductivity.

In Sec. III a general technique for calculating the
transport coefficients for an energy band having
only a small deviation from isotropy is presented.
In Sec. IV the conductivity of deformed n-type
degenerate III-V semiconductors is calculated us-

ing this technique. Some semiquantitative consid-
erations are presented which allow one to estimate
from a single feature of the reflectivity spectrum
the magnitude of the frequency-relaxation time
product.

In the following paper, 'the theoretical consider-
ations presented here are used in the analysis of
the shift of the ref lectivity spectrum of n-type de-
generate Ir@b subject to uniaxial deformation.

where f is the lattice dielectric constant and 0 is
the conductivity of the free carriers. For conven-
ience we choose a coordinate system in which N'
is diagonal. We will restrict our attention to plane
waves (wave vector k) propogating in the X-l'
plane. Defining k = (&o/c)n, we can determine the
electric field R associated with the wave from

(-n'„+N'„) nxny

(-n'„+N', )

-(n'„+n'„)+N',

E, =0. (2}

Corresponding to (2) there are two independent
modes of propogation: The transverse electric
mode (TEM} for which E„=E,=0 and the transverse
magnetic mode (TMM) for which E,= 0.

The ref lectivity of the material is found by satis-
fying the appropriate boundary conditions on the
electric and magnetic fields at the interface.
Again, assuming the incident wave is propogating

II. REFLECTIVITY SPECTRUM OF ANISOTROPIC

CRYSTALLINE SOLIDS

Use of Mamvell's equations allows one to deter-
mine the allowed modes of propogation of an elec-
tromagnetic wave (frequency e) in an snisotropic
crystalline solid. We define

8' = e/e, j(r/e, (u,—
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Eo' cose- (N'. -n'„)'~'
E, cos8+(N', -n'„)'~' ' (3)

and for TMM,

in the X-F plane, and the interface is an X-Z sur-,
face, the ratio E,/E, of the electric field intensity
of the reflected and incident waves is, for TEM,

where f, is the equilibrium Fermi-Dirac distribu-
tion, v=(l/h)(Se/Sk) is the carrier velocity, and
E is a small harmonically time varying electric
field of frequency co. 'The scattering term in the
Boltzmann equation is handled by use of the relax-
ation time (r) approximation and r is a function of
energy. The current density associated with a
doubly spin degenerate band is

E~ cos&- (N„-n 2)'~'/NPl, .

E, cosa+ (N'„- n'„)'~'/NQ, ' (4) 3=-e fvf(~ ), d'0,

where 8 is the angle of incidence and n, = sin8. The
ref lectivity of the surface for either mode is given
by

(5)

and the conductivity a is given by

2 2 So. =- e' v v v'*~k'dkdQ
(2v)'

where

(10)

The region of the spectrum for which ReN,.=1 is
one in which the free carriers have a pronounced
effect on the optical properties of the material. If
at the same time the frequency-relaxation time
product is large, then only the dynamic properties
of the carriers, and not the details of the scatter-
ing process, are an important factor.

y((!)= Q a qk kq, (6)

III TRANSPORT COEFFICIENTS OF ENERGY BANDS
HAVING A SMALL ANISOTROPY

General methods (see, for example, Ref. 3) for
calculating the transport properties of ellipsoidal
bands of the form

r*=r/(1+j (dr).

To exploit the properties of (-Sf,/Se), it is ad-
vantageous to make E, rather than 0, a variable
of integration in (10). Consequently, we solve (7)
for k to first order in &g. We immediately get

k=k-k ~g(k, Q), (12)

where k(c) =g ' is the functional inverse of g(k) and
the prime on h denotes a first derivative.

Other factors in the integrand (10) can now be
expressed as explicit functions of energy:1, k S &g(k, Q) ~".=a g'"~k'

where p is an arbitrary function and a z is constant
are well developed and have found widespread ap-
plication. Unfortunately the deformed conduction
band in the III-V semiconductors cannot be placed
in the form of Eq. (6). In this regard the most not-
able feature of the deformed conduction band is
that the deviation from perfect isotropy is small
for strains in the linear elastic region. We devel-
op below a general technique for finding the elec-
trical conductivity of such a band. The extension
to other transport coefficients is not difficult.

We assume that the energy band is doubly spin
degenerate and write the dispersion relation in
the form

e =g(k)+ (k, Q),

[g '(k) —g "(k)k '&g(h, Q)]~

S&g(k, Q)I
j

8& S&g k, Q
ek
—=g'(k) —g "(k)h'hg(k, Q) +

ek

Thus to first order in &g, o,&
is given by

(2v)' k'

where

A. =g'h — g"h'&g+ h —2hh'&gSEg)
/ ekj

(13)

(14)

(15)

f=f, +e(K v) 1+jc07 9%
(6)

where &g depends on the magnitude and direction
of k, g(k) depends only on the magnitude, and
hg «g. The carrier distribution function f is ob-
tained from the Boltzmann transport equation and
is given by

jg 8dg 2 jg 96g
y,. ey,. y, ep,

(16)

and all functions of k remaining in (16) are to be
written as functions of energy through k =k(c). To
evaluate (15) requires specific knowledge of g and
&g. The integration over the solid angle 0 will
normally present no problem.
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A brief discussion of the relaxation time 7' is
warranted. Changes in band structure (as repre-
sented by &g) naturally entail changes in the elec-
tronic wave functions and hence changes in the
scattering transition probabilities. Thus r(«) will
depend on 4g but we shall not attempt to determine
this dependence quantitatively. To isolate band
structure effects, it will be necessary to ensure
that the carrier scattering process is not an im-.

portant factor.

IV. EFFECT OF MECHANICAL DEFORMATION ON

THE CONDUCTIVITY OF n-TYPE DEGENERATE

III-V SEMICONDUCTORS

The conduction-band minimum at the 1 point in
most III-V semiconductors exhibits the following
mell-known nonparabolic but spherical doubly spin

I

degenerate dispersion relation':

E'(E'+E,)(E'+E,+n.) ~k~(E +E + ,'h) =-0,

(17)

E '= E —tf 'k'/2m, , (18)

where E is the I point band gap, & is the spin-
orbit splitting of the valence band, and I' is a mo-
mentum matrix element between states at F. The
nonparabolicity stems from the strong admixture
of s- and p-like I'-point states required to accur-
ately describe the conduction-band states. The
solution of the cubic equation (17) gives the func-
tion g(k).

The change in energy produced by a mechanical
deformation characterized by the strain tensor E,

was found in vari earlier paper' to be

EE ( ~ ) EE C 3 cE (1 I ) + (2c 3 )(3g 3EE))(3 3)+tt(2c 3 ) P ' 3,&
2E c+3+llffg

i&j

(19)

In this expression, C„c, b, n, C, are deforma-
tion potentials associated with the I' point states,
& = Tr&, and a„b„c„given below, describe the
admixture of s and p like states at I' necessary to
describe the undeformed conduction band eigen-
function at a given k:

have

2N=, d'P

0 ps' ~ (22)

a, =IEk(E'+E + 2b)/N,

h, =-,'~ ~/X,

c =E'(E'+E + EE&)/&,

(20)

&N/No = «— (21)

where N is chosen such that a2+b', +c', =1. Since
the analysis in Sec. III is linear in &g, the splitting
of the conduction band degeneracy given by the
last term in (19) will produce no contribution. We
mill measure the energy with respect to the band
edge in the deformed material and so the first
term (C,«) in (19) will also disappear.

The ac conductivity for the deformed conduction
band under strongly degenerate conditions can be
calculated using (15). The total number of carriers
in the sample is fixed by the number of donor atoms
present and so the change in carrier concentration
under mechanical strain is given by

To proceed analytically, we use the standard ap-
proximation

~= 6(«- «„),Sf )

where «z is the Fermi energy. Using (12), we
find

r 4',3

3 3
-k'dA = -h'h' 4g(h A) dA. (24)

From (19),

&g(h, A) dA =4m[-c«(1 —a', ) ——,'a,cgkj,

Therefore

1, I9 ~

&=2,h'+, (c«+-,'a,c+k«),3m' m' (26)

and the right-hand side of (26) is to be evaluated
at « = «y ~ Writing «l3 = «go+ 4«l31 llsing No =ho/8w~

expanding (26) to first order in 6«~ and using (21)
gives

The subscript 0 denotes the unstrained value. We &«l„=—sg', k«« —c« —Ea,c+k« . (27)
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Making use of the definitions

bR=1-a' S
2c —b

&
a c

k2 (26)

we get

=- ce—+——(Skm)(3+&«k', k' —& (+n —(Sk')p k;k, e„
k

———(Tk')Q *,"-P—(Tk')Q k(k, &;,
P & 2 k,.a'„
2 ek k' ek (29)

8&g eRk b 8S k b ask
ek. ek k 28k k

=ca —~+——~ 3+& k'-ek'I+ —S(6c -2&k )+n —-s gk k e
) 2 ae I sk k: t g gg

+nS Q e ~k~- ——~Qk', e„-—Tx 2k a —P —~pkp~t, ~-PT Q e ~k~.
P elk ~ P 8Tk

i&j Of l

To calculate a~, we must first perform the integration over the angular variable in (15):

(30)

-" A dQ.k' (31)

These angular integrals are algebraically tedious because of the large number of terms involved (approx-
imately 35) but the integrations themselves are simple as they involve only different products, powers,
crossproducts, etc. , of k /k. We find

g" 2 1, b g'IPP 2'I =4wg'h2 1+ca —+ ——ce —R' + (3t ——a) ——S +-
QOf gI2 gIP gI 2 OOf 5 g/2 g I

2 jg2 16 SQ+-—S '+ ——
5g' 5 g'

Similarly

g" 1 t 1 grig 1Psgi 4 7.'+ipk'e —+ —
i
+ Pk(2& +—e) — T — —,Pk(3—c —e)6 gI2 grI) 2 oo 5gI2 5 gi ~ 0'e 5gI (32)

I = 4m(k~/5) [-(g "/g)(gSk -PTh) +nhS ' —PkT '+ 6nS —6PT], (33)

therefore

(34)(2v)' k 2 s~ ' (2s)' 5'
To use (34) to describe the change in & produced by deformation, one should first include the change in
Fermi level with deformation. This means that all zeroth order terms in &gin I must be expanded to
first order in &c&. Denoting Io =4''k' ~,z we find with the use of (27):

&I 1 g"k ) 1PTk 1 k 2 '4' 2k t 2k' 16Sk+2 ~ -— - ce —R'+ —(3e —e) ——S, + —~+ ——,S'+-
gi )I 6 gI gI 2 oQ 5 gI2 gI J 5gI 5 gi'

+ 2Ph(2a +e-) —,———T' +-,Pk(3e —c)
1g"kT lk, g 4T)

of of 5 g/2 5gl ofof 5 I)
(35)

&I z/Io = a z(k/5g')[-(g "/g')(nSh - PTk)+nkS'- PhT'+6nS —6PTj, a gP. (36)

These last two equations are to be evaluated at a~, .
Equations (35) and (36) can be symbolically writ-

ten in the simpler form

AI /I, = a, @+a,e + a,ca+ a,b(3c —e), (37)

bI z/ID=am& I+a~no z, a WP, (38)

where a„a„a„and a, are functions of the unde-
formed band parameters and Fermi level

a, = (2+g"h/g')(-3) —pPTk/g'+u —v,
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0 =2Q+35

a, =- (I/g')It ',

a, =-', (h/g')(hS'+ 6S —g "hS/g'),

u = 2Ph(g "hT/5g'2 —hT'/5g'),

v = 2Ph-T/5g'.

The conductivity can now be written

(41)

(42)

(43)

(44)

the relaxation time 7'. This implies that the car-
rier scattering mechanism is no longer a factor.
Furthermore„the dependence of the relaxation
time on mechanical strain, or even the whole
question of the validity of the relaxation time ap-
proximation itself, has little or no bearing on the
dependence of the plasma region ref lectivity on

mechanical strain.
The magnitude of ~r can be quite simply esti-

mated from the ref lectivity spectrum. For optical
isotropy, and normal incidence, Egs. (1)-(5) give

o, = tt2/(»)'](q'/&')&*f, (I+&I,/I, ) .

Equations (37), (38), and (45) reveal that the
second-rank tensors o and 0 are related by a sym-
metric fourth rank tensor whose components are
apparent from (43) and (44}. The symmetry of this
fourth-rank tensor is typical of all fourth-rank
tensors relating two symmetric second-rank ten-
sors in a cubic material. This aQows one to ex-
press the relationship behveen (r and t by a six-
dimensional matrix equation in an identical %ay
to which the mechanical stress-strain equation is
often handled. '

Since &*=v/(I+ j&uv'), we have

If = [(BeÃ—1}'+(ImN)2]/[(ReN+ 1)'+ImN)'].
(4'7)

The minimum ref lectivity 8 occurs for ReÃ =1,
and so (ImN)' ~4R„. It is an easy matter to then
show that

Imo„/Reo„= (u„7 = «/4~„ (48)

At optical frequencies, in the III-V semiconduc-
tors, 10&v&20. For B ~0.10, &„&&10. Under
these conditions the reflectivity spectrum in the
plasma region provides a, very precise tool for
the study of ba.nd structure.

Reo ~=(1/&uv)lmo z. (46)
ACKNOVfI. EDGMENT

A

From (1) we see that, for ~v» 1, N and hence
the ref lectivity spectrum become independent of

The authors gratefully acknowledge the financial
support of the National Research Council of Canada.

'W. Howlett and S. Zukotynski, Phys. Rev. B 16, 3688
g.977).
~.Howlett and S. Zukotynski, fo11owing paper, Phys.
Hev. B 18, 6978 (1978).

3S. Zukotynski and M. Grynberg, Phys. Status Solidi 9,

549 (1965).
4E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
J. Nye, Physical Properties of Crystals, (OxfordU. P.,
Oxford, 1969).


