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The intraband magnetoabsorption by optical polarons has been calculated to linear order in the carrier-

phonon coupling constant for the case of a simple parabolic band. A finite lifetime has been introduced for

the Landau levels to take into account scattering mechanisms other than that due to optical phonons. The

pinning eA'ect, line broadening, and phonon-assisted transitions are studied under these assumptions.

I. INTRODUCTION

Great interest has been shown during the last
several years in the study of the properties of
polar semiconductors. It is well known that in
these materials the polaron interaction deeply
modifies the behavior of the charge carriers.
Since the idea of Landau' and Pekar's works'
(strong electron-phonon coupling), important pro-
gress has been achieved by Frohlieh, ' when, in

1954, we wrote the polaron Hamiltonian. More
recently, a certain number of experimental obser-
vations seem to confirm many of the theoretical
conjectures. Most of the experimental material
was found in the study of intraband and interband
magnetoabsorption. Especially, in the very last
years, the development of infrared lasers allowed
for direct observation of the absorption spectrum
as a function of the incident frequency. ~

The purpose of this paper is to present a theory
of the cyclotron resonance of polarons at zero
temperature and for weak electron-phonon coupling,
taking into account the broadening of the Landau
levels due to scattering by acoustic phonons and
impurity centers.

Some features of the absorption spectrum have
already been obtained by several authors in con-
sidering a system for which the Landau levels
are perfectly sharp. Much information about mag-
netoabsorption in polar materials can be found in
the reviewpapersby Levinson and Rashba, ' Kaplan
and Ngai, ' and Harper et al. ' The main results of
the theoretical works on the cyclotron-resonance
spectrum in such a system can be indicated by the
following statexnents:

(i) The electron-phonon interaction is able to
break the harmonic-oscillator selection rules by
the allowance of the emission of optical phonons.
This leads to the so-called "phonon-assisted
transitions" giving rise to an absorption band
starting at the LO-phonon frequency(e„o).

(ii) The accidental degeneracy of the zero-
phonon n = 1 Landau state and the one-phonon n =0
Landau states is lifted. This leads to the doublet

structure of the main absorption peak observed in
interband magnetoabsorption of InSb when the
cyclotron frequency e, is close to the LO-phonon
frequency. "

(iii) The cyclotron-resonance line experiences
a sudden increase in the broadening when the cy-
clotron frequency passes through the LO-phonon
frequency x' '3

Despite the extensive literature on the subject,
a number of problems have not yet been completely
solved.

The singularities in the density of states of a
charged particle in a uniform magnetic field in-
duce corresponding divergences at incident radia-
tion frequencies &v =&vQo+n&a, (n =0, 1, 2, . . .) in
the one-phonon sideband for the geometrical con-
figuration where the electric field of the incident
radiation is perpendicular to the direction of the
uniform magnetic field. The suggestion of Enck,
Saleh, and Fan' to take into account the finite reso-
lution of the experimental device to overcome
this unphysical result is far from giving a defini-
tive answer to this problem. The first goal of the
present paper is to study the effect of a natural
broadening of the Landau states on the shape of
these phonon-assisted lines. The introduction of
a finite lifetime erases the singularities of the den-
sity of states and, as will be shown in See. IV,
leads to a line shape in qualitative agreement with
exper iment:.

The next interesting question lies in the inter-
pretation of the so-called "pinning effect" first
observed by Johnson" in the interband magneto-
absorption of InSb. A self-consistent calculation
of this effect has been developed by means of
%'igner-Br illouin per turbation theory' and
Green's-function techniques. "'" A concise re-
view of both theoretical and experimental aspects
of this problem can be found in a review paper by
Larsen. "

In polar materials, the electron-phonon inter-
action does not allow for a level crossing between
the n =1 and n =0, one-phonon Landau levels. The
consequence of this for the absorption curve is to
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induce a doublet structure in the cyclotron reso-
nance line for magnetic fields such that ~,= ~„0.
This behavior of the absorption line has almost
no chance to be observed in direct (spin-up or
spin-down) cyclotron resonance, since ~= &u, = &uLp

is within the reststrahl region. Nevertheless this
problem has been overcome by producing combined
transitions that involve a spin flip and therefore
occur at higher frequencies. " Larsen's theory of
the pinning effect predicts a discrete line in the
magnetooptical spectrum just below ~«. The be-
havior of this line with increasing fiel, d has not
yet been cleared up. As Larsen suggested" the
existence of a natural broadening could drastically
alter the pinning behavior. The study of this effect
onthe natural broadening of the Landau states is
the- second purpose of the present paper. We will
show that, due to its finite lifetime, the pinned
state looses its individuality and becomes just a
part of a braod phonon band located about (d„o.

Some questions also arise from the considera-
tion of the linewidth of the cyclotron resonance as
a function of magnetic field strength. In 1967,
Dickey et al."observed a sudden broadening of
the cyclotron line as ~, was swept through (d«.
A detailed experimental study of this effect in
InSb has been performed" and an expression for
this broadening has been obtained by Harper" in
the limit of perfectly sharp Landau levels. This
theory is derived on- the assumption that the polar-
on states involved in the transition consist of a
mixing of three unperturbed states: the n =0
Landau state containing one or no phonon and the
n = 1 zero-phonon Landau state.

The calculation presented in this paper shows
that this assumption leads to the correct result in
the limit of perfectly sharp Landau levels. With
the introduction of a finite lifetime the singularity
in the Lorentzian broadening" disappears. On the
other hand, taking into account the effects of the
higher-order Landau states introduce corrections
which will be discussed in Sec. IV.

In Sec. II, our model is described and the ap-
proximations are made clear. In Sec. III this
model is solved and the absorption coefficient is
obtained in a form convenient for a precise num-
erical evaluation. Finally, Sec. IV is devoted to
the presentation and discussion of the numerical
results.

II. DESCRIPTION OF THE MODEL AND APPROXIMATIONS

To describe the absorption spectrum the usual
relation" between the absorption coefficient K(&o)
and the transition probability P(&u) is used, i.e. ,

K(&u) = 16vn, P((u)/n ((u)(u cP„

where n(ur) is the refractive index of the material,
n, is the carrier concentration, g = ~A ~'/mc u&qo

has no dimension, A is the amplitude of the vector
potential of the incident radiation, and m the effec-
tive mass of the carrier. Units are such that 5 =1,
+Lo=1, 2m=1, I'(e) being given in units of (2me~o/
h)"'. In writing relation (1) one assumes a carrier
concentration low enough to avoid collective os-
cillations (plasmons). This is generally satisfied
in semiconductors at the very low temperatures
required for observing cyclotron resonance.

In this paper all transitions are supposed to
start from the true ground state of the system,
with zero momentum along the magnetic field, axis.
This assumption (P, =0)'is not completely justi-
fied at low but finite temperature. Indeed, a low
but nonzero temperature leads to a weak increase
of energy (proportional to P', ) which does not nec-
necessarily imply a small value for P,. More-
over, even at zero temperature, most of the elec-
trons in the conduction band have nonzero P, be-
cause of the Pauli exclusion principle. Neverthe-
less it is reasonable to expect that these effects
lead only to a slight smearing of the overall spec-
trum, especially as the most probable transitions
are "vertical, " i.e. , they do not modjLfy P„.

In the evaluation of expression (1) a mean value
has been used for the refractive index. This is
not an essential assumption in the theory and a
more detailed expression could be introduced.
Data concerning the behavior of n(v) for III-V
compounds can be found in Refs. 20, 21.

It is then assumed that the absorption probability
P(v) is well described by Fermi's Golden Rule.
In the dipolar approximation, this leads to

P(~) =xu„gQ &fll(p+ ]~ nl&&
/e(X ~

f + j C

(2)

e„ is the atomic fine structure constant, g is the
polarization vector of the incident light, and A is
the vector potential due to the presence of the mag-
netic field B. Here the transitions occur from the
ground state ~i) to the intermediate states ~f) with
corresponding energy levels e, and e&. In the
following development the term f=0 is added to the
summation, making the set of intermediate states
~f) complete. As a consequence the contribution
arising for ~ =0 is here treated incorrectly. How-
ever, this part of the spectrum is of no interest in
the purpose of the present work.

The description of the absorbing system involves
two further approximations: first, the charge
carriers are supposed to belong to a simple para-
bolic band. This is true only near a minimum
(maximum) of the conduction (valence) band. This
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assumption is questionable in the case of InSb,
especially for transitions to higher xcited Landau
levels. Nevertheless, as will be discussed in
Sec. III, this assumption is crucial to apply to the
method proposed in this paper. On the other hand,
the carrier-LO-phonon interaction will be des-
cribed by the Frohlich-interaction Hamiltonian. In
itself, this involves a certain number of approxi-
mations. " The model is based on the assumption
that the lattice can be described as a continuous
polarizable medium and this medium is supposed
to be quite isotropic. The model is further re-
stricted to the cases where only one longitudinal
optical phonon exists and the dispersion law of this
mode is approximated by the simple relation erg)

40 goo

The absorbing system will then be described by
the following total Hamiltonian:

H =Ho+H~,

the g axis being the direction of the static mag-
netic field. The case of a configuration such that
the electric component of the incident radiation is
parallel to the magnetic field has recently been
treated by Van Royen et al."in the case of perfect-
ly sharp Landau levels.

For a circularly polarized radiation it is more
convenient to use the symmetrical gauge in which
the vector potential X is given by A=-, B( y, x-, o).
In this gauge P, can be diagonalized exactly "' if
one defines the following operators:

A4 = (&/~) (0„+&0,) + (-'~)(&+ &r)

where following Larsen's" notations we put

~' =-2 le lB/c.

These operators satisfy the usual boson commuta-
tion relations, The unperturbed Hamiltonian H,
is then written (in units of k(t)gp)

with

I =(P+ l +Z bk bk
k

(4)

H =P +(A A, + —)X + bkbk
k

and the term describing the interaction between the
electron and the radiation field is

( 4~~ ) 1/2
-1(b elk r +b e ik ~ r )-(6)

The operators bk and bk are annihilation and crea-
tion operators for phonons with wave vector %,

and p and r are, respectively, the electron mo-
mentum and position operators. The quantity V
is the volume of the crystal and n is the Frohlich
coupling constant defined as

(p+ le lA/c) ~ q = (iX/v 2)A, .
The presence of a 5 function in Fermi's Golden
Rule [Eq. (2)] indicates that the Landau levels are
considered to be infinitely sharp in absence of
electron-phonon interaction. If a finite lifetime is
attributed to each energy level, the 5 function must
be replaced by a Lorentzian defined as

a = —,'e'(I/e„- I/eo) (6)
&(~;r) =(r/»)(~+ 'r') ', -

in terms of the static dielectric constant eo and
the high-frequency dielectric constant. In expres-
sion (6} the electric charge is expressed in units
of (I' (u„o/2m) "4

For weakly polar crystals (III-V compounds) the
basic parameter a of Frohlich's polaron theory is
much below unity. The theory developed in Sec.
III is valid in this weak-coupling limit since the
solution obtained in the present paper for the ab-
sorption spectrum is exact in the framework of
Frohlich's polaron model up to linear order in n.
The configuration most used in experiments in the
so-called Faraday configuration" for which the
wave vector of the incident radiation is parallel to
the direction of the uniform magnetic field B and
therefore its electric component is perpendicular
to the same direction. This configuration is
chosen for the present theoretical investigations.
Moreover, we restrict ourselves to the case of a
circularly polarized wave described by the polari-
zation vector

q=(1, i, 0)/~2,

where y describes the width of the state under con-
sideration. The justification of this procedure is
given in Appendix C. The main conclusions of
Appendix-C are the following: the parameter y
describes the broadening in the absence of inter-
acti.on with the I 0-phonons. As it is not the pur-
pose of this paper to study the effects of the inter-
action with impurities or with acoustical phonons,
y is to be considered as aphenomenologicalparam-
eter which can be deduced from compari'son of the
calculated curve and the actual measured absorp-
tion spectrum. In the region of interest (around
v = u&~o) these latter broadening mechanisms are
not strongly frequency dependent (contrary to
that due to electron LO-phonon interaction); so
that, for the purpose of the present work, y will
be considered as frequency independent. As re-
garding the frequency dependent broadening or
more generally the modification in the shape of
the magneto-optical spectrum due to the inter-
action with the LO phonons, it is included in the
formalism through the Frohlich Hamiltonian.
Therefore, thesebroaden and change in the ab-
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sorption naturally appears in the results of our
calculations.

Including these assumptions the Golden Rule is
finally written

P(~) =2wx'n„Q Q [&f lA, li) [2 Z(E'y cg (d;y).
f

(12)

The next step consists of expanding this transition
probability P(u&) in powers of the electron LO-pho-
non coupling constant a. The expansion is re-
stricted to linear order in n. As it is shown in
Sec. III, this linear contribution can be calculated
exactly. In the compounds considered here, n is
small and the perturbationlike approximation des-
cribed above is valid except for the description of
the main cyclotron peak near the pinning point
(i.e. , when u&, = ~~o). For this latter situation,
the expansion in powers of e is valid only when
the broadening y due to impurities and acoustic
phonons is large compared to the shift of levels
caused by the pinning effect. Indeed the change in
the absorption produced by a shift is the difference
between the shifted and unperturbed lorentzians.
This difference is small enough to be considered
as a perturbation only when the shift is small as
compared to the linewidth y of the Lorentzian. It
is experimentally known that this is not the case
close to the pinning. The shift" as mell as the
broadening" due to the emission of LQ-phonons
when ~, is just beyond ~«are in fact much larger
than the natural linewidth y measured at low mag-
netic fields. However our result for the transition
probability [Eq. (26) in Sec. III] appears as the
first terms of an expansion in ~o. of a modified
(shifted and broadened) Lorentzian. This suggests
to replace the expansion by this Lorentzian itself
and to use the expression (49) of Sec. III in the
numerical computations rather than the expansion
(26) in powers of n. The arguments in favor of
this procedure are the following:

First, the linemidth is nom the sum of y and a
frequency dependent contribution o I'(e) coming
from the interaction with the LQ phonons as ex
pected from the physical point of view.

Second, with this form of the solution, there is
no longer any difficulty at the pinning point, even
if y is given a lom value in accordance with ex-
periment. For instance, the absorption coefficient
never becomes negative, contrary to the predic-
tions obtained with an expansion in e for too
small values of y.

Finally, for cyclotron frequencies larger than
the LQ-phonon frequency, the lines in the calcula-
ted spectrum have a natural width even when y is
taken equal to zero. This natural width is due,

as expected, to emission of LQ phonons.
It is important to note the following fact: As the

contributions to the shift and broadening due to
the interaction with LQ phonons are strongly fre-
quency dependent, the absorption curve obtained
in the present work has a rather complicated
structure, shoming two peaks close to the pinning
point as well as phonon assisted transitions at
frequencies ~ =+„o+n(d,. This is in agreement
with preliminary results obtained with the pertur-
bation expansion (26) and presented at two different
conferences. ""The main improvement with the
present procedure lies in fact that the cyclotron
resonance curve has a more realistic shape just
beyond pinning (i.e. , when ~, is slightly larger
than e„o) at least for small values of y as required
by experiment.

III. CALCULATION OF THE ABSORPTION COEFFICIENT

Using the completeness of the intermediate
states, expression (12) for the transition probabil-
ity can be written

P((u) = -2X'n„cP, 1mG((u),

where

G((u) =&ilA, ((u+-,'iy-H+e, ) 'Atli) .

(13)

(14)

Note that H, li), e, are the Hamiitonian, the
ground state, and the ground-state energy level
for a polaron, respectively. To calculate this ex-
pression to first order in the coupling constant a,
it is more convenient to use the following identity:

This leads to

(16)

(~ + 2iy)G(~) = &i IA A', li)

+ &i l[A„H](~ + —,'y —H + ~, ) -'A', li) .
(16)

The commutator appearing in the right-hand side
of Eq. (16) gives

[A„H]=A,A.'+ vn P,
where

~ 4 1/2
x v l(t, elk ~ r t, e ik ~ r)

v

The very simple form of expression (17) arises
from the hypothesis of parabolicity for the band,
which is implicit in relation (9). For non para-
bolic bands, the following procedure can probably
not be easily repeated.
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The introduction of Eq. (17) into Eq. (16) makes
the expression (14) for G(ur) appear in the right-
hand side of relation (16). This term an then be
added to the left-hand side to give

((u + ~iy —)F)G{(o)= (i IA At+If&

+Wo. &i lP((o+ ',iy —H-+e, ) 'Atli& .

Bg
P((u) = p, ,Z((v —X';y) +[X'g, —p, , +I((u)]

8(d

( )
BZ((e-X';y)

ay

with successively

I(|d) = -7TX'o Re[q((u)],

(26)

(27)

The advantage of Eq. (19) over relation (14) is
that the only term (the second term) in the right-
hand side of Eq. {19)that depends on the frequency
exhibits a factor ~n. Therefore, the calculation
of Eq. (19) to first order in o. requires the evalua-
tion of the second matrix elements only at order

One can apply to the frequency-dependent matrix
element in Eq. (19) the same kind of reduction
used to transform expression (14) into expression
(19). This procedure leads to the final expression

&i lP&', li&

(o-x'+ 2iy
+ ™((o--&).'+-,'iy)'

+N
(i lP(H —s, -u&- —,'iy) 'P li) (20

{(d —X + 2iy)

This relation is of course valid for any value of
the coupling constant e, but is especially well
suited for a perturbation expansion. To obtain
G(e) to first order in a, it is sufficient to calcu-
late the first, second, and third terms of the right-
hand side of Eq. (20) up to order o. , n'", and u",
respectively.

Let us now see how this transformation affects
the transition probability P()d) [Eqs. (13) and (20)].
We first define p, , and p, „ the zeroth- and first-
order moments of this probability, i.e. ,

P (d dQ), 21

A((u) = -2e.'o. Im[Q((o)],

q(u)) = &~lP((o -H+c, +-,'iy) Ptlx&.

(28)

(29)

)Bg(~ —X';y)~ &d&=O. {31)

Note that these relations are not restricted to
weak-coupling strengths. From Eq. (26) one can
understand that the behavior of R(co) and I(&g) close
to + =X2 governs the effect of carrier-phonon inter-
action on the shape (width and position, respective
ly) of the cyclotron resonance line. Especially an
interesting quantity is B(A. )/po, which will be re-
ferred to as the "Lorentzian broadening. " Its be-
havior as a function of the magnetic field strength
will be considered in Sec. IV.

As in the case of the free polaron, "the first
term in Eq. (26) can be related to the ground-state
energy. This can be seen by first noting that only
Hp depends on X2,

Taking the zeroth- and first-order moments of
this expression leads to the following sum rules:

(R(td)
' ' +I( )

' )d —0
~ ~

y

(30)

and

( (
)Bg((d-X. ~y)

(22)(dP Cd d(d.

Using the expression for P(co) [Eq. (2)], we obtain
BH 1 t 1

BX + 2 + + 2
=At+ +—=A A ——. (32)

u., = 2v~'n„cP&i la-, at+li&

and

(23)
invoking the Feynman-Hellmann theorem, one
obtains

g, =x'g, +-,'vx'n„gWn&i lPAtli) .
With these notations the expression

(24)
2' = &il a li& = &il &.&'Ii& -

2
. (33)

G( )
Po

—,
'

vA,'e „g(ar —X' + ',iy)—
jtL j ~ P.p

2m''n„cP, (&u —x'—+ -,'iy)'

(ilP((g+wy —. H+s, ) 'Ptli&
((u —x' + -,'iy)'

leads to an interesting form for the transition
probability,

The ground-state energy correct to first order in
the coupling constant has been obtained by Larsen"
for arbitrary magnetic field strength. Larsen's
result can be written in the form

"f(u)

where

f(u) = tanh 's(u)/s(u) (35a)
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and

s(u) =[(u —1+e ")/p, ]'". (36b)

This leads to

!!,= —,'wi'a, !('(i)A.A. (i) =-',wi'a, g ((+, e ' f(Z'2)(-', —2) dx), (36)

which can be computed numerically without any
diff iculty.

The second term in Eq. (26) has to be evaluated
at first order in z. Since we have

X'p, , —p, , = ——,'wX'n„cPWn(i ~PA/i),

the wave function ~i} to be used must be correct up

to first order of perturbation. This leads to

))'n,(i (PAl+~i) =I, +I, ,

4wn ~ exp(-Ir!/&') ~ (&', /&')""
(38)

4wn ~ exp(-n', /~') ~-" (I',/~')""
V ~ k' ~ n! (nX'+)!, + ()[(!!+1)X'+k', +(]) '

with

(41)

2
4 e Apl x ~

()w!) /~2)n+1

The first term I, in this expression turns out to be
divergent, but as will be shown below, it is can-
celled by a similar divergent term appearing in
the calculation of the third matrix element in the
right hand side of Eq. (26). According to the pro-
cedure described in Appendix A, I, in Eq, (38) can
be reduced to the one-dimensional integral

where

3A. 2&Ww,

x[ g(s) —-', s "']d s,
(42}

(43)

and

5~=1 —e ',
52 =S-5~.

(44a}

(44b)

It(u)) =-2wX'n ImQ((u),

with

nq((0) =n(OQ(d -II, +Z, +-,'iy) 'Pt~0),

(45)

(46)

The numerical evaluation of (42) is straightfor-
ward. The last term in Eq. (26) involves a matrix
element that depends on the incident radiation fre-
quency. Indeed we get

1
X

(o —n& —jP —1+ 2 zy
2 1

(47)

where ~0) and E, are the ground state and energy
of the unperturbed system. This expression turns
out to diverge. For large value of n, the nth term
of the series behaves line n '". Nevertheless,
one can extract the divergence by writing the de-
nominator in Eq. (47) in the following form, which
holds for any positive integer Q:

1 ~ ((d +-,' iy)
nx'+k', +I-&u--,'iy ~0 (n&'+k', +1) "

[((d + —,
' iy)/(nx'+ 8 +1)]""

nX'+0, +I -ur —', iy—
(48)

Introducing (48) into (47) one can see that the term
corresponding to m =0 is the divergent part of (47)
and that all terms corresponding to m =1,2, . . . , &
are convergent and can be reduced to a one-dimen-
sional integral according to the procedure des-
cribed in Appendix A. This procedure cannot be
directly applied to the last term of Eq. (48), be-
cause the sign of the demonimator changes when

k, varies from 0 to ~. However due to the high-
order exponent appearing in this expression, the
series corresponding to that term converges much
faster than the original one (see Appendix 8). On
the other hand, one may easily see that the diver-
gent term (m =0) exactly cancels the divergent
part of the second term in Eq. (20).



J. P. VIGNEROÃ, R. EVRARD, A5 D E. KARTHEUSKR 18

15 X'=.9 X2 =.95 )2=1.0 X2 =1.05

10

I

Z
LLI

D
LL
LL.

LLJ0
V

z0
L-
O.

u)
0
R

15 X2 =1.2 X =1.3 ) 2 =1.35

5

.5 1.$

FIG. 1. Shape of the absorption coefficient obtained in the present paper as a function of a&/~ in the region &o„-cg,
Ordinates are in units of 16',n.„/s~~, where n, is the carrier density, n„=1/127, n is e refractive index, r,

= 9i/2m' ) ~ is the polaron radius, n = 0.02 is the electron-phonon coupling constant, and y= 0.2.

As discussed in Sec. II, we now replace the ex-
pansion (26) in powers of n by the following closed
expression:

P((u) = p,,Z((u —X' —nb, ((u); y + o. I'(ur)), (49)

Bf,(e —x~; y)
87

(50)

with relation (26). Then, the developments des-
cribed at the end of Sec. II allow the computation
of h(a&) and l (&u) and therefore of the transition
probability (49). Finally, using definition (1) of
the absorption coefficient K(u) we obtain the re-
sults shown in Figs. 1 and 2 for the absorption
curve as a function of the incident radiation fre-
quency and at Fig. 5 versus magnetic field.

IV. RESULTS AND DISCUSSION

An overall look at the spectrum (cf. Figs. 1 and
2} obtained by the method described in Sec. III

where o.b, (+) and nI'(&o) are, respectively, the
frequency dependent shift and broadening due to
the interaction with the LQ phonons. These latter
quantities are easily obtained by comparison of
the expansion of the Lorentzian in (49} in powers
of n re.stricted to first order, i.e. ,

P((o) =p,Z((o-X';y) —o.y., BZ(u) —1', y) d. ((u)
8GO

shows, as expected, the presence of peaks for
&o = I +nb.', besides the cyclotron line at v = 1' (N'

being the dimensionless cyclotron frequency).
The peak corresponding to n =0 and therefore

located at frequencies close to co&o cannot be ob-
served in pure cyclotron resonance. Indeed it
lies in a region of strong absorption by the crys-
tal lattice, the so-called reststrahl region. In
principle, this band could be observed in inter-
band magnetooptics or in combined resonance.
However, the spectrum is usually obtained in

,12-
C

e .08"
O
O

I I

y/2=0. 02
P, 0.'f
a= Oor

1.2
I

1.6
I

2.0

PEG. 2. Phonon sideband as a function of incident fr'e-
quency. The magnetic field is such that , = 0.4u&o and

p = 0 04~Lo The Frohlich coupling constant is taken as
o' = 0.02. Ordinates are in units of 167t'n~o'„/nr~, where
n~ is the carrier density, o.'„=1/137, n is the refractive
index, and r~= (8/2m~Lo) ~ is the polaron radius.
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varying the magnetic field rather than the fre-
quency of the incident radiation. In this case, it
is obvious that the contribution of the n =0 phonon
assisted transition is a weak constant background
that cannot be revealed experimentally. However,
we see no reason why this peak should not appear
in the interband or combined resonance spectrum
taken versus frequency at constant magnetic field.

No peak appears at frequencies near ~ =nA.'
(n =1,2, . . . ). Therefore, the harmonics observed
in fnSb (Ref. 4) are most probably not due to the
effects of the coupling with the LO phonons.

The pinning effect, described by Larsen on
basis of signer-Brillouin perturbation theory, as
well as the broadening of the cyclotron line when

+, passes through (d«show up in the calculated
spectrum.

Let us first consider the manifestation of the
pinning effect. The spectrum shown in Fig. 1 for
various cyclotron frequencies exhibits a charac-
teristic doublet structure with a line close to
(d =X and a broader band starting near (d =1. For
weak magnetic fields the cyclotron line is almost
perfectly lorentzian with the initial linewidth y.
No appreciable broadening appears due to the
electron LO-phonon interaction. For these mag-
netic fields, the peak at ~ = 1 has the line shape
exhibited in Fig. 2. The asymmetric line shape is
characteristic of a transition involving emission
of a phonon. The high energy tail arises from the
possibility of recoil of the electron during creation
of the I 0 phonon. The amplitude of this band is
small compared to the cyclotron line (l%%uq for o.
=0.02 and y =0.2). With increasing magnetic field
the oscillator strength of the phonon assisted
transition increases, the zero-phonon n = 1 Landau
state being more strongly admixed to the one-
phonon state responsible for the absorption at
&= 1. At the same time, the oscillator strength
of the cyclotron line decreases. For a value of A.

'
slightly above 1, the doublet looks almost symmet-
ric (for n =0.02, X'=1.05, andy=0. 2). For higher
values of A.

' the peak of smaller energy remains
in the vicinity of (d =1 whereas the peak of higher
energy is located near co =X'. This is character-
istic of the absorption by an oscillator of variable
frequency X' coupled to another oscillator of fixed
frequency 1.

As demonstrated in Fig. 2, a weak absorption at
a frequency near co = 1 is present even for weak
magnetic field. This is in contradiction with the
result obtained by Larsen" [Wigner-Brillouin
perturbation theory (WBPT)] and by Korovin and
Pavlov" (Poles of the Green's function), who did
not find any solution for the upper branch E' of the
polaron first excited state for a value of the cyclo-
tron frequency smaller than a fixed frequency w~

2.

C
L)

0.6 1.5

FIG. 3. Comparison of Larsen's results (Ref. 18) for
the energy spectrum of polarons in a magnetic field with
the maxima of the absorption curve obtained in the pre-
sent theory. The reference level is the polaron ground
state as calculated by Larsen. Here y=0.2 and 0.=0.02.———-, unperturbed Landau energy levels; -, re-
sults obtained by Larsen using Wigner-Brillouin pertur-
bation theory ~, results obtained by
using the position of the maxima of the absorption curve
derived in this paper, to predict the difference bebveen
energies of excited and ground polaron state.

slightly below unity.
However, our results are confirmed by previous

work on optical absorption by polarons for zero
magnetic fields. ~"

Figure 3 shows a comparison between the results
obtained by WBPT and the position of the maxima
of the spectrum obtained from the present work.
The reference level is the polaron ground state
calculated by Larsen. " As expected good agree-
ment is obtained in the regions where WBPT pro-
duces a solution. The shift and broadening of the
cyclotron line become important when X~ =1.

The effect of carrier-phonon interaction on the
position of the peak located at ~ =A.' is governed
by the coefficient X' —p, /g, +I (&o)/p, o in Eq. (26).
The effect on the linewidth is contained in the be-
havior of the coefficient B(v)/po. Relation (28)
can be rewritten in the form
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2 2

R((u) 8 'X'o. ~ e "~'" " (0'/&')""7f

po poV ~ 0 ~-p
R(X~)/go =0 for X'& 1, (52)

(51)

where the energies in the argument of the Lorent-
zian and the states in the matrix element are un-
perturbed quantities. It is easy to show from the
explicit expression for the operator P [Eq. (18)]
that the final state g} must contain a phonon to
give rise to a nonvanishing matrix element. In the
limit y =0 the Lorentzian function has to be re-
placed by a 5 function. In a region of frequerieies
close to e =X', and if the shift of the cyclotron line
is neglected, the resonance is Lorentzian with a
width R(X')/p, . For X~ & 1, no final energy level
containing one phonon can satisfy the condition
e„-e, —X' =0 so that R(X'}/g, =0. In the contrary,
for A.'& 1, the state g =0 with one phonon gives a
nonvanishing contribution to R(A. ). In this particu-
lar case (y =0), the function R (X')/p, can be cal-
culated and the following analytic expression is ob-
tained:

P=(X' —I)/X' for X'&1,

where the function Z, (x) is the exponential integral
defined by

(54)

This is exactly the result obtained by Harper. ~
This perfect agreement arises from the fact that,
as shown above, no one-phonon Landau state other
than n =0 contributes to R(X'). This is not true for
the shift term I(X') appearing in Eq. (26) nor for
both coefficients when y c0.

In the case y 10 a, small deviation from strict
energy conservation law is allowed, so that phonon
creation takes place even for A.'& 1. This gives
rise to a nonzero value for R(X') in this region.
On the other hand the singularity for X' =1 has dis-
appeared.

For weak electron-phonon coupling and ye 0 we
obtain, from Eq. (28),

(55)

This expression leads to the numerical results
presented for several values of y in Fig. 4. It
may be noted. that the values obtained for R(X') near
the point ~, =~io lose their significance, since,
in that region, the cyclotron line is far from being
Lorentzian.

Let us now consider how the phonon-assisted ab-
sorption band shown in Fig. 2 arises from our cal-
culation. Because of the energy denominator in

Q(w) [Eq. (24)] the coefficients I(~) and R(~) exhibit
an oscillatory behavior for ~& v«. In this region
of frequency the derivatives of the Lorentzian
function appearing in (26) decrease monotonically.
This leads to the phonon assisted transition peaks.
The line shape of these peaks is highly asymmet-
ric. The tail in high energy reflects the shape of
the density of states of achargedparticle inauni-
form magnetic field. Most experimental results
give the absorption versus the magnetic field.
For this reason, we have plotted at Fig. 5 the
absorption coefficient in the region of the phonon-
assisted transitions as a function of X' for a fixed
value of the incident frequency. This corresponds
to Fig. 1 of the paper of Van Royen et al. ,

"al-
though the line shape is slightly different due to
the difference in the configuration used for the
cyclotron resonance. However, for y- 0, both

spectra present absorption edges at magnetic
fields such that v=+LO+n+, , with a maximum
just before this edge and a minimum beyond
it.

Recently, the development of spin-flip Raman
lasers have made possible the measurement of
the absorption coefficient as a function of incident
frequency. 4 With a polaron radius of 12.5 A and a
coupling constant' o. =0.02, the use of Frohlich-
interaetion Hamiltonian and the choice of perturba-
tion theory is certainly well justified in InSb. Un-
fortunately, this material is well known to exhibit
a highly nonparabolic conduction band. ' ' This
makes difficult the comparison of our results with
the existing experimental data. Nevertheless it
can be seen from comparison between Fig. 3 of
Ref. 4 and Fig. 2 of the present paper that a quali-
tative agreement is found concerning the line shape
of the phonon-assisted transitions.

Our work shows that the harmonics demonstrated
by the experimental results of Ref. 4 at + =2K' or
3X' do not appear at first order in the phonon coup-
ling constant n. As this coupling is very weak for
InSb, it is quite probable that contributions of
higher orders are negligible. This indicates that
these harmonics are not due to the coupling of the
electrons with the LO phonons.
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Ã = w, (u„
FIG. 4. Lorentzian broadening R(X ) of the main ab-

sorption line for different values of the initial linewidth
V.

V. CONCLUSIONS

In this paper, the cyclotron resonance by polar-
ons has been calculated to linear order in the elec-
tron-phonon coupling constant n and for a simple

parabolic band. The main contribution of our work
is to allow the treatment of Landau states with a
finite lifetime. The linewidth of the Landau states
describes the effect of all the possible scattering
processes other than the particular one involving
Lo phonons.

The introduction of a finite lifetime for the Lan-
dau states leads to predict an intraband magneto-
absorption spectrum different from what could be
deduced by simple considerations based on the
pinning effect predicted by Larsen. ' Indeed, the
pinning effect suggests that, for ~, & ur«, the spec-
trum has an extra line pinned just below ~«. Our
results show that this extra line does not show up
when the finite lifetime of the Landau states is
taken into account. The threshold of the phonon
band is no longer sharply defined and the "pinned"
state is just a small contribution to the. low-energy
tail of this band and can no longer be distinguished
from it when co, becomes appreciably larger than

(dLp The s ituation is simil ar to the cases of two
interacting harmonic oscillators, the first one
with variable frequency cv, and the second with a
fixed frequency +«. The polaron states respon-
sible for the doublet structure appearing in the
spectrum when v, = ~«play the same role as the
normal modes of these two oscillators.

The results we have obtained for the magrietic
field dependance of the line broadening are in per-
fect agreement with Harper's results" when m,
& +, p, except when ~, is close to ~«where Harper
obtained a divergent linewidth. On the contrary,
by following Harper's procedure to obtain the line-
width of the n = 1 Landau state, we obtain a finite
result when ~, = co„p. However, the spectrum has
then the shape of a doublet and this procedure be-

C: .06

O .04

C'
O

CL
L .02
O
V)

C3
U

~/w„= I.S
y/2 = 0.02
a = 002 FIG. 5. Phonon sideband

as a function of &,/coLp for
a fixed incident frequency
co 1 5coLp Peaks appear
for magnetic field strength
such that: co, = (co —~p)/~;
n=1, 2,3, ~ ~ ~ .

0.2 0.4
~C /~LO

0.6
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comes questionable.
The region ~ = +,= ~10 is masked by the strong

free-lattice absorption. This is why the study of
the phonon-assisted resonances, which fall outside
the reststrahl region is of particular interest. Here
also the introduction of a finite lifetime has a dras-
tic effect on the shape of the spectrum. Indeed,
one ean predict' that, in the absence of natural
broadening, the phonon-assisted spectrum con-
sists of bands presenting a divergence at their
low-energy threshold &o =&uLo+n&o, (n=o, 1, . . .).
On the contrary, our results are divergence-free.
Unfortunately, to our knowledge, the only ease
where phonon-assisted transitions have been ob-
served is indium antimonide, for which nonpara-
bolicity prevents comparison with the results of
our calculations valid for a simple parabolic band.
However, one can conclude that there is a good
qualitative agreement on the shape of the phonon-
assisted bands.
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APPENDIX A

Here it is shown how the function

(t[ (a) =Q v~e " '" ' (b2 /y2)((

n= 5 0

k

x (nX'+a+a', +1)

can be expressed as a one-dimensional integral
when the variable a is real and positive. By using
polar coordinates (b, 8, (t[) and by making x =cos8
and u =b/X, one may write Eq. (Al) under the
following form:

Oo +1

( (a} = „,„„duf exp[u*(x* —(i]
-1

" [u'(1 —x')]""
X

n "-0 8 ~

When this expression is introduced into Eq. (A2),
one is able to perform the summation over n.
This leaves the next expression

[[ mh y2 m+1 f
(a) =

~ 0
dt t"'

+»

x dx 1-

x dg Q'exp 5»+x'52
0

where we have

=1-e '
t

and

(A5)

52 =t —6». (A8)

(AV)

where

g(t) =(Wt/b, b, ) —8 "In((b /b )'la+[1+(b /b )]'"j.
(A8)

APPENDIX 8

This Appendix is devoted to the calculation of the
integral arising from the last term of Eq. (48) and
to the consideration of the asymptotic behavior
for n- ~ of the general term of the corresponding
series.

By introducing development (48) into expression
(47) for ng((d), one obtains for N =2,

nQ((d) =M, +M, + Jm,

where M, is precisely equal to -I, [Eq. (S9)], which
causes cancellation of these divergent terms in the
general expression for, G(&o}. M, turns out to be
represented by

By performing consecutively integrations over u
and x, one obtain the simple result

(t[ (a) =,~, „, t g(t) exp,
~ dt,Q -(a+1)t [

x(n b +a+')u~ '

(A2)
~&+ — y (0),

m".
(B2)

where we have put b =(a+I)/X'. One may then take
advantage of the following identity, which holds for
any positive value of b,

where (t[„(a) is calculated in Appendix A. Finally,
J, can be written in the form of a series

(n+b+u'x ) ' =
—, t e x[p-(n b++~uxt]}dt.

1

(As)

~2=
n =0

where

(Bs)
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jig
0 5

dk,
(t'„+a',)(g+n', )'(8+@) '

where

p=+ ,'iy—, cP„=1+nX3,

5' =n A.
' + 1 - a) ——,

'
iy '

these terms can be easily computed as

j,=, v x e "S(n'o, g, x) dx,
0

Q p3j„=,„, Wx f„(x)S(e'„,g, x) dx,

where

2 1 —Q)
clo I/~ po ~3

-3
~3 ~

a' ~ b2 tl gP rt
tt y2 t t tl y2

(B6)

radiation by a system in interaction with two types
of perturbations. Due to the strength of the first
type of perturbation (type I) as well as to its exci-
tation spectrum, it is expected that it leads to a
modification of the absorption spectrum with a
complicated structure. Therefore the effects of
this perturbation cannot be simply described by
a frequency independent energy shift and broaden-
ing of the absorption lines, so that type-I perturba-
tion must be treated separately. In the present
paper, this perturbation is the interaction with
the I.O phonons.

The strength of the second type of perturbation
(type II) is weak. Moreover, the perturbing sys-
tem has a continuous spectrum of low-lying energy
levels. Therefore, it is expected that the type-II
perturbation gives rise only to a structureless
change in the absorption spectrum that can be
described by a frequency independent shift and
broadening of the lines. In the case considered
here, type-II perturbation is the interaction with
the long wavelength acoustic phonons, the elastic

( )
(n)x"e "'

S 4

The function S(o,3„, P„', x) is obtained by integrating
exactly the factors depending on k, in Eq. (84).

Qne has

S(~3„,p'„, x) = ~M, (x)/B, (x),
where, successively,

( } g3 gl(g5 glg4 gog3
5 ~3/p

no(x) =g, [g, - gog3+g, (g', -2g,)]
+g.[g'+g.(g g'- g.g.)],

g, = -i(Wx+A, ),
g, =-(Aovx+3o. „A,),
g, =i e„(3A,Wx+ e„B3),

g4 = c„(B3vx + B„P„)

g, = -ip„o.'„Wx,

A3 = p„+3o.„, B, = a„+3p„, A, = o.„+p„~

In these expressions, P„has a positive real part.
For large n, the function f„(x), which has a

maximum for x = 1 [f„(1)-(23n) '"] can be ap-
proximated by n ' 5(x- 1). The function S(n3, P„', x)
behaves like a constant, so that j„tends to zero
like pg "'. Its convergency may then be considered
as fairly fast.

APPENDIX C

This Appendix deals with the problem of calcu-
lating the absorption (or emission) spectrum of

K-XO+P~+02, (cl)
where H, and 02 are, respectively, the coupling
terms for type-I and type-II perturbations. Ko
is the unperturbed Hamiltonian including the energy
of the photon field. Since type II has a continuous
spectrum of states, the time-dependent perturba-.
tion formalism as described by Louisell" can be
applied. It gives the following result:

C;(t) = exp(- 3 yt —itlolt), (C2)

where C, (t) is, in the interaction picture, the
projection of the wave function at time t on the
initial state li). The frequency shift and the broad-
ening in units such that 5 =1, are given by

(c3)

y =» g l(f1&3 li& )3&(&~ —«)
f

(C4)

where li& and lf& are, respectively, the initial and
final states during transitions produced by the
perturbation of type II. These states are eigen-
functions of

H=X +P, (c5)

with eigenvalues E, and Ef. In the case discussed
here, 0 is the Hamiltonian for the polaron in a
constant and uniform magnetic field, including a

collisions on impurities or defects of the crystal
as well as the interaction with the radiation field
itself.

The Hamiltonian for the system under considera-
tion is
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0„=-i/2 an„cP(p+ IeIAlc) ~ n, (C8)

where the notations have been defined in Sec. II.
Moreover, for an absorption process, we have
E = f ] +{0 and Zg Ef where e, and e~ are the polar-
on energies in the initial and final state and m,
is the frequency of the absorbed photon. The total
population of states after absorption of a photon is

l&f III, If&l'

(&~ —e, -ur .—a(o)'+-,' y'

where

X $(E~ —E( —(d —Eco; t) (C9)

t(s. t) 1 e-yt s y&l&stat -s gati&e &at--(C10)

As the radiation field has a continuous spectrum
of energy eigenvalues, the sum in (C9) includes an

integration over &&. Since —,'y is small, one ex-
pects that the main contribution to the integral

term describing the energy of the photon field. In
the interaction picture, the projections C~(t) of the
wavefunction on the final states are given by rela-
tion (5.89) of the reference given above, "i.e. ,

C, (t) =-- ', . (exp[i(E, -E, -a(g)f(fIf'. If&

Z~- F,. —S+-,'iy

+ l rf] I]—. (C6)
a

The way of reasoning that we now follow is slight-
ly different from Louisell's treatment. Taking the
square of the modulus of (C6) gives the population
of the states

If & at time t. It is

lcg(f) I' = l&f If'. If& I'

1+e &'-2e ~'" cos(E, —E, -a&@)t
X

(E~ —E( —A(a)) + ~y
2 1 2

(C7)

As we are calculating the absorption spectrum, we
are interested only in the probability of transitions
to states lf& containing one less photon than the
initial state (one more for emission). Therefore,
in (C7) we only keep the matrix elements of that
part of P, which describes the interaction with the
radiation field, i.e., for the case of a polaron in
a magnetic field.

comes from e~ - e,. +(d +6(d. Therefore, extending
the domain of integration from -~ to +~ does not
appreciably change the result. The integration
can then be performed in the complex plane,
closing the integration contour by a circle in the
upper-half complex plane for the term that con-
tains the factor expi(e~ —e,- —~ —A&a)t and in the
lower-half plane for its complex conjugate. The
denominator has two first order poles at

6y =6] +co +Aco + p sg
1 (C10)

exp[i(e, —e, —(u —n(u) t] =. exp(--,' yt) (C11)

exp[-i(c, —~, —(u —a(o) t] = exp(- —', yt) .
As l(flP„li&l' is expected to be a smooth function
with no singularity, (C9}can be written in the
equivalent form

(C12)

IC (f}I' =g l&f Iff. Ii&l'[I - exp(-rf)]
(cy —6 ~(d —n co) + g P (C13}

obtained by using (Cll) and (C12). The transition
probability per unit time is the total population
(C13) measured before the decay of the initial
state [i.e. , IC, (t) I'-1 or yt« t] and divided by t.
Expanding exp(-yt) in powers of yf gives the
following form of the absorption probability per
unit time:

P(~) = »
1 &f Iff, lf&l'

f

(C14)

Equation (12), i.e. , the basic relation used in the
present paper, is obtained from this expression
by neglecting the constant energy shift boo. This
is not a crucial approximation since it only leads
to a slight shift of the absorption curve along the
frequency axis.

The present approach shows how to take the
finite lifetime of the initial state into account. It
should be possible to treat in the same way the
lifetime of the final states.

Therefore, in the calculation of the residue of the
numerator, the exponentials written above become
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