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The scattering interaction of Bloch electrons with the coupled systems of electrons and longitudinal-optical
phonons in degenerate polar semiconductors is investigated. At degenerate carrier concentrations (10'7-10'®
cm~? in IV-VI and III-V compounds) the free-carrier plasma frequency is comparable to the LO-phonon
frequency. This gives rise to electron scattering by strongly coupled -plasmon-LO-phonon modes whose
resonance frequencies are highly broadened in the particle-hole excitation (Landau damping) region. A
generalized expression for the scattering lifetime taking these effects into account is derived in terms of a
dielectric response formalism within the random-phase approximation. The factor Im(1/€;) appearing in this
treatment, where €, is the coupled-system dielectric function, modifies the bare Coulomb potential, and
together they determine the effective scattering strength of the coupled modes. In the Landau-damping
region the scattering strength is highly dispersive with respect to energy and momentum transfers.
Calculations that illustrate these interaction effects are performed for PbTe and GaAs.

I. INTRODUCTION

In ionic (polar) semiconductors such as the IV-
VI and the III-V compounds, the combined role
of the longitudinal-optical (polar) phonon and the
charge-carrier systems has long been recognized
as important in characterizing electronic relax-
ation, transport, and optical phenomena. The
LO phonons are coupled through long-range po-
larization fields to the free-carrier system which
includes the collective plasma modes and the
particle-hole excitations. This couplinggives rise
to hybrid plasmon-LOQ-phonon modes and to the
damping of these modes by the particle-hole ex-
citations (Landau damping). Landau damping,
particularly important in transport processes,
broadens out the coupled-mode resonance fre-
quencies with which Bloch electrons can interact
and provides an indirect mechanism for single-
particle, electron-electron interactions to con-
tribute to transport properties.

Until now, treatment of these interrelated inter-
action effects in describing the Bloch electron
lifetime has been limited to various approxima-
tions. The unscreened electron—LO-phonon
(Frohlich) interaction has been thoroughly in-
vestigated.'™ Ehrenreich formulated the electron
scattering lifetime associated with a screened
LO phonon in a nondegenerate semiconductor
using a self-consistent-field approach. However,
the effects of particle-hole damping were neg-
lected.? Charge carrier scattering by polar pho-
nons in degenerate semiconductors has only been
treated in the undamped, highly screened case
within the quasistatic approximation.*® Single-
particle, electron-electron scattering in semi-
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conductors has been limited to statically screened
interactions.®”

In this paper the problem is treated in a gen-
eralized manner within the framework of the
random-phase approximation (RPA).?> We consider
degenerate carrier concentrations such that the
free-carrier plasma frequency is comparable to
the LO-phonon frequency—a situation which gives
rise to strongly coupled plasmon-LO-phonon
modes. The corresponding carrier concentrations
for the IV-VI and III-V semiconductors are in
the range ~10"-10"® c¢m™3, and still form a high-
density gas because of the small effective masses
(m*) and the large dielectric constants (€_).°
[The effective interelectron radius

r¥=(3/4mn) Y(m*e?/m2e.) <0.1

corresponding to carrier concentrations n = 107
cm™.] The tractable RPA seems to be appro-
priate. % 1!

In Sec. II the Bloch electron scattering lifetime
arising from the electron-electron and electron—
LO-phonon interactions is derived using dia-
grammatic techniques. It is well known that for
electrostatic scattering processes, lifetimes be-
come functions of the imaginary part of a recipro-
cal longitudinal dielectric function.'*!® In the
RPA the susceptibility of the coupled system is
just the sum of the susceptibilities of the system
components.’* Thus, in our case the reciprocal
of the lifetime is proportional to Im(1/€,), where
€p=€,+€;, - 1, and €, and €, are the respective
electronic and lattice dielectric functions. The
generalized scattering lifetime is shown to reduce
to familiar expressions in appropriate limiting
cases.
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In Sec. IIT we study the dispersion and damping
of the coupled plasmon—LO-phonon modes in
PbTe and GaAs using the Lindhard dielectric
function' to describe the free-carrier response.
The electron-coupled-mode scattering strength,
defined by the bare Coulomb potential as modified
by Im(1/€,), is studied numerically as a function
of both energy and momentum transfers. In the
Landau-damping regime the scattering strength
is highly dispersive. The scattering of electrons
by the broadened couple modes in this region pro-
vides a mechanism for electron-electron non-
umklapp processes to contribute to transport prop-
erties. For low-field transport the mode broaden-
ing could make the low-energy tail of the scattering
strength contribute appreciably to scattering via
the boson population factor. In high-field transport
it seems essential to treat the role of broadened
coupled modes in characterizing hot electrons and
saturation velocities.

Useful application of the scattering formalism
presented here will be illustrated in a separate
work characterizing low-field transport effects
in narrow-gap semiconductors Pb,..Sn,Te.

II. GENERALIZED SCATTERING LIFETIME

In the standard second-quantization notation
the Hamiltonian for the system of electrons and
LO phonons interacting through electrostatic

.forces is as follows:
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The first term is the Hamiltonian for the Bloch
electrons; the second term is the LO-phonon
Hamiltonian in the absence of long range electro-
static interactions; the third term is the Ham-
iltonian for LO-LO electrostatic interactions;
the fourth and fifth terms are, respectively,
Hamiltonians for electron-electron and electron—
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LO-phonon electrostatic interactions. The Ham-
iltonian can be readily derived from elementary
electrostatic considerations; the form of the
electron-LO-phonon interaction is somewhat dif-
ferent from that one usually encounters in the
literature.'™® Here, cg , (cL,) is the annihilation
(creation) operator for the Bloch state |k,x) with
energy E; ,; Q; and Py are the coordinate and
momentum operators for the LO phonons;

Qf = (47Ne*?/M) /2= €, (0} o — w3, )]V 2
is the unscreened ionic plasma frequency; N is
the number of unit cells; e* is the effective ionic
charge; and M is the reduced ionic mass. Also,

Pe, 3= ”Z Y ChgnChn
kK nyn'

is the Fourier component of the electron density
fluctuations. F¥% . is the matrix element
(K -g,n’|e"F|k,n). &; is the unit longitudinal
polarization vector for the LO phonons.

From Eq. (1) we observe that the total Hamil-
tonian for electrostatic scattering of electrons
in band # is

5= 2 [Tp(@ P 3+ To@ Qual Bl Chgncin-  (2)
kq

Here
T,(§) =4me?/q? (3a)
and
. . [4me2 12 /(%46
Ty (@) = -9 ( i ) (q_qfs) (3b)

From the golden rule the reciprocal of the life-
time for the Bloch state |k,%) due to electrostatic
scattering for all wave-vector transfers within
the Brillouin zone is

-
dc

- 21T da > - , e
Tl(k;n)'—‘ 7 % Wl(k“q’nlxs‘lksnﬂz

xé(ﬁw +Ei-a,n—EE,n)’ (4)

where @, is the cutoff wave vector for the zone.

We can now use the standard Van Hove techn-
ique'? to recast expression (4) into the following
form:

e 21 e df [ dhw
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where f; , and n,, are the respective fermion and
boson distribution functions; P (g, w) is the spec-
tral density function defined through the fluc-
tuation-dissipation theorem

P;;(§, @) =2Im[D ;;(§, »)]. (6)

Here, 9;;(4, w) is the Fourier transform of the
retarded Green’s function; e.g.,

D,0(d, ) = =10 |[p5(t), QLO)] |,

where O(¢) denotes the unit-step function. Ex-
pression (5) could have been obtained by calcu-
lating the self-energy of the Bloch electron in
the presence of the interactions represented by
3C;, in which case we would have

i En)= 20 Im(Z,), )
i, 420, Q
where the self-energy functions Z;; are shown
in the top line of Fig. 1.

Now we calculate the Green’s functions D;,(g, )
in the random-phase approximation. The RPA
diagram expansions are shown in Fig. 1. 99,(g, w)
are the zeroth-order Green’s functions. From
the diagram expansions, using standard rules,®
we obtain the following expressions:

@
,'1

e@pp(q,w)

= M+ vvv@m = o@QQ(d:w)
= Dpaldw)
= W@ = Dapldw)

Q@ é? ORI

= Dpplaw), www = Dogldw)
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X

FIG. 1. Diagram expansions in the random-phase
approximation. I;; are the self-energy interactions.

,j(’ , ) are the Fourler transforms of the retarded
Green’s functions. :Dp,, @, w) is the RPA polarization
Green’s function and ‘D;,(ﬁ,w) are the zeroth-order
Green’s functions. T, is the electron-electron interac-
tion and Ty is the electron-phonon interaction.
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@ -1- T T |rp e

% nyn’
f'f—q.n' fk,n (9)
X 7w +Eg p — Eg, n+10°

is the RPA electronic dielectric function,
2
QF <“’io - Wio (10)
"\ wf-wi,

w? - wio
is the dielectric function of the lattice alone,
and finally

€T(a’ w)=€e(—.1 w)+€L(a1w - (11)

is the total dielectric function of the coupled sys-
tem. The fact that the susceptibilities add in the
RPA was noted by Varga.!* Damping of the coupled
system in our treatment is due only to decay into
particle-hole excitations (Landau damping).'® It
occurs in the wave-vector region where scattering,
affecting transport, can be important. Collisional
damping processes, which can also affect the
coupled mode behavior,!>% will not be treated in

€L(a’ w)=1-

this work.

Substituting Egs. (6) and (8) in (5), we obtain
- ag dnw

™k, n).. %) @y ) o ——fe,n(1 =Sz )

X (14n,)|Figq?

4252 {“m = w)]}

(12)

(hj(ﬂ +Ek-q,n —Eg'").

Expression (12) describes the generalized scat-
tering lifetime and reduces to familiar resﬁlts,
the unscreened Frohlich scattering and the highly
screened LO-phonon scattering for the respective
limits of very low and very high carrier concen-
trations.

If the free-carrier density is vanishingly small
[wh <w;,, where w, = (4mne?/m+e )" ? is the
screened free-carrier plasma frequency], then
€,(q, w) ~¢€, and



-Im[1/€ (G, »)] ‘Z‘ (i - %o)

X[0(w-wo) - d(wiw )], (13)
Equation (12) then yields the well-known expres-
sion®

T (k n)— % ——ka,n (1-fis, )(1+n“’Lo)

4me? [ 7w 1 1 J
., L |2 —Lo(f - _ ___
]Fk"" | q? [ 2 <€ eo>

-Eg,). (14)

For high carrier densities (wy> w; ) the free-
carrier contribution to €,(q, @) can be treated in
the quasistatic limit (w —0),

X b(ﬁww +EE-'
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€,(q, w)=¢€,+(1+q2/g? ~ (15)

where ¢, is the Fermi-Thomas wave vector. In
this limit the LO phonons are highly dispersive
in the small-g region with the dispersion relation
given by*!

q?w? +q2w? 1/2

w(——q—;q——m : (16)
S

Expression (15) yields

2 4
Yrod

(@ +q2)?

-Im[1/€,(q, )] =

<_1_ L)
€. €,

U [0(w=-w,) - b(w+w,)]

2w, 1m

X

and the well-known expression?

T (k n)= —f —rfk. a 'fk-q,n)(l"'n )le.E q|2 4252

III. PROPERTIES OF THE GENERALIZED SCATTERING
LIFETIME

In this section we examine the reciprocal scat-
tering lifetime, Eq. (12), with respect to specific
models which facilitate quantitative calculations
and give insight to the more general qualitative
properties. These include the use of the wave-
vector-independent lattice dielectric function,
Eq. (10), and the Lindhard dielectric function to
approximate the intraband component of the RPA
function, Eq. (9). In the wave-vector region of
interest for degenerate carrier distributions, it

4 *k 1
€5(q,w) = 1+D<Zf ;2”F>{1+

V' =m*w /1P kL

4re?
D(tzz)

q’=q/ky,
and
™y v
w22 q’°
m*k2

E?(ﬁ: (U):

0, g>2k,, nw< T (9% - 2qk,) .

v’ q’ 2
[1— <El—+ ?) In
1[ v gr\?
—'Z—q; 1—<q, - —2—> In

h—Z
q<2kp,0<h0 <~

4re? v g \2 "o -
D ( az >7_ZE_J—47rq [1— (a,*— -2—) ], 0<- 277(‘1 - 2gqk,) <nw< S

[<q Zq‘) zw”’ C 10)]6% +Btgn=Ey,a)

(18)

!
is essential to take the dispersion and Landau

damping into account. The simplest model which
does so is the Lindhard function, derived for a
free-electron gas at T =0, which is also assumed
to approximate the finite temperature, degenerate
statistics case.

The total electronic dielectric function in terms
of the real and imaginary parts of the Lindhard
function, ' denoted by €¢L(q, w) and €$%(g, w), can
be written

€, W) =[e.

where

+€55(@, w) - 1] 44 [€55@, @)],  (19)

1+(v'/q’ +39')

I

1+(/q'~3q') (20)
1-(v/q’ - z’q)

* (q2 - zqkp)

(g2 + 2qF5) (21)
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€?L and €4 have been modified for a semicon-
ductor, where D is the number of equivalent
charge carrier pockets in the Brillouin zone; m*
and kp are, respectively, the effective mass and
the Fermi wave vector appropriately averaged
over the carrier pocket. €4 corresponds to damp-
ing of the collective electron modes by intraband
particle-hole excitations. (Collisional damping
will be neglected in this treatment.) The different
damping forms and boundaries in Eq. (21) arise
from energy and momentum selection rules at

T =0. The existence of zero-damping regions

is a consequence of the RPA pair approximation,
given by D2,(§, @) in Fig. 1. Higher-order diagrams
would allow the plasmons to decay for all ¢, how-
ever, at high effective carrier densities these
processes are relatively weak.?? Also finite tem-
peratures would smear out these boundaries to
some degree.

To investigate the behavior of the generalized
‘scattering lifetime, we focus primarily on the
semiconductor PbTe. GaAs is also considered
for comparison. The typically encountered de-
generate carrier concentration 1017-10'® cm™
in PbTe yield plasma frequencies 0.75 S w§/w;
<2.2. Furthermore, the large difference between
w;o and Wq, is indicative of relatively strong
electrostatic interactions between the LO phonons.
Also the small carrier effective masses give
rise to particle-hole excitation effects at low-
energy and wave-vector transfers. These prop-
erties are expected to lead to strong coupling of
the LO phonons with the free-carrier system and
large dispersion of the coupled modes and of the
scattering strength associated with these modes.

In PbTe the charge carrier pockets (nonparabolic
in behavior) are described by four ellipsoids of
revolution at the L point of the fcc crystal Brill-
ouin zone.?® For carrier concentrations <5 x 107
cm™, the longitudinal Fermi wave vector (in the
L direction) is a few percent of the Brillouin-zone
width, and the dispersion of the optical-phonon
modes can be neglected. For PbTe, the average
susceptibility mass (based on a nonparabolic E-ﬁ
model) and an average Fermi wave vector (based
on spherical carrier pockets) are used for m*
and k;, respectively. The optical-phonon energies
are taken as 7w, =13.5 meV and 7w, =2.5 meV,
representative of inelastic-neutron-scattering
data® and fits to optical data,?>?® while the value
of €, taken is 39 (5 °K).?” GaAs has a single carrier
pocket at the I' point and thus the average Fermi
wave vector is ~1.5 times larger than that of
PbTe for the same carrier concentration. The
effective masses of GaAs and PbTe are compara-
ble. However, the optical-phonon energies and
€, are quite different: 7w ,=36.3 meV, 7wgg

=33.3 meV, and €,=11.1.%8

We now examine the reciprocal lifetime with
respect to (i) the dispersion of the coupled plas-
mon-LO-phonon modes and (ii) the electron scat-
tering strength associated with these modes. These
properties are modifications of the uncoupled plas-
mon and LO-phonon mode frequencies and scat-
tering strengths, due to interactions, and can be
loosely referred to as “screening” effects. The
notions of screening become more difficult to
quantify in the Landau damping region.

A. Coupled modes

The longitudinal collective modes of the coupled
system are defined by the peaks in Im{1/€ (4, w)],
where w is real. When the damping is small,
it is sufficient to use the roots of Re(€,)=0 to
estimate the mode frequencies; this approximation
can fail in regions where the damping is impor-
tant.

Figures 2-4 illustrate three different examples
of the mode structures. For the wave-vector
region of interest the uncoupled LO-phonon mode
is assumed to be dispersionless. The uncoupled
plasmon dispersion w,(g) in the undamped region
is given by the zeros of €(d, w) and at ¢ =0 yields
the familiar screened plasma frequency wg
= (4mne?/m*e€_)*/2. In the particle-hole excitation

3.0 g
PbTe
. n=5x10"cm™3
2. 0L % / Particle-hole excitation
D ,’ region (Landau damping)
/,
/
_w_ | gFwe i
wro
|.OpF= ———— W g ———\—
0.5+ w-
_________ WO~ — == m e A= fo = =]
0 | 1 |
(¢} 0.5 1.0 1.5 2.0 2.5
q/ kg

FIG. 2. Dispersion of the longitudinal modes w, of the
coupled plasmon—LO-phonon system corresponding to
the peaks in Im [1/€7r@,w)]. wo=13.5 meV, kr=1.55
x10% em™ !, €,=39, and m*/my=0.038. The dashed lines
w, and wig are the modes of the uncoupled system, the
plasmon and the LO phonon, respectively. The line
concaved downward is the boundary within which Im[¢,@,
w)] for the Lindhard function is proportional to w; out-
side the boundary the imaginary part includes terms in
w? and .
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FIG. 3. Dispersion of the coupled plasmon—LO-phonon
modes. %p=9.05%10%cm™! and m*/m,=0.035. The
dotted line corresponds to the root of Rele . (d, w)]=0.
The fading dashed line for w_ in the damping region in-
dicates that the corresponding peaks in Im(1/ez) are
highly broadened and no longer well defined.

region real solutions of €,(q, w) =0 no longer exist
as the collective plasma excitations are strongly
damped out. In the undamped region the coupled
modes are described by two branches, denoted
by w,(¢) and w_(g), with w,(0) satisfying

2 2 2
03 (0)=3{(w}" + 0Eo) £ [(Wf + wio)* - 4wf who ]2

They correspond to zeros in Re(sT) and 0-functions
in Im(1/€;), and in the damped region w, have
broadened peaks in Im(1/€,).?® Coupled modes
defined from the maximum in Im(1/¢€,) and from
Re(e ) =0 can be quite different in the damping
region as shown by the solid and dotted lines
corresponding to w, in Figs. 3 and 4. Coupled
modes in GaAs have been previously character-

T T T T
1.5 GaAs -
n=5x10"cm™3
Ws f :
A0
1.0 f-Wio—-; ,'i"-"-
BT A e i -
w F-Wp
Wo ol
0.5 ]
0 1 { |
[} 0.5 1.0 1.5 2.0 2.5

q/ ke

FIG. 4. Dispersion of the coupled plasmon—LO-phonon
modes. wyo=236.3 meV, kp=2.46x108cm™!, € ,=11.1,
and m*/my= 0.070. The dotted line corresponds to the
root of Rele,d,w)]=0. The fading dashed line for w._
in damping region indicates that the corresponding peaks
in Im(1/€;) are highly broadened and no longer well
defined.
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ized in the damping region from the roots of
Re(e,)=0.%°

The coupled modes w,(g) are a mixture of col-
lective electron and ion motion. In the undamped
region for small g, where w, are well defined,
the degree of phonon (plasmon) content in these
modes can be quantified. We choose to define a
phonon strength of the coupled-mode branch v,
denoted by S9(g), such that?J,,S9=1. This differs
from the phonon strength S defined by Varga
which obeys the sum rule 2J,_,(w,/w )SY =1."
Expressions for S(g) can be obtained as follows.
We define 5 ,, the normal coordinate operator
for the coupled mode belonging to the vth branch,
such that the LO-phonon coordinate operator can
be expanded as

Qy= Z:a,?ll)a,, . (22)

From (22) the renormalized Green’s function can
be expressed

D 0o, w>=§; lag]29,,@, »), (23)

where ®,, is the Green’s function for the vth
coupled-mode branch; the coefficient |a2|? can
be identified as the normalized phonon strength
S9. Useful expressions for |a2|? can be obtained
by first assuming that ,,(§, w) has the form

DG, @) = /[w* - wig)] (24)

and replacing the Lindhard function (20) by its
g~ 0 limit

2
eL(% ~1_ wp.(q
€l@,w ~1-¢, oF (25)
2 3 %2 4mne?\'/2
o=’ 1+ §W§gf"2>’ “’3=<m*<@) '
Equating (23) and (8) yields
la? I2= (wf - wf)/(wf— w?) =Sf’(q) ) (26)

|af 2= (W} - w?)/(w? - w)=S%q),
where

wi(q) =3 ([wi(g) +“’io]

£{[03@) + wio]® - 4wi(@)wiol D). @7)

[The phonon strength defined by Varga is then
given by (w; o/w,)S2.] A plasmon strength assoc-
iated with the vth coupled branch can be similarly
defined; however, the phonon strength is also
indirectly a measure of the plasmon content.

For PbTe #=5 X% 10" cm™ (Fig. 2), wy/w, ,=1.59.
The w, mode is more plasmonlike in character
[S9(0) = 0.28] and peaks in Im(1/€,) are no longer
distinguishable beyond the Landau damping bound-
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ary. The more phononlike w_ mode enters the
particle-hole excitation region at a rather small
wave vector and approaches the uncoupled LO-
phonon frequency for large wave vectors where the
plasma oscillations no longer exist. In the damp-
ing region, near the boundary, the dispersion
obtained from Im(1/€,) is shifted slightly lower
in energy than that obtained from the zeros of
Re(e,).

For carrier concentration #=1X10 cm™
(Fig. 3), where wy/w,,=0.74, the uncoupled modes
w, and w;, cross. The coupling splits these modes
into w,, which is more phononlike [S?(0) =0.65] and
w_ which is more plasmonlike. Both modes are
strongly damped just beyond the boundary where
the peaks in Im(1/€,) are essentially washed out.
As the plasmon part decays rapidly in this region,
the more phononlike w, drops abruptly toward the
pure w, ., frequency. For GaAs, n=5X10" cm™
(Fig. 4) [w)/w; ,=0.82; S2(0)=0.72], the coupled-
mode behavior is similar to the lower carrier
concentration PbTe with n=1X10'" cm™ owing
to the higher LO-phonon frequency.

B. Coupled-mode scattering strength

In the reciprocal scattering lifetime, Eq. (12),
the bare Coulomb potential 4me?/q? associated
with the electrostatic interactions in the system
of electrons and LO phonons is modified by

-Im[1/€,(§, w)]. The combined factors,
F(§, w) = —(4me®/q?) Im[1/€ (g, )], (28)

|

-Im(1/€,) = €' w¥(w? - w2,

1
Substituting (31) into (12) and integrating over d7w
-l(k n)-— ';[—' (2 )3fk,"( “fﬁ—q,n)(l +n )‘Fﬁ.i-d

4me? [ Iw, (WP-w
< o[ ge () ovmo.mis

Comparing the scattering strength corresponding
to (31) with that of the unscreened Frohlich scat-
tering function obtained from (13), characteristics
of dynamic screening can be seen for small q.

The ratio of the screened F$(w,) to unscreened
Frdhlich scattering strength F%, F$(w,)/F%, can
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describe the effective scattering strength of the
coupled plasmon-LO-phonon modes. We examine
the behavior of the scattering strength for the
undamped and damped regions.

For small wave vectors, the coupled modes are
in the undamped region, and Im[1/€,(§, w)] is
described by 6 functions occurring at w=w,(q).
We can formulate analytical expressions for the
limit w =0 and also for ¢~ 0 in the Lindhard func-
tion, Eq. (20).

In the limit of static screening, w;> w, ., i.e.,
the vibrations of the ions are quasistatic with res-
pect to the collective electron motion,

€,(q,0)=¢,[1+9%q) /97,

m*k

q
q%(q) = -~ h.zzﬂ.F 2U(q’ )‘, q’=——kF, (29)
ne 1 L q7) 1+zq ]

€,(q,0) gives rise to the highly screened LO mode
(w.) as discussed in Sec. II. [U(g’)=1 corresponds
to Fermi-Thomas screening or the limit of
€,(q,0) as ¢—0.]

For the case of dynamic screening where w;’
is comparable to w;,, the Lindhard function can
be approximated, in the limit of small ¢, by the
expressions (25) and (27). Then

o wz(q) w2 — w2
€,q w)ﬁew[ - 2 —< Lo Toﬂ (30)
T 4] w2 wZ_w’Zro ’

which yields

(F—lw—f> _2%:[6(“’ —w.) - 6(w + w_)]] . (31)

wz__ 2
—Ep ) 422 (..-__“iro_

_26— LR ) ﬁ(ﬁw_ +E|‘('_a'" - E‘i.n):’ . (32)

[
be obtained from Eqs. (32) and (14) as

Fiw,) [ € ) w, (wf—wioy

= 2 2
F: \Eo‘ew Wro Wy — We

(33)

Since w; and w_ are essentially dispersionless
for q/k=<0.1, we examine the behavior of F§(w,)/
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TABLE L
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Ratio of the screened scattering strength F§ (w,) to the unscreened

Frohlich scattering strength F%, where F$ (w,)/F¥ is given by Eq. (33). S9 is the

phonon strength of the mode w. (S9 = 1-S9).

The computed values are for g = 0.

n w) w %) FS (w+) FS(w.)
i 182 1~3 2 —_ sQ - s s
Semiconductor  (10!8¢m™3) Oro ©i0 . wio F¥ U
PbTe 0.1 0.74 1.24 0.65 0.111 1.27 1.65x10"
0.5 1.59 1.87 0.28  0.157 1.93 4.47%x1074
210~ 185
wLo 1.0 2.18 2,39 0.17 0.169 247 1,77 x104
5.0 431 4.42 0.05 0.180 4.58 1.65x107°
GaAs 0.5 0,82 1.10 0.72 0.686 3.41 2.20

(i’T—‘L =o.917)
wLo

F% in this region using values computed at g =0.
The results are listed in Table I for selected car-
rier concentrations. For PbTe, the w, modes,
which are mainly plasmon in character (S? < 0.28),
have large F¥(w,)/F* due to their high frequencies
compared to w; ,, and to the fact that these modes
are screened primarily by €,. The corresponding
w_ modes, which are mainly phonon, have F(w_.)/
F%<<1 reflecting the effects of screening by the
free-carrier system. For w, modes in PbTe and
GaAs, which are more phononlike (S9=0.65 and
0.72), the scattering strength ratio is also greater
than unity. The “antiscreening” effect is essential-
ly due to the fact that w,/w, o >1. The correspon-
ding w_ modes are then mainly plasma motion
screened by the static dielectric constant €,. For
PbTe €,~10°% which accounts for F§(w_)/F*< 1.
However, for GaAs €,~13. In addition, w;, and
wpo (hence €, and €,) are rather similar. These
lead in Eq. (33) to a scattering ratio greater than

PbTe

n=5x10cm3

Fg(10-2%ev-cm3)

FIG. 5. Dispersion of the coupled-mode scattering
strength

F @, w)=— @re¥/q®) Iml/er @, w)]

for w. more phononlike. The peaks correspond to w_ in
Fig. 2.

unity, although still less than that of w,.

In many transport processes electron scattering
is governed by larger wave-vector transfers that
occur in the Landau damping region. We next
study the behavior of the scattering strength
F,(d, w) for the more phononlike mode in PbTe
as affected by Landau damping. The peaks in
Im(1/€,) are still well defined in the damping
region for this mode, whereas it is washed out
for the more plasmonlike mode. The scattering
strength tends to be highly dispersive with respect
to energy and wave-vector transfers in the damping
region. Damping broadens the scattering strength
about the resonant coupled-mode frequencies,
while screening tends to modify the amplitude of
the scattering strength corresponding to the mode
frequency. For finite temperatures the low-en-
ergy tail of the broadened F,(q, w) may contribute
appreciably to the scattering due to the boson
population factor. Figure 5 illustrates these ef-
fects for n=5 X 10! ¢m™, where w_ is more pho-
nonlike. Figures 6 and 7 correspond to w, more
phononlike, =1 X 10" cm™3. In Fig. 5, the broad-

PbTe
n=1x107cm3

Fs (10%V-cm3)

L i
4 = — =
0.5f —
. / / |/
[o} w/w
0.5 1.0 1.5 2.0 Lo

FIG. 6. Dispersion of the coupled-mode scattering
strength F¢ §, w) for w, more phononlike, The dotted
line corresponds to the solution of Re[e{, w)]=0. The
peaks correspond to w, in Fig. 3.
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PbTe q/kg
= 1x10"cm’ /
1.00, -
= o T
0954 7
Fs(107%ev-cm3)

sF ﬁ/
2.0 w/u)\_o

0.80
0.5 1.0 1.5

FIG. 7. Expanded view of Fig. 6 for the region 0.8
<q/kp<1.0.

ening of w_ is asymmetrical, extending toward
the more plasmonlike w,. In Fig. 6, the highly
broadened F for q/kF < 0.8 corresponds to the
more plasmonlike w_.

The mode broadening due to damping by the
particle-hole excitations is particularly strong
near the damping boundary for either w_  or w_
more phononlike. This is most pronounced for the
wave-vector region q/k,~1 (see Figs. 6 and 1),
where the w, mode abruptly approaches the un-
coupled w, 4 frequency. For large wave vectors
q ~ 2k, where the plasmon excitations have all
but vanished, the width of the modes sharpens
toward a 6 function associated with the pure, un-
damped w; q.

In the damping region, screening effects cannot
be simply isolated as in the case of the coupled
modes in the undamped region. However, features
characteristic of screening can be seen in the
behavior of the scattering function F,. - For larger
wave vectors, Fg associated with either w, or w_
more phononlike increases as w;, is approached.
Also as the carrier concentration is increased by
an order of magnitude from 5 x10'7 cm™, a re-
duction in F, as well as a frequency shift in w_,
reflect screening effects, as shown by Fig. 8.

IV. SUMMARY AND CONCLUSIONS

We have presented a generalized formulation
of the electron-scattering interaction with coupled
plasmon—LO-phonon modes in degenerate polar
semiconductors. The scattering lifetime was de-
rived for this interaction in terms of a dielectric
response formalism and was shown to treat ef-
fects of strong mode coupling and Landau damping.

PbTe

—n=5x10""cm"3
--------- n=5x10%cm=3 29

a/ke

1.5,

Fs(1072%eV-cm3)

4 i w/w
1.0 1.5 Lo

FIG. 8. Dispersion of the coupled-mode scattering
strength F¢ §, ») for . more phononlike, for two
carrier densities. The normalized wave vector is in
units of £y for n=5x10!" cm"3,

Coupled modes and the associated scattering
strength were evaluated for PbTe and GaAs and
found to be highly dispersive with respect to en-
ergy and wave-vector transfers.

The role of Landau-damped coupled modes ap-
pears to be particularly important in characterizing
electron transport in degenerate semiconductors
where w;~w, . The corresponding highly dis-
persive coupled-mode scattering strength makes
available a larger portion of the energy-wave-
vector space to contribute to scattering, compared
to the undamped case. At finite temperatures,
the mode broadening could make the low-energy
tail of the scattering strength contribute apprecia-
bly to scattering, via the boson population factor.
It seems essential to take into account the damped
coupled mode behavior in characterizing low-
field electron transport as well as high-field ef-
fects, such as hot electrons and saturation ve-
locities. Such treatments would be in order.

In a separate work we will illustrate the useful
application of the generalized scattering formula-
tion presented here to help explain low-field trans-
port effects in the narrow-gap semiconductors
Pb,_,Sn, Te.
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