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We extend the variational method of Pollmann and Biittner for the effect of polar lattice coupling on
effective-mass excitons. Their results correspond to a correction of the dielectric constant; we have added the
correction for the polaron mass. We find the polaron mass is strongly quenched to nearly the bare-mass
value. We give an analytic result for the case of equal hole and electron masses, and present tabular
functions enabling easy binding-energy determinations for any parameter values. Exciton and donor binding
energies for specific I-VII and II-VI compounds are given. For the I-VII compounds, donor binding energies
are less than exciton binding energies. The stronger screening of the heavy ion apparently overwhelms the

heavier reduced mass of the donor.

I. INTRODUCTION AND CONCLUSIONS

There is a substantial literature on the problem
of the interaction of excitons with virtual phonons,
what may be called the excitonic-polaron problem.
Much of this work uses perturbation-theoretic
methods which have not been numerically trust-
worthy in the range of interest for excitons in
highly polar materials such as II-VI and I-VII
semiconductors.

A significant advance was made by Pollmann and
Biittner! who introduced a method patterned after
the intermediate~-coupling scheme of Lee, Low,
and Pines? designed to treat the electronic polaron,
i.e., the conventional polaron problem. This meth-
od has the advantage of being completely variation-
al and is applicable for the whole range of pa-
rameters characterizing the exciton-polaron coup-
ling (except possibly for very strong coupling as
might be present in some alkali halides). The
method is based on the effective-mass approxima-
tion for the bare exciton so the results would not
apply to alkali-halide excitons in any case. Com-
parison with experiment indicates that the vari-
ational results are quite good.?

In this paper we extend the work of Pollmann
and Biittner (PB hereafter) in a number of ways.
PB have used s-like trial functions for the phonon
displacements. In the weak-coupling limit (exci-
ton binding energy small compared to the opti~
cal-phonon frequency) their result leads to an ef-
fective exciton Hamiltonian where the Coulomb inter-
action is screenedby the dc dielectric constant ¢,, but
the kinetic energy is given by the bare-electron
and hole masses. We have added p-like terms
to the phonon displacements which we can show
lead to the correctly renormalized polaron masses
in the weak-coupling limit. For the applications
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to actual materials made so far the improvement
in binding energy is less than 10%. (Weak-coup-

ling excitons are normally present only in mater-
ials where the electronic-polaron coupling is also
weak.)

We have succeeded in obtaining an analytical
expression for the excitonic-polaron energy in the
case of equal electron and hole masses. For
other mass ratios our results are in the form
of a one-dimensional integral which must be
evaluated numerically as for PB. This integral
is a function of two parameters which depend on
the electron-hole mass ratio and the optical-phon-
on energy in units of the bare-exciton binding
energy. We present tabular data for the complete
range of these two parameters which allows a very
quick and simple determination of the 1s exciton
binding energy for any material parameters. The
third parameter of the problem, the ratio of low-
and high-frequency dielectric constants enters
in a mathematically trivial way. PB have also
calculated exciton binding energies for several
cases of interest but their published work does
not yield results easily for arbitrary parameters.
We find agreement with their results for specific
materials. Our improved variational form in-
creases the binding energy by less than 10% in
the cases calculated so far. This surprisingly
small effect is due to a strong quenching of the
mass correction by the exciton binding energy.

We also compute the donor binding energies.
For the I-VII compounds the donor binding ener-
gies are smaller than the exciton binding ener-
gies. We attribute this to a strong screening of
the positive ion which overwhelms the effect of
the greater reduced mass of the donor.

In Sec. II we describe the calculation in detail.
InSec. III we summarize our results, give some
specific examples, and some discussion.

6849 © 1978 The American Physical Society



6850 EVAN O. KANE 18

II. CALCULATIONAL DETAILS

We follow the method of Pollmann and Biittner!
almost completely up to the point where we gen-
eralize to a more accurate variational form. We
summarize some essential steps of their deriva-
tion for completeness and for development of
notation.

We begin with the Hamiltonian
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w, is the longitudinal-phonon frequency, m, and
m, the electron and hole masses, respectively.
ﬁ, —ﬁ, M refer to the center-of-mass variables
while T, P, u refer to the relative coordinates. In
terms of electron-hole coordinates ¥, T,, we have

pi(.(‘f)elk'Rze(k'rl_e{k'rg’ (6)

which reflects the opposite sign of the electron
and hole charges. ’

We consider an exciton whose center-of-mass
momentum is zero and take as our variational
wave function

[ =U,U, 6@ , ("
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k
U1=exp<—iZT<a%ag'_ﬁ> . (9)
k

]¢(f)) is the phonon vacuum with the exciton in a
bound state ¢(f). U, displaces each phonon mode
linearly in a manner which depends on the rela-
tive coordinate T while U, accounts for the depen-
dence on R through the total exciton momentum
-2.% kagag.

The energy E is then given by
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We assume ¢(f) to be real. Then an integration
by parts establishes that

(plB+J+i-Blgy =0. (13)
To terms quadratic in f (denoted by E,) we have
B T p2+G & -
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(14)
Pollmann and Buttner have used the s-like vari-
ational functions
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We have taken a more general form,
FE@) = (Vi /oy )r o7 T = 1Sk Ty (16)

where

T,=0,(1+x,iq); n=1,2, 1w
q=(-T)/r, (18)
and o, \, are real and independent of T.

With these variational functions the expectation
value of the energy can be written
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R,,=i"k"" f ¢2(r)e"§“’q"r'"!d?. (28)

E# is the energy obtained from the variational
form in Eq. (15) as used by Pollmann and Biittner.
E? is the energy resulting from the additional
term in Eq. (17).

The variational parameters o, ,A, are easily de-
termined by minimizing Ef, EZ, respectively, via
the general formula

omin= (A ,A5 —Ayz A,)/2D, (29)
D=A Ay -AY, (30)
E;:min =(2A1A2A12_A11Az.2» _AzzAi)/‘lD, (31)

with an exactly analogous formula for Am» JES . .
Since the B;; depend on the o; it is assumed that
the ¢; are determined first.

As the simplest reasonable approximation we
follow PB in taking for ¢(r) the 1s hydrogenic
function

¢(,,.) =f33/"’1r'1/2e‘3' (32)

with B8 as a further variational parameter chosen
to minimize the total energy. With this choice
the averages in Egs. (22)-(28) have the following
values
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With the above relations the following expres-
sions are easily obtained:

B, ==4B[0x% +502°n, +0,0,0x6 +x%)] ,  (38)

B, =3B%0%3(1 +n, 41, +m,2%) , (39)
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N =228 /m Jiwy, . (42)

With the help of these results we can now obtain
an expression for the exciton binding energy rela-
tive to free polarons

Eye=Eq=E,pq = Eypq =E* +E = *8/c, +h? /24 ,
(43)
E*=pC f (E:mm +AL +AZ dx
0

EB =pC fo EB ..dx, (44)

C=@e%/1)(1/e, —1/€,) . (45)
is

The free polaron energy of the electron £,
accounted for by the term A[! in the integrand
in Eq. (44).

By maximizing the value of Epr as a function
of B we then obtain our final variational expres-
sions for the binding energy* '

Epe=-|E |G G,, (46)
G,=1-(1-¢,/€)F,, (47)
F,=(2/1)F,; F,=@/1)@F~F,), (48)
~ oF oF
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F= f (E:min +A ;1.1 +A2-21 +El?min)dx ’ (50)
0
B=B.Gy; n,=2R%BiG:i/m fiw, , (51)
B.=e’n/li%e,, |E,|=e*u/2n2? . (52)

Since F,, F, depend on the parameters 7n,,n, which
are defined by Eq. (51), the equations must be
solved self-consistently for n,,1,. The numerical
values of F,(n,,7,), F,(,,n,) are given in Table L
The variation with 9 is slow hence it is relatively
easy to obtain self-consistent results starting
with 8 =8, for example.

It is instructive to supplement the results in
Table I by analytical expressions which can be
obtained for various limiting cases. We concen-
trate first on the energy E,, which will be seen
to give the major contribution to the binding ener-
gy. For the case of equal bare masses (m, =m,)
we can perform the integral over x in Eq. (44) and
obtain the result

EA=8C {%+£‘/77——(1—_1%)75[(1 +7 )1 =7,)V/2
-(1+7,)1 —7'2)‘/2]} ,
(53)
7+, ==1/n; r¥.=1/n; n =27’Z2132/m7io)L ; (54)
r,=[=1+s,(1-4m)"%) 29 ; s,=1, s,=-1;
m,=m,=m. (55)

The roots 7, yield the poles of the integrand. Even
for unequal masses the integral can be expressed
in terms of contributions from the poles of the in-
tegrand but in this case the roots of a high-order
polynomial must be found. Equation (53) is still
not too illuminating so we consider further limit-
ing cases:

E"=3C(%—%—ns/2+'-°> smally, m,=my; (56)

E*=8C <—‘;I—ﬁ-—1-31+> largen, m,=m,.  (57)
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TABLE 1. The tabulated functions F {,F, yield the ground-state exciton binding energy via
Egs. (46) and (47) together with a self-consistent determination of the parameter 7; via Eq.

(51).
Fy(ny, )5 "z:TIlml/mz
Mass ratio m;/my—
logien, 1.0 0.8 0.6 0.4 0.2 0.1 0.05 0.0
-2.0 0.98146 0.98259 0.98388 0.98542 0.98743 0.98883 0.98973 0.99177
-1.8 0.97572 0.97726 0.97902 0.98113 0.98387 0.98578 0.98707 0.98972
-1.6 0.96790 0.97001 0.97245 0.97539 0.97922 0.98186 0.98366 0.98722
-1.4 0.95713 0.96007 0.96348 0.96763 0.97307 0.97682 0.97934 0.98420
-1.2 0.94217 0.94628 0.95111 0.95702 0.96486 0.97028 0.97389 0.98062
-1.0 0.92112 0.92695 0.93383 0.94232 0.95371 0.96166 0.96694 0.97640
-0.8 0.89117 0.89950 0.90936 0.92161 0.93825 0.94999 0.95782 0.97134
-0.6 0.84850 0.86032 0.87439 0.89201 0.91626 0.93363 0.94532 0.964 99
-0.4 0.78896 0.80523 0.82481 0.84964 0.88448 0.91001 0.92748 0.956 54
-0.2 0.70991 0.73101 0.75688 0.79043 0.83892 0.87565 0.90147 0.94483
0.0 0.61256 0.63776 0.66946 0.71190 0.77594 0.82679 0.86395 0.92856
0.2 0.50335 0.53064 0.56608 0.61545 0.69421 0.76071 0.81189 0.90670
0.4 0.39268 0.41935 0.45520 0.50745 0.59648 0.67745 0.74391 0.87906
0.6 0.29140 0.31499 0.34785 0.39806 0.49000 0.58100 0.66152 0.84691
0.8 0.20696 0.22606 0.25360 0.29767 0.38460 0.47875 0.56938 0.81320
1.0 0.14186 0.15627 0.17767 0.21343 0.28927 0.37927 0.47402 0.78150
1.2 0.09469 0.10497 0.12064 0.14787 0.20958 0.28960 0.38189 0.75459
1.4 0.06201 .0.06906 0.08005 0.09975 0.14716 0.21387 0.29798 0.73362
1.6 0.04009 0.04479 0.05225 0.06598 0.10072 0.15333 0.22539 0.71834
1.8 0.02570 0.02877 0.03372 0.04302 0.06755 0.10709 0.16548 0.70771
2.0 0.01638 0.01837 0.02159 0.02776 0.04458 0.07313 0.11815 0.70058
Foltl, T); 1= ymy/my
Mass ratio my/my—
logyomy 1.0 0.8 0.6 0.4 0.2 0.1 0.05 0.0
-2.0 1.00083 1.00072 1.00059 1.00043 1.00020 1.00001 0.99991 0.99995
-1.8 1.00142 1.00124 1.00103 1.00076 1.00041 1.00013 0.99993 0.99989
-1.6 1.00237 1.00208 1.00174 1.00130 1.00071 1.00030 1.00000 0.99979
-1.4 1.00386 1.00342 1.00287 1.00216 1.00118 1.00051 1.00006 0.99959
-1.2 1.00619 1.00550 1.00464 1.00351 1.00194 1.00084 1.00013 0.99926
-1.0 1.00983 1.00875 1.00742 1.00568 1.00320 1.00142 1.00027 0.99877
-0.8 1.01550 1.01385 1.01182 1.00918 1.00537 1.00255 1.00068 0.99819
-0.6 1.02400 1.02161 1.01868 1.01481 1.00913 1.00481 1.00183 0.99771
-0.4 1.03537 1.03238 1.02857 1.02339 1.01542 1.00905 1.00447 0.99771
-0.2 1.04754 1.04471 1.04075 1.03486 1.02487 1.01614 1.00943 0.99860
0.0 1.05520 1.05413 1.05176 1.04701 1.03679 1.02622 1.01719 1.00051
0.2 1.05030 1.05307 1.05486 1.05448 1.04805 1.03778 1.02715 1.00310
0.4 1.02469 1.03309 1.04160 1.04935 1.05258 1.04681 1.03688 1.00521
0.6 0.97387 0.98852 1.00512 1.02379 1.04264 1.04705 1.04185 1.00465
0.8 0.89927 0.91931 0.94349 0.97358 1.01166 1.03165 1.03632 0.99871
1.0 0.80741 0.83095 0.86065 0.90019 0.95720 0.99594 1.01526 0.98536
1.2 0.70707 0.73194 0.76441 0.80987 0.88191 0.93920 0.97619 0.96440
1.4 0.60639 0.63077 0.66343 0.71100 0.79214 0.86463 0.91961 0.93753
1.6 0.51136 0.53399 0.56493 0.61142 0.69550 0.77789 0.84842 0.90744
1.8 0.42554 0.44574 0.47380 0.51698 0.59886 0.68534 0.76696 0.87676
2.0 0.35049 0.36801 0.39264 0.43128 0.50734 0.59274 0.68006 0.84750
These results lead to the values FA - 13 A - __‘}____ 39 laree " —m
1 &7 » 2 m 87] ’ g ny 1= 2

FA=1-4n*2; FA=1+29%2; smalln, m,=m,

(58)

(59)

for the E* contribution to the tabulated functions
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F,,F,.

In the limit of m, = the expressions do not
simplify appreciably, hence we have not found a
general analytical formula in this case. It is rela-
tively easy to find leading terms in an expansion
in 5 (') in the limit of small (large) 7.

Fi=4& Fi=2n"Y2+4; g1, my=w.
(60)

The asymptotic expression given by PB [Eq. (C5)
in Appendix C] corresponds to F{ =F4 =-L,
For small n we find

F4=F4=1 +O(173/2); n«l, my=w. (61)

We also wish to demonstrate that in the limit
of small 5 (weak exciton binding) the variational
form we have assumed leads to exciton binding
energies based on polaron masses rather than
bare masses. We need to evaluate the energy E®
in Eq. (44) from Eq. (31) with A substituted by B
as given in Eqs. (38)—(42). We note that for the
case of =0 the integral does not converge, hence
for very small 5, E? is determined by very large
values of x. In this limity, 56—~ 0 and we can write

—_ 'S 2 ,.2
Bn—_sﬁonxnn’

B,,=%8%2x%(1 +n,%7),

B,,=0; ¢,=-1/(1 +n,%%); (62)
EE) Y e

where a, is the polaron coupling constant for par-
ticle n. Using this value for E® in Eq. (43) we see
that the bare masses m, are replaced by

m¥*=m,/(1-%a,). (65)

A more accurate expression® for m** is m,(1 +%a,).

We have obtained the perturbation theory result
because we have limited ourselves to terms quad-
ratic in the phonon displacements in Eq. (14).

We may also note that the approximation E4
=BCn/2 in Eq. (56) has the effect of altering the
effective dielectric constant from ¢, to €, in the
small exciton binding limit as already noted by
PB. Thus our variational result renormalizes the
€, and m, parameters in two stages corresponding
to the energies E# and E® to give €, and m** which
is the result one would intuitively expect for weak-
ly bound polarons.

IIl. SUMMARY AND DISCUSSION

We have followed Pollmann and Bittner! in taking
a variational wave function for the excitonic po-
laron patterned after the classic paper of Lee,
Low, and Pines.? The wave function is given in
Eqgs. (7)-(9) with ¢ () taken as a 1s hydrogenic
wave function in the numerical work. Taking the
Hamiltonian to second order in the phonon dis-
placements fﬁ(f) leads to the energy expression
in Eq. (14).

PB! have used “s-” like displacements of the
phonon coordinates ¢,, 0, in. Eq. (15) which lead to
variational energies we have called E4. We have
extended their work by adding “p-” like terms
Ak*T/r as in Eq. (17) giving an energy EB.

In the limit of exciton binding energy small com-
pared to the phonon energy, the energy E4 serves
to renormalize the effective dielectric constant
from the value €, in the unperturbed problem to
the value €,. Similarly, the energy E? acts to re-
normalize the bare masses m,,m, to the polaron
masses mF*, mx*.

In general, the complete solution to the excitonic
polaron ground-state energy is given by Eqgs. (46),
(47), (51), and (52) in terms of two functions
F,(ny,n5), F2(,,m,) which depend on n,,7, in a
relatively slow fashion as given in Table I. The
solution of the problem is still implicit via the
dependence of 7, on F, F, but in practice it.con-
verges rapidly using iteration starting with G, =1.
Analytic formulas for F4,F4  the contribution
to F, from the energy E# are given for the case
of equal masses in Eqgs. (53)—(59) and for various
limits with m, =« in Egs. (60) and (61).

The functions F%, F§ resulting from PB’s vari-
ational form are compared with the more accurate
F,,F, in Table II. The differences appear to be
small in spite of the qualitative feature that F%,
F# effectively contain bare masses while F,, F,
contain polaron masses as demonstrated in Eqgs.
(62)—(65).

Excitonic binding energies have been computed
for several cases of practical interest in Table
IIIA. We confirm PB’s earlier numerical results
and find that our more accurate results only in-
crease the binding energy by a few percent, the
maximum increase being 7% for TIBr.

Except for the case of AgBr, the theoretical
results agree reasonably well with the experimen-
tal numbers. The experimental parameters are
too uncertain to allow a good test of the -accuracy
of the theory. The hole mass m, is often the most
uncertain experimental value. The theory could
be used in reverse to determine an effective m,
from the observed exciton binding energy.

Referring to Eq. (43), Pollmann and Biittner’s
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TABLE II. A shortened version of Table I showing the values of F,,F, (denoted F4,F3%)
given by the simpler Pollmann-Biittner variational form, Eq. (15).

" "72:‘47]1; my=my M 712: 0; my=0
n Fy Fy Fy F, Fi F3 Fy F,

0.01 0.99712 1.00134 0.98146 1.00083 0.99997 1.00002 0.99177 0.99995
0.1 0.94996 1.02020 0.92112 1.00983 0.99789 1.00116 0.97640 0.99877
1.0 0.61609 1.08563 0.61256 1.05520 0.94977 1.02079 0.92856 1.00051
10.0 0.13916 0.81733 0.14186 0.80741 0.77794 1.00760 0.78150 0.98536
100.0 0.01598 0.35170 0.01638 0.35049 0.69940 0.85124 0.70058 0.84750

binding energy EPB is given by : together with their limiting values €/c., and w**/u.
From the table it is clear that the dielectric fac-
PB —pA _ 2 7232
By =E7 =B /e R 20 (66) tor €,/e,, is much more important than the mass
We may define an effective dielectric function €. factor u**/u since it is always bigger and further-
by more enters the binding energy squared, whereas
PB _ 2 w**/u enters linearly. Nevertheless, the mass
Ebt = (€a/€orEx (67) factor is significant, ranging from 30% to 40%
with E_ given by Eq. (52). We may further define for the halides. When the ratio of phonun energy
an effective polaron mass by the relation to bare Coulomb energy #w, /E, is small we ex-
_ PB pect the phonon contributions to the binding energy
Eng = (o /1)ESE - (68) to be quenched. The excitonic polarizability tends
These values have been tabulated in Table IIIB to zero and €. /€., and /i should tend to 1.

TABLE III. Exciton and donor binding energies for a number of II-VI and I-VII compounds.
Rows marked by an asterisk use parameter values from Beni and Rice (Ref. 5). The other
parameters are from Pollmann and Buttner (Ref. 3). m,, m; are bare masses renormalized by
the polaron coupling constants to mJF*=m,(1+ @,/6) to give p**, the renormalized reduced
mass. All energies in meV, masses in electron mass units. €., Mg are effective values of
the dielectric constant and polaron reduced mass defined via Egs. (67) and (68) to give the
binding energy via the simple hydrogenic formula.

| @A)

me mp € € wr Espt EW o
AgBr 0.221 0.70 10.6 4.68 17.3 16.0 49.5 34.8 *
Cds 0.185 1.10 8.58 5.26 36.8 27.0 38.2 37.6 *

0.18 0.70 9.7 5.2 38.0 29.0 28.9
Cdez2 0.116 0.69 9.4 6.2 26.1 15.0 18.1 19.1 *
CuCl 0.44 3.6 7.4 3.7 27.2 190.0 232.0 147.0
GaAs 0.07 0.50 13.1 11.1 36.8 4.7 4.95 5.60
TI1Br 0.18 0.38 35.1 5.4 14.3 9.8 8.09 2.82
TICl 0.37 0.36 37.6 5.1 21.5 11.8 16.3 5.75
ZnO 0.24 0.49 8.59 4.0 72.0 59.0 46.7 51.0 *
0.28 0.59 8.6 4.0 72.0 59.8 58.0
ZnS 0.25 0.59 8.6 5.2 43.6 36.0 44.8 51.3 *
(B)
Q, Qy €/€w €t/ € R A Pegr/bt wy/E

AgBr 1.57 2.80 2.26 1.46 1.306 1.008 0.166 *
Cds 0.608 1.48 1.63 1.44 1.120 1.015 0.473 *
CdSe 0.427 1.04 1.52 1.40 1.085 1.016 0.744 *
CuCl 2.00 5.73 2.00 1.30 1.382 1.003 0.0697
GaAs 0.070 0.187 1.18 1.18 1.014 1.007 5.43
T1Br 2.05 2.98 6.50 12.74 1.388 1.068 0.251
TICl 2.59 2.56 7.37 2.48 1.429 - 1.049 0.225
ZnO 0.899 1.29 2.15 1.74 °  1.17 1.027 0.526 *

ZnS 0.671 1.03 1.65 1.41 1.13 1.014 0.494 *




It is seen that this quenching effect is consider-
ably stronger for the mass correction. As a
result, Pollmann and Biittner’'s much simpler var-
iational form is a quite good approximation to the
cases considered here.

We may note another interesting fact contained
in Table IITA. We have computed both the exciton
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binding energy and the donor binding energy. We
observe that for all the halides the donor binding
energy is less than the exciton binding energy.
The greater localizability of the heavy particle
leads to a more complete screening of its charge
by the lattice which appears to outweigh the in-
crease of the reduced mass.
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