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A theory is developed for the cyclotron-maser interaction between an electron beam and the
electromagnetic waves in a cavity formed with a semiconductor having nonparabolic energy bands. The
interaction originates from the dependence of the effective mass of the electron (hence cyclotron frequency)
on its velocity due to nonparabolic energy-momentum relation. This mechanism is very similar to that for the
cyclotron-maser radiation in vacuum tubes where the relativistic variation of mass with velocity is utilized.
The linear response of the electron beam to the cavity fields are obtained from the Vlasov equation and the
Maxwell's equations, while collisions are treated with an approximate model. Analytical expressions for the
beam-wave coupling coefficient, beam energy loss, and the threshold power are derived for the fundamental
and higher cyclotron harmonics. The dependence of these quantities on the various parameters such as cavity
length, beam position, beam energy, magnetic field, etc., are discussed,

I. INTRODUCTION

The cyclotron-maser radiation" in an electron
beam in vacuum originates from the relativistic
variation of electron mass (hence the cyclotron
frequency) with velocity. In semiconductors such.
as InSb, the effective mass of the electrons de-
pend on velocity due to the nonparabolic nature
of the energy bands. This property can be utilized
to make a solid-state cyclotron maser' (CM) in
such semiconductors. The maser will operate
in the submillimeter range and provide a low-
power source of radiation in this frequency range.

As shown by Kane, ' the energy (W,) of electrons
in the conduction band of InSb is related to momen-
tum (p) by

where m*, is the effective mass of the electrons
at the bottom of the conduction band and E, the
band gap. From this equation and the relation'
v= v;8'„ it follows that

v=p/mg(I+ p/ mg' 'v)'~'-=p/m+,

where the parameter m* is

m+ =ma+ ] + —m

and v~ = (E~/2m,*)'~'. In Insb, B = 0.24 eV, v
= 1.30 x 10' m/sec, and m) =—0.014m„where m,
is the free-electron mass. Because of small val-
ues of mo the solid-state cyclotron maser can
operate in the submillimeter frequency range with
relatively weak magnetic fields of the order of
several kilogauss.

If a thin InSb sample at 77 K is placed in a mag-
netic field Bo and electrons are injected in the con-

duction band at an angle to the magnetic field, the
electrons will move in helical trajectories. In-
itially, the phases of the electrons in the cyclo-
tron orbits are random and no radiation is emit-
ted. But phase bunching can occur due to the de-
pendence of cyclotron frequency 0 = eB,/m* on the
electron energy. The electrons that are deceler-
ated in the wave electric field rotate faster and ac-
cumulate phase lead while the electrons that are
accelerated rotate slower and lag in phase. This
results in phase bunching and the electrons radi-
ate coherently at frequency ~ = sQ, where s is an
integer. This mechanism of maser radiation is
different from the optically pumped "cyclotron
maser" proposed earlier. "

Theoretical calculations for cyclotron maser
in vacuum have been given for two different con-
figurations: (i) the waveguide structure' and (ii)
the cavity structure. ' In the first configuration,
the electromagnetic wave grows as the result of
an instability driven by the electron beam. It
corresponds to traveling wave amplification in
waveguide structures. In the second model, the
electron beam interacts with the constant ampli-
tude standing wave of a cavity structure. It cor-
responds to beam sustained oscillations in a fin-
ite Q cavity. Recently, a theoretical treatment
of cyclotron maser in solids was given by Kalmy-
kov et al.' for the waveguide structure. In their
paper, the dispersiori relation was derived from
the Boltzmann equatiori in which the collisional
integral was disregarded. Conditions for maxi-
mum wave growth were obtained from the dis-
persion relation and the feasibility of a solid-
state cyclotron maser was demonstrated.

A major difference between the vacuum cyclo-
tron maser and the solid-state cyclotron maser
is the effect of collisions in the latter. Collision
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in solids will be a serious obstacle for the phase
bunching needed for coherent radiation. The elec-
trons will remain in orbit for a distance close to
the mean-free-path length X,. For example, in
&nSb near 77'K, X, is of the order of 10-100
p, m.""For electronvelocity of the order of 10'
m/sec, the Larmour radius r~ =v~/Q and the
pitch of the spiral X,=2vv, /Q are of the order
of 0.1 and 1 p, m, respectively, for a magnetic
field H, =—5 koe. g, and v, are, respectively, the
components of electron velocity perpendicular and
parallel to the magnetic field. x~ and X, are both
much smaller than the mean free path and a large
number of turns (X,/X,) of the electron spiral oc-
curs within A, Thus, electron cyclotron-maser
interaction can take place if the interaction length
is of the order of X„but the conditions for cyclo-
tron-maser interaction rapidly deteriorate when
the interaction length goes much beyond X,. In
this regard, a solid-state cyclotron maser in the
cavity configuration is expected to offer a very
significant advantage over the waveguide configur-
ation because the cavity configuration requires a

-&augh shorter interaction length. The reason is
as follows. In the waveguide case, the beam in-
teracts with an electromagnetic wave that grows
from the noise or near-noise level, while in the
cavity case the beam interacts with a large amp-
litude standing wave which has been built up and
stored in the cavity. As a result, the interaction
is much stronger in the latter case, or in other
words, the required interaction length is much
shorter in the cavity than in the waveguide in ader
for the beam to lose the same amount of energy.
This is reQected from the fact that in vacuum cy-
clotron-maser experiments, an oscillator (cavity)
is generally shorter than an amplifier (waveguide)
by one order of magnitude.

Motivated by the above consideration, here we
formulate a detailed solid-skate cyclotron-maser
theory in cavity. The formalism and the physical
expressions to be derived are considerably dif-
ferent from those of the waveguide structure' al-
though the basic mechanism is similar. The exact
spatial field variation has been incorporated in our
calculation and the electron Larmour radius has
been kept arbitrary. This aQows us to examine
interactions at the nonfundamental as well as the
fundamental cyclotron frequencies. More im-
portantly, the effect of collisions has also been
included in our model. It will be shown that the
collisional effect is such a dominant limiting fac-
tor in the solid-state cyclotron maser that the
short interaction length afforded by the cavity
structure could be a decisive advantage over
the waveguide structure.

In Sec. II we calculate the linear response of an

annular electron beam as it interacts with the
cavity modes. The dynamics of the electron beam
is determined from the Vlasov equation while the
collisions are treated with an approximate model.
In Sec. III we calculate the electron beam-cavity
mode coupling coefficient, beam energy gain and
the threshold beam power necessary to sustain
oscillations on the basis of a cold beam assump-
tion. We also show the dependence of these quan-
tities on the various parameters such as beam
position, beam energy, cavity length, and the
magnetic field. In Sec. IV we discuss the results
from our theory and suggest some experimental
configurations to observe the oscillations.

II. MODEL AND FORMALISM

Figure 1 shows the configuration of the electron
cyclotron-maser system under consideration. An
annular beam of electrons is guided by the mag-
netic field B~ along helical trajectories inside a
circular-cross-section InSb cavity (radius 8 and
length L&A.,). The electrons are injected at an
angle to the magnetic field such that a major part
of their kinetic energy is in the form of trans-
verse gyromotion and the rest in the form of axial
motion. The axis of the trajectories is along the
cavity (z axis). The cyclotron orbits may or may
not encircle the axis of the cavity, depending on
how the beam is formed. In Fig. 1 the second type

FIG. 1. End view of the electron cyclotron maser.
Guiding centers are uniformly distributed on a circle
of radius ro. The point 0 is the axis of symmetry. The
circle of radius rz, is an arbitrarily chosen electron or-
bit and c is the guiding center of this electron. Ee is
the electric field of the cavity and E„ is the component
of Ez tangential to the electron orbit.
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of orbits is shown. We make the following simpli-
fying assumptions to obtain the linear response of
the electron beam: (i} the beam is sufficiently
weak so that its self-electro-static and magnetic
fields are small compared with the cavity fields;
(ii) the cavity fields are of first order with respect
to the applied magnetic field B, and the perturbed
electron distribution f'" caused by these fields is
of first order with respect to the initial distribu-
tion function fo; (iii) the distribution function and
the cavity fields are independent of the azimuthal
angle 8; and (iv) the electron collision frequency
is much smaller than the electron cyclotron fre-
quency.

The cavity modes may be classified as TE or
TM modes. Cyclotron maser interaction is much
stronger for TE modes than the TM modes. ' Thus,
we consider only TE modes and in accordance
with assumptions (i} and (iii) restrict our attention
to TED„modes given by

E2")= E2 J,(k„r}sink, z cosset,
0

8„")= (k,/&o)E2 J,+ (k„r) cosk~ sin(0t,

B',"= -(k„/u&)E2 J', (k „r) sink, z cosset,

where

k„=x„/R,

(2a)

(2b)

(2c)

(3a)

(sb)

x„being the nth nonvanishing root of J', (x) and the
wave frequency

(k2+ k2)1 /2/(~'~)1 /2 (Sc)

J2(x) is the Bessel function of order J2. t(, and e
denote, respectively, the permeability and the
dielectric constant of the medium; c=()uoe, )
is the velocity of light in vacuum. We assume
that p, = g, . The subscript (1) refers to the first-
order quantities. We use MES units throughout
the paper.

The electron distribution function f is determined
by the equation

Vg, (r, p, t),
where m~ =ymo~ with

(6}

(7)p = [1 —(v'+ v')/v'] ' ' .
Note that in Eq. (7), the Bhatnagar-Gross-Krook
(BGK) model" of collisions has been assumed.
Equation (6) may be solved by the method of char-
acteristics, namely, by intergrating it along un-
perturbed trajectories of the electrons. Equation
(6) thus reduces to

structure, rather than the electron. medium. ;-: ge-
termines the properties of the wave (spatial: pro-
file and dispersion relation, etc.). Thus, only
those electrons which interact resonantly with the
wave are of importance while the effects of non-
resonant electrons can be neglected. As will be
determined in Sec. III, resonant electrons occupy
a very narrow region in the velocity space. Hence
the initial distribution function of interest to the
problem would be one in which all the electrons
fall in the resonant region. Further it is rea-
sonable to assume that if an electron suffers a
collision in its path, it will be scattered off the
resonant region and consequently its dynamics
will no longer be of interest. Thus we may ap-
proximately write f, as

f,(r, p, t) =f (r, p) exp[-&(t —t )],
where to is the time an electron first enters the
cavity, v=v, /X, is the collision, frequency, and

fo(r, p) is any function which satisfied the zero-
order Vlasov equation" in the absence of collis-
ions. Since the cavity length L & A.„very few col-
lisions occur and the approximate form for f, in
Eq. (5) should be adequate for our purpose.

On linearizing Eq. (4} according to the ordering
scheme in assumption (ii), we obtain the following
equation for the perturbed distribution. function f"'.
—+, .E — '

( x E).EV,.)f"'( , Et)E

uf (rp, t)+e(—E (1, ,()+ ' ))

—+ Vf-e E+ Vg= — ) (4)
sf p pxB sf
Bt m* c011 f"'(r, p, t) = e dt' exp[ v(t' —t)]

where (sf/at)» is a collision term whose form
will be specified later.

On the basis of the two different time scales
assumed [assumption (iv)], we may separate the
distribution function f into a slowly varying com-
ponent f, representing the collisional relaxation
of the zero-order distribution function and a rap-
idly varying component f"' representing the per-
turbation caused by the wave field. A characteris-
tic of the cyclotron maser system is that the cavity

p' B' ((r)', t') ~

~ V, f,(r', p', t'), (8)

where the t' integration is along the unperturbed
orbits. The primed quantities r' and p' are treated
as functions of t' while r and p are, respectively
the values of r' and p' at t'= t. The lower limit
of the integration t, is given by to= t —z/v„ i.e.,
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the tim. e' an electron at axial position z and time
t first enters the cavity .Substituting E(l. (5) in

Eq. (8) and using the relation f, =f-z/v„we ob-
tain

f"'(r, p, t)=exp
)

dgP g g r g + p r P

m*

In the absence of collision f"' is given by the integral alone on the right-hand side of E(l. (9). Collisions
reduce f"' by the factor exp(-z/X, ).

The methods for evaluating the integral in E(1. (9) are standard" and the result may be written in the
form

f (1) f(1)+f(1)

where

f (1) Im 0 et()(gt ut) EI1t ~ «Pt fo + EPJ. fom 2~~
~

~ m~

(u —k,pram t' —sn

with

eB Q~ p, 1 i((I) —k,v, sQ)z —G, , &, ~,(&)Q= o =—,g~= q
X=1—exp

mo hap Vg

In E(l. (11), Im(A) indicates the imaginary part of A. (() and 8 are, respectively, the polar angles of the
momentum and position vectors. p, and p, denote the components of momentum p= m v, perpendicular
and parallel, respectively, to the external magnetic field. f '" is given by E(l. (11)with ur replaced by

In obtaining E(l. (11)we have used the following relation. ":
et't(z, (z,) = Q J„»(z,)J„(z,)et"t2,

where x„x„x~, H„and 8, are related through the triangle shown in Fig. 2.
The perturbed azimuthal current J~" is given by

oo +OO 2%'

Je"'= -e "'ge d'p = -e p, dp, dp, dy "'v, sing,
0 ~ 0

where p=y —8. From E(ls. (10)-(13), we obtain, after integration by parts over p, and p„
J(l) J(1)+ J(l )

e
=

e+ e-

where

(13)

T e2Ee
y()o

J(1) Im o et(aze &at)-elle -g, (k r)e+ s' n+4mo CO sz w()o

OO +OO 2g

p dp dp Qf P (e t(»-1)$ e t(»+1)S)
0 oo 0

„~(G„,(k„r )p', ((d' —k',v', )X (&o k~,)X[2G(k„-r»)+ k„r G,'„(k„r )]
y7l

iz(1 -X)((v' —k2p', —k p', )l/v, )p21

y mo~v~P, g (15)
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III. BEAM POWER GAIN AND THRESHOLD POWER

The time average power gain for all the elec-
trons in the cavity is given by

Xp

FIG. 2. Geometrical relations of the variables used in
the Bessel function identity.

with }I= &u —k~, —s0 and G'„,(x) = dG, ~ (x)/dx.
J~"' is given by Eq. (15) with e replaced by -cu.

Equation (14) gives the perturbed current for a
general distribution function f,. In the following
we specialize to a particular distribution function
which is considered to be the most ideal for cyclo-
tron-maser operation. ' It is constructed from the
constants of motion of the system {in the absence
of collision): p„p„and L2= ym*v, r sire) 2eB,r'——

Vfe assume that'

& 2x/to R I
P= co

i dt A' O'"E"'dk-
e e

~o o 0

We introduce the following notation:

P, =v,/c,
p~2 =p~/yotpl(+)c = vqo/c,

p =p',/y~fc=v„/c,

~2r2 k2 L2P2/P2

h=vr —k, I, —sQ,r/y, ,

6' = &or+ k,L —sg, r/y2 .

(20)

(16)y

v is the transit time of the electrons in the cavity
and vv =L/X, . From Eqs. (2a}, (14), (15), and
(18)-(20}, we have

which represents a cold monoenergetic beam moving
along helical trajectories with guiding centers dis-
tributed uniformly on a cylinder of radius xo. The
constant k is determined by the normalization con-
dition

where

NI e2E2' Q ( 2}+u22 —
22

—~~) i
mo*yo

(21)

f,avr dr d 'p =N,
H, (k„ro, k„rz)P2~

gl gp2

where N is the line density of the electrons (i.e.,
number of electrons per unit length). Equation
(16) may be written

x Z, ÃZ+ , ~ Ng

+ ' " " " ~ (~r kL)M-(a),q (kr, kr
(22)

N6(p. P,')6(pi Pi)--
27f2P [(r2 r2)(r2 r )]ll22

H, (k„r, k„r )P2
g2 Qp2

where

x [6(}}}} Pp0) y 6(q) —v+ go)]

x e(r r, )e(r, --r),

y, = sin '[(r'+ r2~ —r'22)/arr~ ];

(18)

(,)
M (4') I'

o +

k Lr}.p N(h') '

' "" " ' (~r k.L)[fif(~) -r], (as)

e( )
1 for x) 0,

0 for x&0;

r|= lro-r. l an«. = lro+r. l

with

x(1 —e 'cosx) —vre 'sinx
(24)

The idealized distribution function in Eq. (18) leads
to results which can be physically interpreted and
provides valuable information for the operation
of the solid-state gyrotron.

N(x)=Re . 2 +(x+iur}' x+iuv )'
r=2k L(l —8 "')/(4k'L'+ v'7') .

(a6)

(26)
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The quantities n„and n~ are, respectively, ob-
tained from n„and n~ with the following replace-
ments:

H, =j,'(ai)l, (ao, a~),

g, = 2H, (a, ai) + a~ j,"(ai)l, (ao, a+)

+ —,'ai j,'(ai)[I, ,(a„a~) —I„,(a„ai)],
where

(27)

(28)

Cp

I,(a„az) = —— da j,(a)a
al

v--co, 6--6' and 6'--b, .

The functions H, (a„ai) and g, (a„az) are defined
by

The integral series in Eq. (29) is evaluated in
Appendix A and found to be'

I,(ao, az) = j~(a )j,'(a ) . (30)
Equation (21) contains a summation over all har-
monics of the cyclotron frequency. As we shall.
see later, radiation is favored at a particular
cyclotron frequency near the synchronous con-
dition

~ —k,v~ —sQ, /y, =0 .

Hence in Eq. (21) we keep only one term. ~e are
mostly interested in the fundamental cyclotron
frequency. In later calculations parameters are
chosen such that s =1 term dominates. In the
case v=0, the quantities n assume the form

and

and

x simp[(a~ —a )(a —a )] 'i~

J„,.(sJJ,.(s) soss' ——j)2
s' =~

(29)

a, =-
Qp a~, ~, =- ~O+~»

y = sin '[(a'+ a~+ —ao)/2aai]

nl= -Hs

x 4 sin ——6 sink
I

2

P'i
+ k L ~ n L sink —2 sin' — / 6'e p2

2q, (&uv —k,L) sin'(-,' &)
+ ~2

n, =H " e'w' — ', ' 2 1+ —, sin'
2

—~ sin&'

+k,L 6 6 sin6' —2, sin' 2@,(&ur —k, L) sm'(-,'n')
(~~') (32)

The other two quantities n, and n4 are obtained
by the replacements

e--co, 4--6', and 4'--6
in the expressions for n, and n„respectively.

In Eq. (10), f,"'
and f'" may be regarded as

perturbation in the electron distribution function
due to the forward- and backward-traveling waves
which make up the standing cavity modes. In Eq.
(21), the terms a„and n„arise from interaction
off,"' with the forward- and the backward-travel-
ing waves. Similarly, n~ and n,4 terms are due
to the interaction off"' with the two waves.

In the expression for u's, the first term (pro-
portional to H, P~) arise from the transverse mo-

I

tion of the electrons and the second term [pro-
portional to (&ov —k,L)Q,] is due to wave-induced
oscillations. The first term is much larger than
the second term unless P« is too low. Hence the
coupling between the electron beam and the cavity
modes is essentially proportional to H, (k„x„k„ri).
The first term may be positive (beam-power gain)
or negative (beam-power loss) depending on the
phase factor h. It is shown in Appendix B that
E„, the amplitude of the component of the cavity
electric field tangential to the electron cyclotron
orbit (see Fig. 1) may be written

E„=-AE,,p H,'i'(k„~„k„xi)cosset,
s=p
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where A=1 for s=0 and A=2 for s0. Thus
Egp H,

' '
may be inte rp re ted as the s th harmonic

component of the effective electric field in the
direction of the electron velocity and the beam-
power gain is proportional to H, .

In the expression for P, the guiding center po-
sition r, enters through H, (k„r„k„r~). Hence P
can be maximized by maximizing H, with respect
to rp for each combination of n and s. Numerical
computation shows that the optimum value of rp
is 0.48R for n=s=1. This value of xp wiB be used

- in later calculations.
The total stored energy (W) in the cavity is given

by

» 'y, (y, I-)PQ &',(x„)
b c nQ

47747%+ Cp

28 (42)

The result for cyclotron maser in vacuum is re-
covered by setting f fp Pg 1, and mp~=m, in
Eq. (42). Since P =4.3x 10 ' and mf =0.014m, in
InSb at 77'K, the threshold beam power for the
solid-state cyclotron maser is many orders of
magnitude lower than that of the vacuum case.
Numerical examples for F and Pb" are given in
Sec. IV.

W= 4vR2Le J20(k„R)Ee (33) IV. NUMERICAL RESULTS AND DISCUSSION

Let us define a dimensionless quantity F,
(34)

as the ratio of the total beam-energy gain during
one transit time to the total stored field energy.
From Eqs. (21), (33), and (34), we get

E = (ourn/2yodo(x„)(d, (35

where &o~= (Ne'/mR'em/ )'~' and n = (n, + n, —n,
—n, ).

The quantity E may be positive or negative de-
pending on the value of the phase factor 4. The
beam generates electromagnetic radiation in the
range of b, for which E is negative.

An actual cavity has a finite Q due to dielectric
losses or loading or wall resistivity or end faces
not being perfectly reflecting and energy is lost
from the cavity at the rate

P,„,=~W/Q .
The electron beam generates energy at the rate

P„=-EW/r . (37)

Thus the threshold condition for cavity oscillations
is given by

-EQ& &or . (38)

The energy of the electrons in the conduction band
of the crystal may be written

W~= (yo —1)m fP2c2, (39)

Pb ~ Pb" (41)

where the threshold beam power Pb" is given by

and the electron beam power inside the crystal is

P~=N(yo-1)mfP'c'v« .
From Eqs. (35), (38), and (40), we find that

The quantity E [Eq. (35)] and the product QPt~"

[Eq. (42)] depend on the parameters s, n,, m, R,
ro, A.„yo, v«/v«, and Q. For numerical ex-
amples we consider only the fundamental mode
numbers, i.e., s=m =n= 1. In this case x„=kg
=3.832, k, L=m, and 6'=6+2m. As shown earlier
r, should be 0.48R to maximize H, (x„r,/R, x„r~/R)
From Eqs. (35) and (42) it can be seen that the
radius of the cavity R may be scaled out by nor-
malizing length to R and frequency to c/R. Wave
vector, time, and velocity are correspondingly
normalized. The natural dimensionless quantities
y„P, 6, &o7, k,L, H„and Q, remain unchanged.
For a given L = L/R, ur = c&u/R is fixed by Eq. (3c).
F and QPb" are obtained numerically for various
values of the parameters L, y„P«/P«, and Q
=cQ/R (i.e., L).

Figures 3(a) and 3(b) show typical plots of E as
a function of h. F becomes negative for 6 in the
range -0.97t &4&2'. The lower limit does not
change with L and shows slight changes only with
y„and P«/P«. The maximum negative gain -E„
increases with increase in y„P«/P«, and L. The
magnitude of F decreases with v7 as expected.
'Q

y Q2 Q 3 and n 4 are also plotted as function
of b, in Fig. 3. 0., differs only slightly from n, .
In the traveling-wave structure, the gain is de-
termined by the term n, . In this case gain is neg-
ative only" for L&0. The phase factor ~ cor-
responding to -F lies near +0.1m. 6 shifts
slightly towards lower values with increase in L,
y., daPn/P

In Fig. 4, QP'," is plotted as a function of the
electron energy in the crystal W~ = (y, —1)m Oc'P'
for cyclotron frequency Q corresponding to 6 .
Data are shown for P«/P, 0=1.5 and different val-
ues of L and vs=L/A, The threshold power in-
creases with decrease in L and increase in vv.
QPt" is of the order of 10 3 W for electron ener
gies -10 ' eV. For L = 0.05 and v7 = 0.5, QPb"
=1.8 mW at 8"b=13.2 meV. Assuming Q=—100,
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FIG. 3. {a)E (solid curve) vs b, for n =8=m=1, K&=0.48, J =0.1, yp=1.1, pJp/pp 1.5, and @7=0. The dashed

curves marked e~, n2, e 3, and o,'4 are plots of the four components of E as function of A. Dielectric constant E'=17 7cp.
(b) E as a function of 4 for four different values of vv with other parameters the same as in (a).

P~"=—18 p, w. As the length of the cavity is de-.
creased to reduce the effect of collisions, the low-
est eigenfrequency increases. For mean free path
A.,=—100 p, m and L =0.05, the operating frequencies
at vv = 1.0 and 0.5 are, respectively, 36V and 734
0Hz. The corresponding cyclotron frequencies
Q for maximum beam energy loss are 357.4 (H0
= 1V87 Oe) and 715 GHE (H0= 35V5 Oe).

%e make some suggestions for possible ex-

periments to observe solid-state cyclotron-maser
radiation. The cavity might be in the form of a
disk with polished ends and metallized edges. The
thickness of the disk should be less than a mean
free path of the electrons. The cavity is placed.
in a uniform magnetic field. One end face of the
disk is bombarded by an electron beam at an angle
to the field such that the electrons get into the con-
duction band with appropriate transverse and axi-
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material having large mean free path A.„small
band gap, i.e., v, and small. effective mass mo~ .
The cavity length can be increased and the fre-
quency of operation lowered if X, is larger. Since
the cyclotron frequency is proportional to Bo/mg,
smaller magnetic fields are required for materials
with smaller mo~. Furthermore, P~" decreases as
nzo*. A smaller value of v, is also desirable be-
cause P'," is lowered and electron velocity needed
to obtain a given value of yo is also reduced. Qur
results are based on a linear theory. A nonlinear
theory is necessary to calculate the efficiency and
the saturation power level of the system. This
will be the subject of a future investigation.
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FIG. 4. P&", the threshold beam power, as a function
of the beam kinetic energy 8'& for n =s=m =1, T'0=0.48,
P J 0/P, 0

= 1.5 ~ and (a) p = 0.1, (b) L = 0.05. The magnetic
field is chosen so as to maximize the beam energy loss.
Curves are shown for three different values of p 7 .

APPENDIX A

The integral series I,(a„ai) appearing in Eqs.
(27) and (28) is defined as

-2
I,(ao, az) =— da sinpod, (a)a

7T Q1

)( [(a2 a2)(gR a2)] 1/2

g d„, (a )~, (a)
al velocities. Another possibility is to use the
structure under forward bias condition with a
doping profile similar to that of a Read diode'
(n'Pip'), such that there is a very narrow acceler-
ating region of high dc electric field and a larger
intrinsic region where the dc electric field is
negligible. Cyclotron-maser radiation takes place
in this region.

where

&& coss 2 o r

a, = a —a~~ a =a +gio I ir 2. o Lr

go= sin '[(a'+ a2~ —a', )/2aai] .

(A 1)

(A2)

V. CONCLUSION

In this paper we propose the operation of a solid-
state cyclotron maser in the cavity configuration
and demonstrate its feasibility with a theoretical
analysis. %e have derived analytical expressions
for both the electromagnetic power gain and the
threshold beam power. The dependence of these
two quantities on the various parameters such as
the length and radius of the cavity, electron mean
free path, the magnetic field, initial electron
beam energy, radial and axial eigenmode number,
cyclotron mode, etc. , has been shown. In order
to minimize the effects of collision, the cavity
length should be less than a mean free path of
electrons. This sets a lower limit to the frequency
that can be used. It is seen from Eqs. (35) and
(40) that a better performance is obtained with a

J,(m) coss@ = P J„»(u) J»(v) coss'a,
$g w& oo

(As)

.where u/= (u'+v' —2uv cosa)'/' and + = cos '[(u
-v cosa)/u/], we reduce Eq. (Al) to (after some
algebra)

I,(a„ai)=- a,(a,)

J,(a)(a'+ ai2 —ao)'
) g g2 g2 g2 g2

+g& cos s cos '---
2gog~ (A4)

inserting Eq. (A2) into Eq. (Al) and using the Bes-
sel-function identity
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To carry out the integration in Eq. (A4), we re-
place the variable of integration a with x, where
x is defined through the equation

a = (ao+ a~2 —2aoa~ cosx)'~'

Again after some algebra, we obtain

I,(a„a~)=- J,(a,)

Thus, we have

E~ =E~J,[k„(ra+ r~2 —2ror~ cosp)'~']

x(r~ —r, cosp) (r', + r~2 —2rorz cosp) ~~2

= -E~ok„' J,[k„(r',+ r~m —2r,r~ cosp)'~'] .Bj I
(S2)

J,[(a', + a2~ —2aoa~ cosx)' ~']
(a', + a2~ —2a,a~ cosx)'"

x (a~ —ao cosx) cossx

Expanding E~ in terms of the sinusoidal harmonics
of p and noting that E~ is an even function of p,
we obtain

]. d
=—J,(a,) E~ = E;«cosset,

$ m

dx Jo[(a'+ a' —2a az cosx)' ']cossx,

(A5)
where

Using tabulated integral fomzula, "we obtain

f,(ao, a~) =J',(ao)J,'(a~) .

APPENDIX 8

(A 6)
8 ff'

Eeg~ = — dQ E@ cossp
0

= -8E@,(k„v) '

The component of the cavity electric field tang-
ential to the electron cyclotron orbit is

E~ =E, cosn =Ee,J,(k„r) cosn,

where the z dependence of E~ has been neglected.
We may express E~ in terms of r„r~ and Q
through the following geometrical relations (see
Fig. 1):

r = (r', + r 2~ —2r,r~ cops)'~',

cosn = [r~+ r, cos (m g)]/r-
= (r~ —r, cosp)/(r', + r~2 —2r,r~ cosp)' ~'.

&& ) d@J,[k„(r',+ r~2 —2ror~ cosp)'~'],

s=0,
p~

2, s10.

(84)

Using tabulated integral formulas, "we obtajn
from Eg. (B4),

E:„=-eE„J,(k„r,)J,'(k„r,)
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