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Energy-band theory of Auger line shapes: Silicon L2 3 VV and lithium XVV
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It is shown that one-electron band theory predicts the experimentally observed L» VV Auger line shape of
silicon and the KVV line shape of lithium, provided that the partial densities of states are properly
normalized for the atomic orbital (AO) basis used to calculate the matrix elements. This normalization,
when combined with matrix-element effects, is responsible for the dominance of p-p hole final states in the
experimental spectra. The effect is equivalent to noting that with the atomic-orbital basis, the electronic
charge is divided into atomic and overlap populations. Due to matrix-element effects, the latter does not
contribute to the Auger process. Thus, Auger-electron spectroscopy is sensitive to the variation of the local
atomic charge density across the valence band. Since the s AO contributes more to the overlap (bonding)
charge than the p AO does, the s-like contribution is suppressed in the Auger line shape. The quality of the
agreement with experiment suggests that the combined effects of the surface, many-body phenomena, and
the distortion of the valence band in response to the core hole are small for the above spectra.

I. INTRODUCTION

Recently there has been growing interest in Aug-
er-electron spectroscopy (AES) as a probe not
only of surface elemental composition, but as a
probe of the local chemical environment of the tar-
get, atomic species. The latter information is pro-
vided through the analysis of the Auger line shape.
Houston~ has shown that solid-state Auger line
shapes of high quality may be generated by decon-
voluting an electron loss function, taken at the
appropriate energy, from the measured Auger
spectrum. Using this procedure, line shapes of
sufficient quality to permit a detailed comparison
to theory have been generated for several mater-
ials. ' However, the naive theory of Auger core-
valence-valence (CVV) line shapes, which ignores
matrix- element effects and simply self-convolutes
the total valence density of states (DOS), works
poorly, if at all. 3' Auger-line-shape analysis may
provide an additional and potentially powerful tech-
nique for the analysis of the chemical environment
of chemisorbed molecules. Recent experimental
work by Rye et al. on both gas- and condensed-
phase molecules has been very encouraging in this
respect. Recent work by the author~ has provided
a basis for the calculation of the CVV Auger spec-
tra of chemisorbed molecules using a cluster ap-
proach to simulate the surface. This work has
also shown that one may interpret the spectra of
molecules that are considerably larger than those
previously analyzed in terms of the canonical
molecular orbitals. These results strongly sug-
gest that the CVV Auger spectra of covalent solids
may be analyzed in terms of the canonical Bloch
functions. The author has recently demonstrated
that this approach is indeed valid for the Si I.2 3VV
spectrum. e Following the work of Feibelman, Mc-

Guire, and Pandey' and of Feibelman and Mc-
Guire, ' who showed the importance of matrix-
element effects in the Auger spectra of s-P band
materials, it was stated~ that the partial densi-
ties of states (PDOS's), obtained from the band
structure, must be properly normalized for the
local basis functions used to calculate the atomic-
llke Auger matrix elements. One purpose of the
present paper is to explain this result in greater
detail and show that this correction places the
solid-state theory in direct correspondence with
the molecular theory which has proved success-
ful.

Work on lithium metal by Madden and Houstono
has shown, as for covalent solids, that the Auger
XVV spectrum of this simple metal ca@not be re-
produced simply by self-folding the DOS (the
SFDOS). The author also has confirmed this with
a recent band-structure calculation. " Madden and
Houston were able to show that the XVV Auger
line was quite closely a self-fold of the P-like DOS
as empirically determined by K-shell x-ray emis-
sion data. They thus hypothesized that s-like con-
tributions to the Auger line shape were negligibly
small. This surprising result for what many
(wrongly) consider to be an "s-band material" has
led to the proposal that this disagreement between
the measured peak position and that obtained by
the SFDOS is due to a many-body effect. ' The
second purpose of this paper is to show that, as
with the Si L2, 3VV spectrum, one-electron energy
band theory can indeed account for the Li KVV
line shape and that many-body effects, if present,
are negligibly small. We will see, however, that
there is substantial s-like contribution to the Li
KVV line, but it is almost entirely of the sP type, '~

which can only with difficulty be distinguished from
the PP contributions due to a great similarity in
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shape and peak position. Thus the observation by
Madden and Houston that the XVV Auger line may
be reproduced simply by self-folding the E-shell
x-ray emission line is something of an accident
and, as has recently been confirmed on beryllium
by Madden and Zehner, is not expected to be true
in general.

The lithium XVV line shape was calculated from
an ab initio band structure that used the Kohn-
Sham exchange and correlation approximation and
a linear-combination-of-atomic-orbitals (LCAO)
basis set of 3s and 3P Slater functions. ' Thus this
paper also presents 'the first nonempirical Auger
line shape that is in excellent agreement with ex-
periment, arid illustrates the utility of the LCAO
method for the calculation of solid-state Auger
spectra.

if w'e sum over all possibilities for spiri' assign-
ment. If we now further assume that hole-hole
interaction'4 and static-relaxation'5 effects are
negligibly small for the solid state CVV process,
then we may combine the above expressions into
a total amplitude for creating an Auger electron
at energy E~ ——E, +E~+E„,i.e.,

I„,2
I (» I

cf) I'+2 I(v~ Icf) I'

—(l},vlcf)*(vp, Icf) —(p, v lcf)(vp Icf)*,, (4)

where E„E~,and E„refer to the negative of the
ionization potentials of the c, p. , and v orbitals,
respectively. Summing now over all ways to cre-
ate an Auger electron of energy E&, we have

C

I(Eg) GG I„„6(Eg+ EG —E„—E„).

II. THEORY

A thorough analysis of the band theory of Auger
line shapes was reported by Feibelman et al, 5 En

the present work, however, surface effects have
been neglected. For this reason and in order to
define notation for the analysis that follows, the
above theory is recalled here in a somewhat sim-
plified form.

We assume that we may write the total wave
function of both the initial state (with the core
hole) and the final state (with two valence boles
and a continuum electron) as single Slater deter-
minants. Then if relaxation (i.e. , valence-band
distortion) effects are neglected, the initial and
final states differ by just two spin orbitals, and
we may express tbe Auger intensity l(E~) in terms
of Auger matrix elements (i},v lcf) of the form

e2

(Eu~cf)=f fd(l)d(2)E"„.(()E, (2d). (2,(l)E&(2),
ri2

where the subscripts p. —=nk and v—= n'k' refer to
the valence Bloch orbita1. s which are depopulated,
and where the subscripts c and f refer to the lo-
calized core orbital. and the continuum wave func-
tion, respectively, which are populated by the
transition. Now, if p. and & are holes of the same
spin (i.e. , the solid is left in a triplet state), then
p, , v, c, and f all have the same spin and, assum-
ing Fermi's golden rule, we have

'I.."I( }l vf)c-( vlpcf) I', (2)

I(} vlcf) I'+ l(v} lcf) I'

where I~„is the transition probability for creating
a triplet final state w'ith holes in the p, and v spin
orbitals. However, if p. and v are singlet coupled
(i.e. , are of different spin), one of the two terms
in Eq. (2) vanishes and we have

We now expand the Bloch functions in the LCAO
form

4„=4„),=+CG, Gge'"' ' C'a
2

af
(6)

where

M, z» —= 2 (ij I
cf)*(kl

I cf) + 2(ji
I
cf)"(lk I cf)

—(ij I
cf)*(lk I cf) —(ij I

cf)(lk I cf)*, (6)

The total DOS, D(E), may be written as a sum
of PDOS, F,q, &J(E), by writing

D(~) = Q &(E —E,) = Q 6 I » &(E —.E )

where

F.,„;(E)s.,-,„,
ai~bj

F (E)=—Q CE+„;C„,(,ge
' ~ ' &(E —E)2), (&())

where S,~, b~ is the overlap matrix between, basis
functions ai and bj, and where we recall p, =nk.
Expressing the convolution of two functions as

( «}(E)—:Gf EdE EIE )G(E::E);''—'
we note that Eq. (7) may be written

where ai refers to the ith basis function on: atomi. c
site a at position 8,. Noting that in all but highly
ionic solids the interatomic Auger matrix elements
are truly negligible, '6 we may restrict the sum to
the same site as the core hole. Dropping'the sub-
script a, we have, upon substituting Eqs. (6) and

(4) in (5),
OCC

P CG. «"..~CG. aC..2

Ukl lI p
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1(&y) g I~i a+ &ii)(&j + Ee)fif ~ sar (12)
- ggir

where the site subscripts on E have been dropped
and w'her'e I" is restricted, of course, to occupied
energies. -

The areas under the PDOS may be interpreted
in terms of the distribution of valence electron
char ge density. Defining

+ah&bj': d@~a$, bj @ aisbg ~

OCC

we note that the valence charge density may be
expressed as

dr p r = dr@*„4„

i R.Cg-f b)~C„„,C..we S,), w.~, b~ ~

ear bg
+ai, bi ' (14)

Thus the total charge density may be broken into
atomic (A„„&)and overlap (A, ~, qq, bta) popula-
tions, as is often done in LCAO molecular-orbital
calculations. '7 Due to the above-mentioned ma-
trix-, element effects, it is clear that except. in
highly ionic materials, only the atomic charge
contributes to the Auger current, and that the
Auger line shape is sensitive to the variation in
the local atomic charge density across the valence
bands. Thus valence orbitals which contribute
mostly to the bonding charge (e.g. , 1

&
in Si) will

have their contribution to the Auger current sup-
pressed, while the opposite is true of orbitals
that contribute little to the bonding (e.g. , I'2, in
si).'

The Auger lines were calculated using Eq. (12).
The PDOS were calculated with a histogram meth-
od using Eq. (10) and 152 regularly spaced points
in the irreducible wedge of the Brillouin zone in
the case of Si, and 285 points in the case of Li.
Although this method of BriOouin-zone integration
is crude, considerable smoothing results from the
convolution. The Si calculation used as a basis set
Hartree-Fock atomic orbitals and details may be
found in the Appendix. The Li basis set and details
of the band structure calculation were previously
reported. " Further information on.Li may also be
found in the Appendix, together with a discussion
on the calculation of the atomic Auger matrix ele-
ments [the (ij ~cf) in Eq. (8)].
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large differences between the PDOS found from a
Wannier basis and those found with the present
atomic-orbital basis. It was thus established that
one. must be consistent, and calculate the PDOS
with the same basis set used to calculate the atom-
ic Auger matrix clem.ents. Similar problems would
be encountered if one attempted to calculate an
Auger spectrum from a cluster calculation that ..

used a theory [e.g. , Huckel theory or CNDO (Ref.
17)] that did not explicitly account for atomic-or-
bital overlap and hence did not divide the charge
density into atomic and bonding components.

The Si L2, 3VV spectrum is presented in Fig. 1,
and is compared to the previous theory and to ex-
periment in Fig. 2. No attempt has'been made to
smooth or broaden the present result, and it is
obvious that better agreement with the experimen-
tal results may be obtained by broadening. Since
surface effects have been neglected, it is tempting
to blame them for the remaining small disagree-
ment. However, experimental resolution and noise
introduced by the deconvolution of the loss pro-
cesses' are certainly not negligible. Thus, at
least in the present case, the combined effect of
the surface, many-body phenomena, and initial-
state valence-band distortion (i.e., polarization in
response to the core hole) appear to be small.

The Li XVV spectrum is compared to experi-
ment and analyzed in Fig. 3. We see excellent
agreement, except on the low-energy side. Mad-
den has indicated that much of this discrepancy
could be explained by slight oxygen contamina-
tion. '8 It is seeri that the PP contribution is indeed
dominant, as was suggested by Madden and Hous-
ton. 3 However, it is also noted that the sP contri-
bution is about half the PP, and would have been
visible had its peak position and line shape not
been so similar to those of the PP contribution.
Thus the agreement between the self-fold of. the

III. RESULTS AND DISCUSSION
0
-10 0 5 10

RELATlVE ENERGY (eV)

15

A comparison of the present L2, 3VV Si results
with experiment and previous theory has already
been reported. It was shown that there were

FIG. 1. The theoretical Si (L2 3 VV) Auger line is brok-
en into pp and sp components. The ss component is so
.small that it has been neglected.
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RELATlVE ENERGY

FIG. 2. Theoretical-experimental comparison of
the Si (L2 3VV) line. The top curve, labeled (a), is
the previous theoretical result from Ref. 10. The ex-
perimental result is from Ref. 27.

K-shell x-ray emission data and the XVV line is
somewhat fortuitous. Indeed, recent work by Mad-
den and Zehner4 on beryllium has shown that the
Auger KVV line is not the same as the self-. fold
of theP-like PDOS. The ratio of thePP to sP con-
voluted PDOS's, determined by'the atomic matrix
elements [M;», in Eq. (12)], should be very simi-
lar in Li and Be. However, the cross fold of the
s and P PDOS does not resemble the self-fold of
the P PDGS as it does in Li, and thus the sj con-
tribution becomes visible. In Li we see once again
that other effects, if present, appear to be small.
One expects that initial-state polarization should
be more important in Li than in Si; however, this
screening charge effect would only change the sP
vs PP amplitudes. The author is currently explor-
ing this aspect of the problem in Be, where it
should be more visible.

The theoretical development above is similar to
the theory of molecular and cluster Auger spectra
with several exceptions. The amplitude analysis
of Ef. Siegbahn et al. '9 used a proper spin-depen-
dent multideterminental expression for the initial

and final states, and thus obtained different nu-
merical coefficients in Eqs. (2) and (3) that also
depended upon whether p, =v or not. It1V is the
number of molecular orbitals, these differences
vanish as 1/N when A —~. A more serious differ-
ence b "tween the solid- state and molecular theory
is the neglect of hole-hole interaction' and static
relaxation' in the former. The author's recent
work on molecules' has shown that for delocalized
orbitals, e.g. , those composing covalent or met-
allic bonds, static relaxation has a negligible ef-
fect. Hole-hole interaction, which provides the
singlet-triplet splittings that prevent one in the
molecular ease from combining Eqs. (2) and (3)
into Eq. (4), does vanish for these orbitals in the
limit of the infinite solid. However, the author' s
recent work indicates, not unexpectedly, that
static relaxation is very important and hole-hole
interaction never vanishes if localized states (e.g. ,
so-called lone-pair electrons in molecules) are
present. A question worthy of further investiga-
tion, then, is where in the solid-state case, for
example, as one proceeds across the transition-
metal series, the present theory fails due to the
presence of localized states. The present work,
showing that one may indeed reproduce the Auger
CVV line shapes in these somewhat prototypic
covalent and metallic systems, should make the
onset of localized behavior quite visible from a
theoretical point of view.

IV. CONCLUSIONS

The Si L2, ,~~ and Li K~V Auger line shapes may
be reproduced from a one-electron band-structure
calculation. Many-body and surface effects, if
present. , are quite small in the present cases.
There is great utility in calculating these line
shapes from an LCAO expansion of the Bloch func-
tions. However, one must not only include ma-
trix-element effects, but one must ensure that the
partial DOS are properly normalized for the local
basis functions. This normalization leads to the
interesting interpretation that AES is sensitive to
the variation of the heal atomic (as opposed to
bonding) charge populations across the valence
bands, and is thus an inherently local probe of the
chemical environment of the target atom.
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TABLE I. A comparison of Si atomrc Auger matrix
elements. The present results were found using a con-
tinuum wave function generated from a Hartree-Fock
Coulomb potential of the Si+ 2p ~ ion. The results from
Bef. 10 were found using both Coulomb and statistical
exchange potential. The matrix elements are of the form
ffdr, dr2$;*(1)p,*(2).(r",/r&+ )Q,(1)py(2), where heref may
be an s or p partial wave.

f f(: This work Reference 10

3s 3s
3s 3p
3p 3s
3p 3p

2P p
2p s
2p s
2p p

1 0.402 x10 2

0 0.709
1 0.436
0 0.742

0.625xlQ 2

0.770
0.613
0.788

its generation is just the Coulomb potential alone.
The magnitude of this difference may be seen in
Table I, where the AO matrix elements of Si are
compared for the two approaches. The Coulomb
potential was generated by self-consistently solv-,
ing the Hartree-Fock problem for the ion with the
appropriate core-hole using the symmetry and
equivalence restrictions of Nesbet 2 and the basis
functions of Bagus et al. 3 It may be seen that
while the differences in Table I are noticeable,
they make a small difference (-10% in relative
sP, PP amplitudes) in the present case. However,
in the molecular case, where occasionally a trip-
let state is resolved, it may be seen from Eq. (2)
and Table I that the Coulomb versus Coulomb and
statistical exchange cases differ in sP triplet am-
plitude by over 300'%%uo. Experience with the meth-
ane molecule' indicates that the use of the Coulomb
potential alone is much closer to the experimental
amplitudes, and thus this procedure was followed
in the solid-state case.

The Coulomb potential was expressed on a 161
point radial mesh whose point spacings increase
exponentially with distance from the nucleus. Fol-
lowing Mcouire, the continuum wave functions for
the appropriate partial waves were then. found in
terms of regular and irregular Whittaker functions
with the normal asymptotic forms. The solutions
were expressed numerically, as were the core

wave function and the basis functions, on the same
mesh that was then used to perform the radial in-
tegration,

e dr f dr2 4 j(rf)4$(r2) f C,(r,)C,„(r2),

where pw indicates that the continuum radial wave
function is partial-wave dependent. The angular
part of the matrix element24 was found using the
usual analysis of the integral in terms of Clebsch-
Gordan coefficients, the latter being generated
using the Racah formula. 25 The resulting nonvan-
ishing integrals were stored along with the par-
tial-wave index, the latter used to generate the
Mq»& by summing over the individual partial-wave
contributions.

The text gave references for the I i band struc-
ture, and described the computation of the PDOS's
therefrom. However, the Si band structure was
not generated from first principles, but from the
empirical band theory of Pandey and Phillips. 6

The latter work parametrized the Hamiltonian
matrix elements for the Ss and SP "AO's" to fit
experimental data, but ignored the actual AO over-
lap matrix, setting the latter to the identity ma-
trix (i.e. , an orthonormal "Wannier" basis was
actually assumed). Thus the Bloch function co-
efficients could not be used directly in the present
theory. For consistency with the atomiclike Auger
matrix elements, a minimal basis set consisting
of AO's from Bagus et al.23 was assumed. These
were transformed to the normal Bloch basis set,
and the overlap matrix was determined. Since
rather high symmetry exists in silicon, the AO
coefficients could then be found unless there was
s-P mixing in the band. However, those bands
that produce the large peaks in the DOS are large-
ly s orP like. Thus rather than recalculate the
s-P mixing (which would require an entire LCAO
band structure calculation), the author assumed
the mixing predicted by the semiempirical theory
of Pandey and Phillips. 6 This approximation,
while quite sound here, would not be as appropri-
ate for solids with less symmetry such as the
heteropolar semiconductors.
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