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Nonstructural theory of the exciton states in solid rare gases
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We develop a simple nonstructural theory of the exciton states in solid rare gases. The potential energy in
the Schrodinger equation of the free rare-gas atom is parametrized in the simplest form which reproduces the
exact experimental excited atomic levels. The same equation is modified to describe the exciton states in the
solid phase simply by introducing the effective mass p, and by screening the Coulomb potential outside the
atom with the dielectric constant &0 of the solid. In this way the exciton levels in the effective-mass
approximation become continuously the excited atomic levels, as the effective Rydberg approaches the
Rydberg constant. This solves the dilemma between the Wannier and the Frenkel models for all
spectroscopic terms, i.e., for the high as well as for the low exciton levels. It also solves the problem for the
whole series of solid rare gases, in which quite different values of p, and eo occur. Complete agreement is
achieved in the comparison of the theoretical results with the experimental data. Accurate values are also
obtained for p, and for the energy gaps E~; they differ substantially from those generally accepted within the
framework of the Wannier model. The exchange and spin-orbit interactions are shown to be identical in the
solid phases and in the free atoms.

I. INTRODUCTION

The study of the electronic states in solid rare
gases is of great importance in solid-state phys-
ics. Rare-gas atoms are closed-shell systems;
the interactions among them in the solid phase are
due to weak van der Naals forces. Then, as in
other more complex molecular crystals, many
characteristics of the f ree constituent elements
are preserved. The optical-absorption edges for
electronic transitions exhibit a large number of
exciton peaks; this has been a puzzle for a consid-
erable time. There is, in fact, a dilemma between
an atomic-type classification of the levels and the
Wannier model. It is observed that the higher
members of the series, characterized by principal
quantum numbers n ~ 2, fit mell within the Wannier
model, whereas the lowest exciton states, with
n =1, do not. It is also observed that this discrep-
ancy is very large, in solid neon, of the order of
1 eV, and that it gradually disappears as we pro-
ceed down the appropriate column in the Periodic
Table. These discrepancies are approximately
0, 2, 0.06, and 0.00 eV in solid argon, krypton,
and xenon, respectively.

The effective masses p. and the energy gaps E'
have been obtained from the Wannier model fitted
to the series higher terms (n~ 2). The binding en-
ergies of the lowest levels (n =1) have been speci-
fied in reference to those energy gaps E' and have
been calculated within several models by introduc-
ing atomic-type central- cell corrections. ' How-
ever, these theories are all based on the band
structure of the crystal. Such a structure does not
exist for the free atom, and the corresponding en-
ergies and wave functions are not suitable to-es-

tablish a direct relationship with the excited atom-
ic levels.

Recently it has been pointed out that the band
structure of the solid is not essential for the de-
termination of the positions of the exciton levels
and that a nonstructural approach which works in
direct space is more 'appropriate. ' We have
shown that approximate solutions which have the
proper behavior in both the effective-mass approx-
imation (EMA) and the atomic limit provide the
correct trend of the exciton levels throughout the
solid- rare-gas series. ' Furthermore, a calcula-
tion which fully exploits the atomic limit shows
that a quantum-defect classification must replace
the Wannier model in solid neon. ' It is possible to
develop a quantum-defect theory for the solid
phase with the condition of correct behavior of the
solutions in both the EMA and the atomic limit.
Such a theory can simply explain all exciton levels
in the whole solid-rare-gas series. %e proceed
as follows.

The EMA is simply the Schrodinger equation for
the hydrogen atom with two oppositely charged
particles of reduced mass p, interacting through a
Coulomb potential screened. by the static dielectric
constant e, of the solid. H we let eo and p (in elec-
tron mass units) approach unity, the EMA yields
the hydrogen atom levels. The rare-gas atomic
levels are quite different f rom these so that our
model should give the latter as e, and p, approach
unity. On the other hand, the EMA limit must hold
when the effective Rydberg becomes small com-
pared to the Bydberg constant, since the excita-
tions become much more extended in the solid than
in the free atom. To obtain both results, we have
simply to cut off the screened Coulomb potential
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inside the atom in the EMA equation and replace it
in such a way as to obtain the rare-gas atomic lev-
els for @,= p, =1. In this fashion, the atomic and
the EMA limits transform continuously into one
another with varying &, and p, . The necessity to
distinguish between n ~ 2 and n = 1 states in the
Wannier and in the Frenkel models disappears: a
single generalization of both models applies to all
levels. We ean also determine accurate values for
p, and E'. These values differ from those provided
by the Wannier model as we move towards the at-
omic limit; they approach them in the EMA limit.
'Solid neon turns out to be close to the atomic lim-
it, whereas solid xenon is essentially described
by the EMA. Solid argon and krypton are inter-
mediate, and the theory provides an accurate de-
scription for all four solid rare gases considered.
The details are described in Sec. II. A prelimin-
ary account of the results has been given else-
where. '

II. NONSTRUCTURAL APPROACH

We set up the Schrodinger equations

--'X '. + U'. (r)X'„= —il.X'„

-(»2V )X'„" + U'„(r)X'„= -lv'„X'. , (2)

for the s-type envelope functions y'„and X'„of the
free atom and the solid exeitations, respectively.
Equations (1) and (2) are written in atomic units,
n =1, 2, . . . , and TP„and 8"„are the binding ener-
gies of the excited states in the free atom and in
the solid phase, respectively. W'„and W'„are re-
lated to the corresponding excitation energies E'n

and E'n through the equations

~a pa Ea
n g n

U'„(r) =-r ',
U'„(r) = -(&,r) '

(5)

(6)

outside the atomic radius p„defined as half of the
nearest-neighbor distance in the solid, ' and

U„(r) = &'„( )=r-C„ (7)

inside the atomic radius p, . The constants Cn must
be such that the eigenvalues Wa„of the atomic Eq,
(1) are the exact experimental excitation energies
of the free atom. " Since p, is not small compared

V'= E' —E'.
n g n

E' and E'. are series limits, i.e. , the ionization
potential in the free atom and the interband energy
gap in the solid phase, respectively. The potential
energies in Eqs. (1) and (2) a.re

to 1 a.u. , Eq. (1) is, of course, not the hydrogen
atom equation, but a model equation for the excited
states of the rare-gas atom we are considering.
Equation (2) is identical to it for p, = &0= 1 (atomic
limit), but its solutions approach the EMA solu-
tions when the effective Rydberg R',

R'= p, /2e,', (6)

becomes small compared to the Rydberg constant
R =0.5 a.u. = 13.606 eV of the hydrogen atom (EMA
limit).

One can think at first sight that Eqs. (1)-(7) are
too simple to describe the problem. We believe,
however, that they contain the essential physics.
Let us consider first the free atom. It is known
that the many-body problem of the atomic excita-
tions can be reduced to a two-body problem in the
framework of the quantum-defect theory. " This
theory is based on the fact that a Schrodinger
equation for a two-particle pseudoeigenfunetion
can be derived, and that the pseudopotential in-
volved is Coulombic for large x and finite in the
atomic region. If we write the excitation binding
energies as

W'„= f~(n+ 6„)-',

with n = 1, 2, . . . , such hypotheses on the potential
lead to the fact that the quantum defects 5'„are
fairly constant as functions of n. and generally
smaller than unity. This result is experimentally
verified for all atoms. If we consider, for in-
stance, the neon and xenon atoms, the valence ex-
citations ean be pictured as promotions of an elec-
tron from the 2p and 5p orbitals to (n+2)s and
(n+ 5)s orbitals, respectively. Despite the re-
markable differences in size, in number of elec-
trons, and in nodal structure and extension of the
orbitals, the experimental quantum defects g'„do
not differ by much (see Table 1). Therefore, with-
in the point of view of the quantum-defect theory,
Eqs. (1), (5) and (7) are justified. We note that the
Coulomb potential of Eq. (5) is appropriate outside
the atomic radius p„whereas the choice of Eq. (7)
inside p, is dictated only by simplicity. In fact, the
true potential in this region is an unknown compli-
cated state-dependent function. " Since we are not
interested in solving a priori the atomic problem,
our choice provides the exact experimental atomic
limit in the simplest way. The choice of constant
potential in the atomic region is commonly made
in quantum-defect calculations. Equations (1), (5),
and (7) constitute the problem of the Coulomb po-
tential with cutoff. A recent example of such a
study is that of Linz and Chen, "who have carried
out a calculation of the exact eigenvalues S„of
these equations requiring the' potential to be con-
tinuous, i.e. , setting
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TABLE I. Experimental transition energies E, quantum defects 5, ionization potentials E of rare-gasn' n
atoms. Data from Ref. 10. Energies are in eV.

Neon Argon

EQ gQ
n n

EQ ~Q
n

E' E„ ~Q
n

n=l
2

3
4
5

6

16.668
19.685
20.568
20.946
21.143
21.259

0.6676
0.6930
0.7001
0.7030
0.7047
0.7050

16.846 0.6814
19.777 0.6893
20.660 0,6916
21.040 0.6934
21.238 0.6932

11.622 0.8139
14.088 0.8549
14.846 0.8644
15.183 0.8686
15.364 0.8805

11.826 0.8198
14.25 3 0.8444
15.020 0.8565
15.357 0.8537

21.561 21.658 15.757 15.935

Krypton Xenon

E„ E
n

~Q
n

EQ gQ
n n

EQ
fl

n=l
2

3
4
5

10.031 0.8521
12.383 0.9034
13.112 0.9197
13.435 0.9162
13.609 0.9169

10.642 .0.8395
13.035 0.8904
13.761 0.8826
14.096 0.8987
14.272

8.435 0.9195
10.592 0.9759
11.272 0.9879
11.581 0.9878

9.568 0.8760
11.876 0.9549

E 13.997 14.663 12.128 13.434

Cn= pi' (10)

p
Since the quantum defects 5'„are rather constant

and usually smaller than unit, their effects upon
Eq. (9) quickly disappear with increasing n, a,nd

the Rydberg series

W'„=Rpg

is obtained. Similarly, the Wannier series,

W'„=R'n-'

are observed in the solid phases for n~ 2. How-

ever, these also must be considered approxima-
tions of the quantum-defect series,

W' =8'(n+ 6') '

which hold for all n. It has been shown' in the case
of solid neon that a quantum-defect fitting of all
levels leads to an effective Rydberg R' and a ser-
ies limit E' different from those generally accept-
ed according to the Wannier-model fit of the n ~ 2

levels.
Consider now Eqs. (2), (6), and (7) for the solid

phase. The transformation of the many-body prob-
lem to a two-body problem can be accomplished
quite straightforwardly in the envelope-function
theory. '" We have used its language for both the
solid phase and the free atom. We could, however,

X'„(r)
—„„=0, (14)

determines a unique outer logarithmic derivative

D:,„,(r) = X„"(r)/X'„(r) . (15)

Equations (1) and (7) a.re solved analytically for
r- p, . The inner logarithmic derivative of the
function, regular at the origin, is

D'„„(r,C„)= k cotkr,

where

u= [2(C„-W„)]'~'.

(16)

(17)

'D(p„C„) is a monotonically decreasing function
of C„ in the interval 0 ~ kp, and varies within the

equally well, have used the language of the pseudo-
potential theory. We remark, in particular, that
pseudopotentials of the type given in Eqs. (6) and

(7) have been successfully used by many workers
in solid-state physics and are referred to as
Heine- Abarenkov model potentials. "

Equations (1), (2), (5), (6), and (7) establish a
procedure to calculate the excitation binding ener-
gies W'„ in the solid phase exactly. The method of
solution is the following. Equations (1) and (5) are
solved numerically for y ~ p, for any given exact
experimental excitation binding energy W'„of the
free atom. " The condition of regularity at infin-
ity,
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interval [p, ', -~]. By.matching this quantity with
D'„,„,(p, ), a unique value for C„ is determined.

In the solid phase, we look for the solutions
lf'(r, W') of the equation

(2')

regular at infinity and at the origin. The potential
is given by Eqs. (6) and (7) and W' ranges from C„
to zero. The difference between the outer and in-
ner logarithmic derivatives at y = p, exhibits a
series of zeros and poles as a function of W'. The
n th zero is the eigenvalue W'„we look for. In or-
der to determine it, several numerical integra-
tions of Eqs. (2') and (6) for different W' must be
performed. Tests on the whole structure of zeros
and poles are necessary. We have developed a
program in interactive FORTRAN which solves the
problem accurately. The input are the quantities
W'„, p„a„and p, , and the output are C„and W'„.

In order to obtain theoretical results which can
be compared to the experimental data we need to
know the dielectric constant E, and the effective
mass p, . However, while &, is measured directly,
p. is not. The accepted "experimental" value of
p, is obtained by fitting the experimental energy
levels with n ~ 2 with the Wannier model [Eq. (12)].
We have already discussed why this is not appro-
priate. On the other hand, several different ener-
gy-band calculations" have provided sets of values
for p, . In contrast with previous theories we do not
select any a priori value. We use p. as a para-
meter which we fit to the experimental data.

The data yield values for the transition energies
E'„, whereas the theoretical calculations provide
binding energies W'„. In order to make a compar-
ison, knowledge of the energy gaps E' is required.
These quantities are not measured directly, and
again their accepted "experimental" values orig-
inate from a. fit of the Wannier model to the data
E"'""'for n o 2. On the other hand, the values of

nE' given by energy-band calculations range over
several eV. Therefore, the energy gaps E', are
practically unknown. We determine them indepen-
dently, by comparing the calculated energy differ-
ences W'„—W'„„with the experimental differences
ES&+x& ' —E"'"~"adjusting the value of p, . This
provides agreement with the experimental data for all
levels within their accuracy of the order of 0.01 eV."
Therefore, to the same accuracy, E' is obtained
by adding W' and E"""'.We shall see later
how our values of p, and E' compare with
those given by previous studies. For the moment,
we point out that this theory involves considerably
fewer parameters than the data it describes and
that it is self-consistent.

Finally we mention that for each n there are,
in fact, four spin-orbit split components, two of

which, denoted by 2 and —,', are optically allowed. "
In the present theory, the short-range exchange
and spin-orbit interactions in the solid phase are
included in the constants C„determined from the
free atom data, so that each component can be
considered independently. ' The comparison with
the experimental data confirms the validity of this
as sumption.

III. RESULTS OF THE CALCULATION

Table I displays the lower experimental transi-
tion energies E'„, series limits E', and quantum
defects 5'„of the rare-gas atoms. " The data and
the significant figures we keep are those needed
for our purposes. In Table II we give the corres-
ponding theoretical quantities E'„, E', and p'„ for
the solid phases, obtained by solving Eqs. (1)-(7),
and the values of the effective masses p, and effec-
tive Rydbergs R'. For comparison in Table III we
exhibit the experimental data" E'„"""'for the
transition energies of solid rare gases. The val-
ues of the dielectric constants a, and of the atomic
radii p, used in the calculation are given in Table
IV. The references from which these data are
taken are quoted in Ref. 6.

We note that in solid neon R' is comparable to
R = 13.606 eV, and accordingly 5'„and E' turn out
close to 5„' a.nd E for the free atom. In solid xe-
non, where R' is about 15 times smaller than

R, 5'„becomes ten times smaller than 5'„, and it is
almost negligible compared to n. Also, E' is ab-
out 3 eV lower than E~. It is clear that, while neon
is close to the atomic limit, solid xenon approxi-
mates the EMA limit. The cases of solid argon
and krypton are intermediate. It is very satisfac-
tory to find that this type of nonstructural ap-
proach describes all situations so simply and ef-
fectively.

We note that the energy gaps E' and the effective
masses p, inferred from fitting of the Wannier
model to the experimental data E'„"""~ for n~ 2

are E' = 21.49 eV, 14.14 eV, 11.61 eV, 9.31 eV, and
p. = 0.56, 0.46, 0.39, 0.34 in solid neon, argon,
krypton, and xenon, respectively for the 2 series.
We see from Table II that these assignments are
not appropriate in the case of solid neon, while
they become gradually correct as we move toward
solid xenon.

The range of values of the results of energy-band
calculations" are E' = 22.16-25.5 eV, 7.60-18.52
eV, 11.30-16.46 eV, 7.87 e V, and p. = 0.78, 0.44-
0.45, 0.36-0.49, 0.30-0.40, in solid neon, argon,
krypton, and xenon, respectively. It is well known
that the energy-band calculations cannot usually
provide reliable values for the energy gaps E'.
The fact that the values of p. obtained here and
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TABLE II. Theoretical transition energies E„,quantum defec. s 5', energy gaps E, effective Rydbergs R',
and masses p of solid rare gases. Energies are in eV; effective masses in electron mass units.

Neon Argon

n= 1

2

3

5

6

E„

17.58
20.24
20.91
21.19
21.33
21.41

0.4597
0.5009
0.5129
0.5182
0.5211
0.5239

n

17.79
20.35
21.03
21.31
21.45

0.4761
0.4967
0.5039
0.5080
0.5090

E„

12.04
13.57
13.89
14.00
14.06

0.1994
0.2675
0.2854
0.2934
0.3061

I S

n

12.25
13.75
14.07
14.18

0.2060
0.2576
0.2783
0.2803

E

R

21.61

8.S8, p, =097

21.73

8.58, p = 0.97

14.17

3.06, p = 0.62

14.35

3.06, p= 062

Krypton Xenon

n=l
2
3
4
5

Es
n

10.17
11.24
11.44
11.50
11.54

11.60

gS
n

0.0761
0.1452
0.1659
0.1675
0.1704

LS
n

10.86
11.93
12.13
12.30

12.29

0.0734
0.1411
0.1614
0.1630

piS
12

8.37
9.08
9.20
9.24

9.30

0.0078
0.0770
0.0937
0.0979

Es
n

9.5 1 —0.0280
10.29 0.0630

10.51

R 1.65, 0 = 0.43 1.61, j(L
= 0.42 0.94, p = 0.34 0.94, p = 0.34

TABLE III. Experimental transition energies Fs('~ 'of
solid rare gases in eV. Data from Ref. 17.

Neon Argon

n=l
2
3
4
5

17.59
20.25
20.92
21.18
21.29-

17.79
20.37
21.02
21.24?

12.06
13.57
13.89
13.97

12.24
13.75
14.07

those found in the band-structure studies differ in
solid neon and argon is not a contradiction. The
band-structure results refer to the center of the
Brillouin zone, whereas those in the present work
represent averages over the whole zone, because

all k states are necessary for the formation of lo-
calized excitons. "' Note, however, that in the ex.-
a,ct atomic limit (atoms far apart) the correct val-
ue must be p = 1 in both cases. The same value of
p. must be found in the exact EMA limit as well.
The values given by the present work lie within
the range of those provided by the band-structure
calculations in solid krypton and xenon.

We note finally that the splittinl. s W'„(—,') —W'„(—,')
and &;(—.'-) —&;(—,') between the components of the
levels belonging to the —,

' and —', series are equal to
the corresponding values in the free atoms within
a few hundredths of an eV. This agrees with the
experimental situation.

Krypton Xenon

TABLE IV. Dielectric constants e and atomic radii p in a.u.
The experimental references are quoted in Ref. 6.

n=l
2

3
4

10.17
11.23
11.44
11.52

10.86
11.92
12.21?

8.37
9.07
9.21

Ne

1.24

2.96

Ar

1.660 1.882

3.777

Xe

2.217

4.101
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The values obtained for the effective masses p,

are very close for both the —,
' and —,

' series. In the
case of solid xenon, since there is only one exper-
imentally available value E',"""'(-,') for the —,

" ser-
ies, g(z) and E'(~) cannot be determined independ-
ently. The assumption of Table II is to set p. (2)
——p, (—,) in solid xenon. Another assumption would
b«o s«E;(—,') E,'(—,') = E—'(—,') —E'(—,') which would
lead to the values E;(-,') = 10.61 eV, p, (-,') =0.38, and

E;(—,') = 9.50 eV. The truth must be between these
two desc riptions.
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