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Divacancy in silicon: Hyyerfine interactions from electron-nuclear
double-resonance measurements. II
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The Si-67 EPR spectrum, which is attributed to the negative charge state of the divacancy in silicon, was
investigated by electron-nuclear double resonance. Hyperfine interactions between the unpaired defect

I

electron and various "Si nuclei were determined to obtain detailed information about the electron wave
function. A total number of 33 hyperfine tensors was determined, of which 20 belong to a general class shell
of atoms and 13 to a mirrorplane class shell, In this way the divacancy electron was probed in a region
containing more than 100 lattice sites around the defect. Most hyperfine tensors exhibited approximate axial
symmetry, a majority of these having their axial direction along a (111)crystal bond direction. An
analysis of the interactions is given, using a wave function that is a linear combination of atomic orbitals.
From a further theoretical approach of the defect wave function, using extended Huckel theory, Preliminary
results are given. In their discussion data from the positive divacancy are also included. In agreement
with previous conclusions, the largest general class and mirrorplane class interactions were identified with the
nearest-neighbor shells of both types. Further matching between hyperfine tensors and specific shells of
lattice sites could not yet be made.

I. INTRODUCTION

This paper is the second in a series presenting
results from electron-nuclear double resonance
(ENDOR) experiments on the divacancy in silicon.
The first paper' in this text further denoted by I
was concerned with the positive charge state,
this paper with the negative charge state of the
divacancy. For some introductory remarks and
general considerations about the divacancy we refer
to I.

From all defects which can be produced in sili-
con by irradiation with energetic particles, the
divacancy (V2) is one of the best known. Con-
trary to simpler defects like the monovacancy or
the self-interstitial, the divacancy is stable at
room temperature. Divacancies can easily be pro-
duced by electron irradiation of silicon at room
temperature. The divacancy is one of the first
defects in silicon for which electron paramagnetic
resonance (EPR) spectra could be identified with
a high degree of reliability. '~ The spectra labeled
Si-G6and Si-Cv were derived to originate from
the singly positive and the singly negative charge
state of the divacancy, both of which constitute a
S =—,

' paramagnetic center due to a single unpaired
electron spin. Which charge state, ranging from
singly positive to doubly negative, the divacancy
assumes primarily depends on the position of the
Fermi level. Several studies of the divacancy
using EPR have been reported. ' ' Also data from
infrared absorption studies"" and photoconductiv-
ity experiments'2 are known. Additional informa-
tion about the energy levels associated with the
different charge states of the divacancy originates

from optical"' and capacitance transient spec-
troscopy" "studies. Both in I and in this paper
we rely heavily upon the detailed information ob-
tained by Watkins and Corbett. '

An important feature of many defects in silicon
are the hyperfine interactions between the un-
paired defect electron and neighboring magnetic
"Si nuclei. For the negative divacancy V, the
three largest hyperfine interactions can be ob-
served with EPR. Two of them have been reported
before, ' only the largest interaction, which will
be labeled M1 in this paper, is well resolved.
Weaker interactions cannot be observed with EPR.
They are the origin of the inhomogeneous line
broadening in the EPR spectrum. Using electron-
nuclear double resonance a large part of these
interactions can easily be resolved, however.

The importance of hyperfine interactions is due
to the fact that they directly reflect the distribu-
tion of the wave function of the unpaired resonance
electron. A hyperfine interaction can be expressed
as a tensor whose isotropic part is the Fermi
contact interaction which is proportional to the
probability density of the electron on the relevant
nuclear site. The anisotropic part is due to di-
pole-dipole interaction between the electronic and
nuclear magnetic moments.

An ENDOR study of the shallow donors P, As,
and Sb in silicon has produced an abundant number
of hyperfine interactions ie, is That study forme
a severe test for the effective-mass treatment" "
and the onset for an extension of this theoretical
method in which good agreement between theoreti-
cal wave functions and observed hyperfine con-
stants could be achieved. '3'24 For deep levels,
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like most defects in silicon, no such promising
theory was available, except perhaps extended
Hiickel theory (EHT).25~' ENDOR results for the
positive divacancy V, presented in I, could not be
compared wi. th an EHT calculation by Lee and
McGill. '7 Since then calculations especially in-
tended for a description of experimental hyperfine
interactions have been performed. " ' From these
calculations for V', a rather satisfactory descrip-
tion of the defect wave function could only be given
for the six nearest neighbors of the defect. For
the remaining hyperfine interactions with more
than 50 other neighbors a matching with a theo-
retical wave function turned out to be still impos-
sible. For the present study on V, results of a
similar calculation are given.

II. EXPERIMENT

Experiments were performed on floating zone
(FZ) single crystalline silicon specified to be dis-
location free. Two kinds of phosphorus-doped n-
type samples have been used which had preirradia-
tion room-temperature resistivities of 0.34 and
0.03 0 cm. Sample preparation and irradiation
were as described in I. Samples were cut and
ground to a roughly cylindrical shape with a length
of 20 mm and a diameter of 2 mm, having a (110)
crystal direction parallel to the long edges. Ir-
radiation with 1.5-MeV electrons took place at
temperatures not above 60 'C. Optimum divacancy
resonance signals were observed after an electron
fluence of about 1.5x10"electrons/cm' for both
kinds of samples.

In addition to the EPR spectrum GV of the nega-
tive divacancy, in both kinds of samples different
series of EPR spectra from other defects have
been observed. "" In the originally high-resis-
tivity samples spectrum GV could not be observed
without simultaneous perceptibility of spectrum
G16. In the low-resistivity samples spectrum
GV always appeared together with spectrum NLV."

The magnetic resonance experiments were car-
ried out in a superheterodyne spectrometer oper-
ating at 23 GHz."' Experiments were performed
for the greater part as described in I. Samples
were mounted with their axis along the axis of a
cylindrical TE,yy cavity. The ENDOR coil con-
sisted of two vertical oblong rectangular loops
of fine copper wire fixed to a Teflon cylinder
which could be shifted over the sample. During
ENDOR measurements the sample temperature,
was kept at about 10 K. At this temperature the
spin-lattice relaxation time T, of the divacancy
is in the 0.01-0.1s region. " For our conditions
the EPR signal is s.aturated at that temperature.
For double phase-sensitive detection the mag-

netic field was modulated sinusoidally at a fre-
quency of 12V Hz, while the square-wave modula-
tion of,the rf field had a frequency of about 1.4
Hz. The ENDOR spectra of the smaller hyper-
fine interactions were recorded with the magnetic
field adjusted to the center of an EPR line. For
the larger interactions the magnetic field setting
was changed, approximately to the expected or
observed position of the corresponding hyperfine
satellite of the EPR transition.

On samples of both kinds described above, hy-
perfine interactions have been observed with
ENDOR. For the lower-frequency interactions
no differences could be observed although the
low-resistivity samples showed greater EPR in-
tensities. For the larger interactions the results
on the low-resistivity samples got even worse by
severe line broadening. Therefore the higher-fre-
quency interactions have all been determined on
the high-resistivity material.

III. DESCRIPTION AND ANALYSIS. OF ENDOR
SPECTRA

A. Spin Hamiltonian

EpR and ENDOR spectra of a. paramagnetic de-
fect in silicon in which no impurity atoms are in-
volved can generally be described by the spin
Hamiltonian

X=lLsH g S+Q (S'A, I, -g~P„H I;)

with an electronic Zeeman interaction term, a
hyperfine interaction term, and a nuclear Zeeman
interaction term in which the parameter i enum-
erates the lattice sites around the defect. For
each lattice site there is a 4.V% probability to be
occupied by a "Si isotope with a nuclear spin I= —,

'
and a nuclear g value g„=-1.1095.

The EPB spectrum GV of the negative divacancy
can be described with an electron spin 8=—,

' and an
anisotropic electronic Zeeman interaction. The
components of the electronic g tensor are found
to be

g„„=2.01165+0.0001,

g,„=g, =2.00895,

g„=g„=-0.0042,

g„,= -0.00445,

for-a divacancy in the orientation labeled ad and
the coordinate system as given in Fig. 1. These
values agree with those reported by Watkins and
Corbe tt. '

In the limit of high magnetic field a solution of
the eigenvalue problem of the spin Hamiltonian
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[011]
scalar part a, and a traceless tensor 8,

A] =a]1+8]

with a, =—', TrA, and TrB, =0. The isotropic part
a& originates from the Fermi contact interaction

sg = ~vgpsgNpzlk(rg)l

giving a relation with the probability density of
the defect electron on the nuclear site r, The
anisotropic part of the interaction arises from
the dipole-dipole coupling between the electronic
and nuclear magnetic moments

(8,)» =gp~„p~(/~3'~~~ /r' —5»/r')g),

FIG. 1. Model of the divacancy in the orientation ad.
The empty lattice sites are a and a'.

Eq. (1) can easily be found. In that case ENDOR
transition frequencies submitted to the selection
ru es 4n =

hami
= ~ms = are given y

h v,'= )g„p„H+ 2h A, h (, (2)

where g is a unit vector in the direction of the
external magnetic field H. In this way the reson-
ances from different neighboring nuclei give rise
to a spectrum which is symmetric with respect
to the nuclear Zeeman frequency h p =g„p,~JJ. An

illustration is given in Fig. 2. Another striking
feature of this spectrum is the large signal direct-
ly around the nuclear Zeeman frequency, which
originates from nuclear transitions of large num-
bers of neighbors with very weak unresolved in-
teractions. In the low-resistivity samples with a
high phosphorus content (about 1 upon 70 000) an
additional resonance was observed around the
nuclear Zeeman frequency of the "P nucleus
(g„=2.261). This is an indication that there are
still hyperfine interactions with very distant
neighbors.

The high-field solution Eq. (2) breaks down if
the anisotropic part of the hyperfine tensor A,.

is no longer small as compared to the transition
frequency h p', as for most larger interactions.
For such cases a corrected formula

(hv')'=(g„p. „H+ ,'h X, h)'-
+-, [(fg ~ A, )xj][(h ~ A, )xg]

can be derived.
For an analysis of hyperfine interactions it is

appropriate to separate the tensors A, into a

B. Symmetry considerations

In Fig. 1 the x, y, z crystal coordinate system is
given which is used in this paper. The divacancy
orientation depicted, with vacant lattice sites on
a' and a and dangling or extended bonds on d and
4' is denoted by ad, according to Watkins and Cor-
bett. ' In our analysis the orientation ad is chosen
as the basic orientation for which the hyperfine
interaction tensors are given. A group-theoreti-
cal treatment of the divacancy with its shells of
neighboring lattice sites has been given in I. In
an undistorted lattice a divacancy will have 3m

(D~) point-group symmetry As a. result of Jahn-
Teller instability a lattice distortion gives the
lower (2/m)(C») symmetry. The presence of a
neighboring "Si nucleus further lowers the sym-
metry. If the nucleus is present on the mirror
plane of the divacancy the paint-group symmetry
is reduced to m(C„). Two such lattice sites about
a divacancy of a given orientation which are equi-
valent by symmetry are s@id to form a shell. All
shells of this type constitute the mirror-plane
class. The atom sites d and d' in Fig. 1 are an
example of a mirror-plane calss shell. A ~'Si
nucleus which is not situated in the mirror plane
of the divacancy lowers the symmetry to point
group 1 (C,). I'hese lattice sites divide in shells
which are called general class sheQs. Each shell
contains four lattice sites equivalent by symmetry.
Each lattice site about a divacancy belongs to a
shell of one of these two classes. In magnetic
resonance practice of silicon the external mag-
netic field is generally rotated in a (110}plane of
a crystal. In that way the different divacancy or-
ientations which are present, combined with the
possible positions of a "Si nucleus in a shell, give
rise to characteristic angular-dependent patterns.
Mirror-plane class hyperfine interactions exhibit
patterns of monoclinic I symmetry, general class
interactions of triclinic symmetry. ' In Figs. 3
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FIG. 2. Central part of an ENDOH spectrum for the divancancy orientations ad, bd, and cd, with H!![111]. The
spectrum shows symmetry around the central frequency v = 6.818 MHz.

7.3

and 4, such patterns are shown. For magnetic
field directions in the (100), (111), and (011) di-
rections characteristic degeneracies occur. The
values of the hyperfine interactions in these di-
rections are labeled S„T„and U„respectively.

C. Determination of hyperfine tensors

To produce the angular-dependent patterns in-
dicated above, the hyperfine interaction has to be
determined for a variety of magnetic field di-
rections in the (011) plane and for all different
divacancy orientations. On the other hand a gen-
eral class tensor is determined by only six in-
dependent tensor elements and a mirror-plane

class tensor by only four. Therefore a determina-
tion of the S, T, and U values from each tensor
is far sufficient to determine the tensors. The
symmetry type of a tensor follows directly from
the number of S, T and U values. Since in each
of the S, T, and U values transitions coincide
which are related to different defect orienta-
tions, these resonances can be determined with
a better signal-to-noise ratio than those for an
arbitrary direction of the magnetic field. The ten-
sor elements can be derived with a least-squares
fit to these observed values. Examples of the pat-
terns, calculated from tensors which have been
derived in this way are given in Figs. 3 and 4 for
a mirror-plane class and a general class inter-
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FIG. 3. Angular dependence of the mirror-plane class hyperfine interaction M5. Least-squares fit to
$, 7.', and U values which are given as black dots. This interaction has nearly (111) axial symmetry.

.U2

U6

Q0

the observed

action, respectively. In the frequency range where
most of the hyperfine interactions were found,
the angular-dependent patterns showed such a
severe overlap that in most cases it was absolutely
impossible to decide which S, T, and U values
would belong to the same shell. For this reason
spectra were recorded for magnetic field directions
at 5' intervals and with the field set upon the EPR
transitions which correspond to each of the orien-
tations ad, da, and bg, cb. In regions of crossing
lines even 2 or 1'intervals have been taken. On
the other hand some angles of the magnetic field
had to be omitted due to overlap of the EPR reson-
ances with those of other orientations or those
of other defect spectra. An angular plot of the ob-
served hyperfine frequencies is given in Fig. 5
for a large part of the considered frequency range.
For a mirror-plane class tensor the tensor ele-
ments can be derived from the observed S, T, and
U values of the four divacancy orientations as given

in Fig. 5. The other S and U values may be cal-
culated and af terwards experimentally verified.
Predicted values turned out to be accurate to with-
in a few kHz. A general class tensor cannot yet
be determined unambiguously in this way. From
the calculated sum S, +S, of the S values from
other divacancy orientations and a list of experi-
mentally determined values S, and S„ in all cases
a decisive choice could be made, however. The
other values could again be calculated and after-
wards experimentally verified. Tensor components
derived by a least squares fit of h ~ A A totbe ob-
served S, T, and U values served as starting pa-
rameters for a numerical diagonalieation of the
complete spin Hamiltonian Eq. (1). Iterative cal-
culations produced a final least-squares fit of the
tensor components.

The general class tensors have been labeled
Gi, the mirror-plane class tensors Mi, enumerat-
ing them after decreasing isotropic part as in I.
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&IG. 4. Angolar dependence of the nearly (ill) axially symmetric general class tensor G8

A total of 20-general class tensors has been de-
termined. From the 13 mirror-plane class tensors
one (Ml) has been observed only with EPR. In
Table I the hyperfine parameters of these 33 in-
teractions are given. The tensor components
specified in the crystal coordinate system are
given for divacancy orientation ad. For a mirror-
plane class shell the interactions with both lattice
sites of the shell are given by this tensor. For
the four lattice sites of a general class shell there
are bvo tensors which transform into each other
by interchange of the y and z indices. From ex-
periment it is not possible to determine to which
two lattice sites the given tensors correspond.
The three principal values of the tensors are
caQedA„A3, and A. 3 in order of descending mag-
nitudes. The directions of their principal axes
are specified by the angles y, and 5„where y,
is the angle between the ith eigenvector and the
(011) mirror plane of the divacancy and 5, is the
angle from the [100] direction to the projection
in the (011) plane. For a mirror-plane class ten-
sor one principal axis always points into the [011]
direction. The reported hyperfine interactions
cover 106 lattice sites around the divacancy. Hy-

perfine interactions with at least 10 additional
shells were observed, resolved from the central
part of the ENDOR spectrum around the nuclear
Zeeman frequency. The overlap of the angular-
dependent patterns of these weaker interactions was
too strong to determine their hyperfine tensors.
The tensor components for the smallest interac-
tions could be determined to +1 kHz, typical line-
widths were 3-5 kHz. For larger interactions
both error limit and linewidth increased. For
G1, G2, and M2 tensor components are accurate
to +20,kHz; linewidths became even 100 kHz. EPR
results of Ml are accurate to within 0.5 MHz and

agree with results reported before. '

IV. DISCUSSION

A. Analysis in atomic orbitals

For the analysis of hyperfine interactions it has
turned out to be appropriate to describe a defect
wave function as a molecular orbital which is
constructed by linear combination of atomic or-
bitals. ' ""In this case a linear combination of
silicon Ss and 3p atomic orbitals centered on the
lattice sites around the divacancy can be chosen:
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FIG. 5. AriArigular-dependent plot of the obs
be, cb. The fre uquency ranges from 0.5 to 2.8 MH

o e o served hyperfine fre uenciq ~es from the divacancy ori t d dQ and
r eeman frequency.
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TABLE I. Hyperfine parameters of the negative divacancy (values in MHz, y~, 6&, y& in degrees).

Tensor A» Ag A2 A3 y2

61
62
63
G4
65
66
67
68
69
G10
611
G12
613
G14
615
616
617
@18
619
620
M1
M2
M3
M4
M5
M6
MV

M8
M9
M10
M11
M12
M13

31.59
20.13
4.480
3.704
3.441
2.876
2.660
2.016
2.668
1.616
1.252
1.188
0.784
0.724
0.724
0.572
0.420
0.420
0.388
0.319

197.4
11.21
5.151
3.270
2.038
1.978
1.681
1.693
1.430
1.495
0.823
0.720
0.386

32.26
19.85
3.888
3.211
1.549
2.858
2.499
1.882
1.173
1.477
1.166
1.120
0.692
0.722
0.867
0.606
0.448
0.388
0.428
0.287

30.56
19.85
4.111
3.621
3.838
2.711
2.243
1.909
1.509
1.395
1.251
1.217
0.772
0.722
0.720
0.562
0.408
0.427
0.405
0.284

194.1
11.49
5.440
4.988
1.989
1.770
1.847
1.704
1.602
1.530
1.118
0.691
0.551

2.21
3.16

-0.258
-0.688
—0.931

0.506
0.595
0.287
0.464

-0.110
-0.191
-0.156

0.].30
—0.024

0.094
-0.105
—0.056

0.076
-0.043
—0.064

—2.28
3.10
0.243

—0.652
-1.099

0.446
-0,399
—0.229
-0.400
—0.137
-0.192
-0.170
-0.017
—0.011

0.093
0.105

-0.049
0.076
0.050

—0.045

22.3
2.07
O.V68

1.486
0.413
0.062

-0.160
0.333
0.317
0.209

—0.102
0.089

-0.060

-2.09
3.24

-0.437
0.804
1.845
0.447

-0.478
-0.294
-0.832
-0.065

0.213
0.203
0.051

-0.003
0.118

-0.084
0.039
0.098
0.024
0.063

23.7
1.93

-0.693
—0.676

0.430
-0.108
-0.136

0.326
0.254

-0.205
-0.039

0.101
0.057

35.93
26.28
4.891
4.976
5.964
3.755
3.490
2.485
3.272
1.677
1.624
1.535
0.885
0.748
0.910
0.778
0.525
0.581
0.473
0.415

241.7
15.36
6.794
6.738
2.855
2.074
2.007
2.358
2.109
1.932
1.219
0.895
0.611

29.70
16.83
3.856
2.857
1.786
2.362
1.982
1.668
1.177
1.557
1.038
0.999
0.773
0.725
0.606
0.485
0.376
0.329
0.419
0.241

172.0
9.42
4.672
3.502
1.585
1.736
1.877
1.373
1.286
1.320
1.031
0.605
0.534

28.78
16.73
3.731
2.703
1.077
2.329
1.929
1.654
0.900
1.253
1.006
0.991
0.590
0.695
0.595
0.476
0.374
0.325
0.329
0.235

171.8
9.42
4.565
3.007
1.576
1.709
1.492
1.371
1.239
1.303
0.808
0.602
0.343

—54.4
0.2

—8.4
49.8
46.].

—3.4
—46.9
—48.7

3103

23.0
52.2
52.8

—9.4
40.6
5.6
5.0

55.5
5.7

12.6
46.8

0
0
0
0

0
90

0
0

90
0

90

10.7
53.6

-38.2
8.4

24.0
52.4
8.3

—.1.5
—8.9
-20.6

6.7
10.4
35.2

—28.0
51.0

-56.8
-16.4

52.3
-73.9
—O.V

53
56.6

—59.2
—74.6

53.3
-32.1

(a)
55.2
62.1

-56.4
(b)

50.9
(c)

25.3
30.8
4.2

-30.8
—29.9

23.5
24.3
14.4
58.g

—66.4
—30.8
-33.0
-65.4
-46.1
-27.1

0.2
-15.6
-83.0

35.7
5.2

90
90
90
90

0
0
0
0

90
90

0
0
0

(a) ~2 =-45.5 (b) 6, = -75.2 (c) ~2=61.7

Z &~(n~4s +%esp) ~ were transformed to diagonal form and reduced
to

s& = s &VHNVN 0&csc~'Ps's( )~' (8)

Such a wave function gives rise to axially sym-
metric hyperfine interactions if only the atomic
orbitals centered on the relevent nuclear site are
considered. In that case the Fermi-contact in-
teraction Eg. (5) reduces to

A, 0 0 g +2b 0

A= 0 As 0 ~—= 0 g.-b+c
0 0 A 0 0

0

0

a-5-c
(»)

The dipole-dipole part of the interaction Eq. (6)
in diagonal form reduces to

(mb,

B, =~ 0

with

0 0 )0

0 -~j

b( = s&&sg~&ar'QW1~~ ) ss . (10)

For the analysis of the present data the tensors

in which c gives the deviation from axial sym-
metry. The values a, b, and c are shown in Table
II. From the 20 general class interactions 16 are
approximately axially symmetric around the A,
eigenvector. From the 13 mirror-plane class in-
teractions 10 tensors show this property. More-
over 21 of these 26 axially symmetric interactions
have their axial direction near one of the (111)
crystal bond directions. These axial directions
are also given in Table II, denoted by a, 5, c, and
d according to Fig. 1. The fraction of (111) axial-
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TABLE H. Reduced hyperfine parameters (MHz), axial direction, and derived LCAO
parameters.

Tensor Axis g2 (%)

G1
G2
G3
G4
G5
G6
G7
G8
G9
G10
G11
G12
G13
G14

. G15
G16
G17
G18
G19
G20

Ml
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
jf13

31.47
19.94
4.159
3.512
2.942
2.816
2.467
1.936
1.783
1.496
1.223
1.176
0.760
0.723
0.704
0.580
0.425
0.412
0.407
0.297

195.2
11.40
5.344
4.416
2.006
1.840
1.792
1.701
1.545
1.518
1.019
0.701
0.496

2.23
3.17
0.386
0.732
1.511
0.470
0.512
0.275
0.745
0.091
0.201
0.180
0.068
0.013
0.103.
0.099
0.050
0.085
0.033
0.059

23.3
1.98
0.725
1.161
0.425
0.117
0.107
0.329
0.282
0.20V

0,3.00
0.097
0.058

0.46
0.05
0.063
0.077
0.355
0.017
0.027
0.007
0.139
0.152
0.016
Q.004
0.092
0.015
0.006
0.005
0.001
0.002
0.046
0.003

0.1
0.00
0.054
0.248
0.005
0.0 14
0.193
0.001
0.024
0.009
0.112
0.002
0.096

b/c
d

b!c

d
b/c
b/c
~/c
no
b/c
b/c
no
no

a
b/c
d
no
b/c

d
d
a

no
d

no
d
no

0.256
0.133
0.218
0.105
0.045
0.128
0.105
0.14V

0.055
0.287
0.130
0.138
0.213
0.582
O. l43
0.126
0.172
0.106
0.232
0.110

0.170
0.123
0.153
0.085
0.103
0.277
0.290
0.112
0.118
0.152
0.200
0.150
0.174

0.744
0.867
0.782
0.895
0.955
0.872
0.895
0.853
0.945
0.713
0.870
0.862
0,787
0.418
0.857
0.875
0.828
0.894
0.768
0.890

0.830
0.877
0.847
0.915
0.897
0.723
0.710
0.888
0.882
0.848
0.800
0.850
0.826

2.97
3.61
0.46
0.81
1.56
0.53
0.57
0.32
0.78
0.13
0.23,
0.21
0.09
0.03
0.12
0.11
0.06
0.09
0.04
0.07

27.71
2.23
0.85
1.25
0.47
0.16
0.15
0.37
0.32
0.24
0.12
0.11
0.07

ly symmetric interactions is about the same as
for the positive divacancy as given in I. For the
constants of the atomic silicon wave function ap-
pearing in Eqs. (8) and (10) values given by Wat-
kins and Corbett" can be taken: ~g»(0)p =31.5
x10' cm ' and(1/xg»=16. 1x10"cm ' Sub-.
stituting these values and using o.'+P' = 1 one
derives from each hyperfine interaction the local-
ization (q') and the s and p character (o' and p',
respectively) of the defect electron on the lattice
sites of the corresponding shell. These values
are also given in Table II, exhibiting a slightly
less localized wave function than the positive
charge state. " For an electron in an orbital point-
ing in any of the four (111)bond directions in the
silicon lattice, a sP' hybridized orbital might be
expected. Inspection of Table II shows that the
(111) axially symmetric tensors generally show
a deviation from e' =0.25. On the average only
16.5%%uo s character is found. For a proper set of

basis functions the values q', should add up to
100%%uo. The too large value Zq,

' = 119%%uo is probably
due to the nonorthogonality of the atomic orbitals
which are centered on different lattice sites and
to the nonazial interactions for which the values
g', have little significance.

The origins of the deviations from axial sym-
metry and the strong p character of the wave func-
tion as it is reflected in the hyperfine interactions
require a further examination. Especially for the
dipole-dipole term as reduced to Eqs. (9) and (10)
corrections have to be included. Unpaired charge
densities on neighboring lattice sites and overlap
between atomic orbitals can contribute to con-
siderable deviations both from the axial direction
as from the axial character itself. " The latter
can also be brought about by including 3Q orbitals
in the LCAO treatment. It is not quite possible,
however, to elaborate such corrections for all
lattice sites, certainly not as a matching between
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tensors and definite shells of lattice. sites is not
yet possible.

B. Results from extended Huckel theory calculations

For a theoretical calculation of wave functions
and energy levels of deep level defects in a coval-
ent solid as silicon semiempirical EHT calcula-
tions have been shown to be rather successful. "
The theory works best for systems where the dif-
ferences in electronegativity are not too great. As
intrinsic point defects in elemental covalent semi-
conductors are probably in this category, EHT
has been applied to these systems in a number of
cases.""As the detailed information from
ENDOB experiments yields a severe test for a
theory like this, it is important to compare be-
tween theory and experiment, both to describe the
experiment and to examine the. reliability of the
theoretical method.

EHT uses molecular orbitals g,. which are linear
combinations of a,tomic orbitals Q&

For the atomic orbitals generally Slater-type 3s
and 3p orbitals are chosen. A solution for the
secular equations

Q (JI(( - s(&y(,)c(,( =0 (l3)

yields the wave-function coefficients c~, and the
energy eigenvalues g, . A solution is obtained using
the %olfsberg-Helmholtz approximations

II;, =&y, lxlg, &
= —,'If„(f(+f„)s„, flu

and

H)~ =-I; (15)

in which S» =&/, ~p, &, I, is the empirical ioniza-
tion energy of orbital j, and K,, is a parameter
between 1 and 2. The parameter K,.~ will generally
be adjusted empirically, for instance, to repro-
duce the known silicon band structure in a calcula-
tion for the perfect lattice.

Defect calculations can be performed for a finite
cluster with a defect in its center or for an in-
finite lattice constituted by a periodic repetition
of clusters with such a shape that no empty sites

b,c C

d' b',c'

C

FIG. 6. Two main sym-
metry-lowering distortion
modes (a) EGj.and (b) EG2
of the divacancy with its
six nearest neighbors in
sideview and topview. The
arrows correspond to one
unit of distortion, which is
defined as an rms displace-
ment of the six atoms of 1 A.

d'
EG2



6844 E.. G. SIKVKRTS, S. H. MULLER, AND C. A. J. AMMERLAAlV 18

50
EG2

70 100 130

EG2

30 20

130

100
40

EG1

370

40

EG1

10

(a}

EG2

5 10 15

0.

faj
EG2

10

20

23

30

EG1
-0

0.5
EG1

32

0.3

(b)

FIG. 7. (a) Isotropic parta, (b) axial part b of the hy-
perfine interaction tensor for the shell of atoms d and
d' as function of the distortion parameters EGl and EG2.
Calculation for a vrave function of symmetry b„.

FIG. 8. Same data as in Fig. 7 calculated for the shell
of atoms b, c, b', and c'.

are left between. With this molecular unit cell
approach (MUCA) the disturbing effect of unpaired
surface states of an isolated cluster and the eXtra
charges required to satisfy these bonds can be re-
moved.

With MUCA, calculations for the divacancy in
a 64-atom cluster had been performed already
by Lee and McGill." With application of a Jahn-
Teller distortion they find two defect levels in the
band gap, one of symmetry b„below one of sym-
metry a . These are the right symmetries but in
reversed order as compared to those derived in
a simpler treatment by Watkins and Corbett. '
MUCA calculations have also been performed es-

pecially to describe hyperfine interactions using
slightly different orbitals and EHT parameters "
From these calculations it is also argued that in
the positive charge state of the divacancy the un-
paired electron occupies a level of symmetry b„.
For this level a systematical study of the effect
of different Jahn- Teller distortion modes has
been made in order to obtain a best fit with ex-
perimental results from I. It turned out that there
was a promising region of values for both main
distortion modes, for which satisfactory agreement
could be obtained between observed hyperfine in-
teractions and. theoretical values for two shells of
nearest neighbors of the divacancy. " In Fig. 6 the
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FIG. 9. (a) Isotropic part g, (b) axial part 5 of the

hyperfine interaction tensor for the shell of atoms d and
d' calculated for a wave function of symmetry a~.

fb)
FIG. 10. Same data as in Fig. 9 calculated for the

shell of atoms b, c, 5', and c'.

two main distortion modes are represented. The
hyperfine parameters a and b were calculated as
a function of these two distortions. In that way
for V', the largest mirror-plane interaction M1
could be ascribed to the shell of lattice sites 4
and g in Fig. 1, as should also be expected from
simple considerations. For the nearest-neighbor
general class shell (atom sites 5, c, 5', and c' in
Fig. i) from theory a better agreement with ten-
sor G1 than with G2 had been obtained. This was
in contradiction, however, with earlier conclusions
from motionally averaged EPB spectra. "The
significance of the experimental assignment of
this shell to G2 rather than to G1 or G3, however,

is less than suggested in I, as would follow from
a similar uncertainty in the averaged hyperfine
interactions as presently found for V2 (Sec. 1VC).
In Figs. V and 8 the calculated results are given.
A simultaneous accurate fit of Ml and G1 or 62
of V+, could not be obtained. There. is, however,
some agreement for distortion values of 0.05& EG1
& 0.1 and -0.05& EG'2& 0.03.

To obtain the negative charge state of the di-
vacancy the next higher energy level has to be
considered whose wave function has a large lo-
calization on the divacancy. The only one in the
band gap which deserves consideration turns out
to have a~ symmetry. For this level and wave
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function, ascribed to the negative charge state,
hyperf inc parameters have also been calculated
for the nearest-neighbor mirror-plane class and

general class shells. In Figs. 9 and 10 values for
a and b for the two nearest-neighbor shells are
given as a function of the two main distortion
modes of Fig. 6. A comparison with the experi-
mental results of Table II shows large discrepan-
cies in most cases. It is evident that a simultan-
eous fit for both parameters and both shells of

V~ is not even approximately possible.
From the simple considerations of %atkins and

Corbett' it followed that the unpaired electron
of V', occupied a level of symmetry a, and that
of V~ a level of symmetry b„. This reversed
order as compared to the EHT results seemed
reasonable as the a level corresponds mainly to

an extended bondinglike orbital between both mir-
ror-plane class nearest neighbors, while the b„
level arose from such an antibondinglike orbital
whose energy is generally higher. A closer exam-
ination of the energy levels near the bandgap which

result from the present EHT calculations reveals
some problems as already indicated earlier. ""
Not all levels in the bandgap show a high localiza-
tion on the divacancy and not all localized levels

are in the bandgap. Likewise the filling of cal-
culated levels is not performed consistently in

order of increasing energy in aQ cases. More-
over the order of resulting levels also depends

on the magnitude of the distortion and on the

point of k space for which calculations have been
. performed. This all may be indications that the

detailed positions of energy levels relative to

each other, as resulting from EHT calculations,
are not very significant. Therefore it is equal-

ly possible that the energy levels have to be

filled in such an order that the levels of symmetry

g and b„have to be assigned to the charge states
of the divacancy in the way %atkins and Corbett
did. To explore this equally probable possibility,
EHT results have to be compared with experimen-
tal values in that way. To facilitate such a com-

parison, values of the hyperfine parameters a
and b are given in Table III for the four largest
interactions for both V+, and V, .

If V, is identified with the b„ level, the theoreti-
cal values for the hyperfine parameters of the
shell of atoms d and d' are too low compared to
M1, as shown in Fig. '7. For the parameter b

better agreement can be obtained than for a. For-
the nearest-neighbor general class shell of atoms
b, c, b', and q-' of V, , rather good agreement
with G1 can be obtained for the parameters a and

b. In this comparison tensor G1 has been chosen
as a result of the identification from motionally
averaged EPR spectra, as described in Sec. IVC.

TABLE III. Hyperfine parameters a and b (MHz) for
V~ and V~.

Tensor

Vg V2

(EPR spectrum 66) (EI'R spectrum 67)
a b a b

1485

22.6"
19.2
10.2

28~

2 087

0 637
37

195.2
31.5
19.9
4.16

23.3
2.2
3.2
0.39

C. Notional effects

From the previous subsection it follows that
theory for defects has not yet reached such @ level
that for the present results an identification of
more than one sheO has become possible. Besides
the division in general class shells and mirror-
plane class shells experimental results can give
one more piece of information.

As already discussed in I at elevated tempera-
tures motionally averaged EPR spectra can be
observed as a result of a fast jump rate of .the di-

.Considering only EHT results an identification with
G2 should be likewise possible. If a factor 1.5 dis-
crepancy for the parameter u of Ml is.accepted,
promising distortions for a simultaneous fit of
the nearest-neighbor shells of V, are 0.05& EG1
& 0.1 and -0.05& gG2& 0.03.

An identification of V~ with the a level also gives
too low parameters for the shell of atoms d and
d' as compared to Ml. For this sheO and also
for the nearest-neighbor general class shell no
simultaneous agreement can be obtained. It is
not quite possible to indicate a region of best dis-
tortions in Figs. 9 and 10, as the discrepancies
for the four observed values of M1 and G1, G2,
or G3 of V2+ will hardly be below a factor of 2 sim-
ultaneously. This happens only for distortions
in the lower left quadrant of the figures.

'The result of this comparison and the original com-
parison mentioned earlier is that the b„ level des-
cribes V', slightly better than V-, . 'The a~ level gives a
poor description for both charge states, for V-, still
worse than for V', . Therefore no decisive conclusions
as to the defect levels can be drawn.

From the above it is clear that EHT results can-
not yet give a reliable description of a defect wave
function in such detail that it can meaningfully
be compared with ENDOR results. A possible
improvement may be obtained by the introduction
of some self-consistency by an iterative calcula-
tion which takes into account charge redistribu-
tions. Preliminary results of Weigel and Ammer-
laan' oQ V+, seem more promising than the EHT
results reported in this section.
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vacancy between Jahn- Teller configurations with
the same vacancy-vacancy axis. For V, such ef-
fects are present above about 'TO K. In the new
higher 3m(DM) symmetry the two nearest-neigh-
bor shells of the atoms d and d' and b, c, b', and
g' in Fig. 1 merge together to one new six-atom
shell for which a hyperfine interaction can be ob-
served which is an average of the original hyper-
fine interactions. The pattern of this averaged
interaction shows monoclinic I symmetry.

Observed hyperfine interactions from an EPR
experiment at liquid-nitrogen temperature for a
magnetic field in the [100], [111], and [011]cry-
stallographic directions are given in Table IV.
The differences in the hyperfine splittings are too
small in some cases to be resolvable in EPR.
Therefore the number of lines observed experi-
mentally is smaller than corresponding to mono-
clinic I symmetry. Values which were calculated
taking into account the anisotropic form of the g
tensor are also given. Due to the y, s ambiguity
in the hyperfine tensor assignments for general
class shells, as mentioned in Sec. III C, two cases
have to be considered. For the aim of identifica-
tion the nearest-neighbor mirror-plane class shell
is associated with tensor M1, while for the near-
est-neighbor general class shell either G1 or G2
has been taken as candidate. From a comparison
it is clear that G1 has to be identified with the
nearest-neighbor general class shell in accordance
with the conclusion of %atkins and Corbett. ' The
observed hyperfine axis of G1, moreover, has
about the requisite b or c direction. From the
angle X, a correct bent bond angle of 109'follows,
but the planes of these bent bonds are 10 out of
the (011) plane. The atomic orbital which follows
from the G1 tensor shows a surprisingly good
sp' hybridization. This good agreement with the
LCAO picture is in sharp contrast to V'„where
on these four atoms not the right (111) axial sym-
metry is found, whether tensor G1, G2, or G3
has to be assigned to that shell.

V. CONCLUSIONS

For the different charge states of the divacancy
much information is known already, especially

A.,~, (M1/G 1) A.,g,(M1/G2)
Case 1 Case 2 Case 1 Case 2

[100] 85+4 88.3
85 +4 86.4

87.2
86.9

80.5
79.4

80.5
79.4

t.111] 103+4 104.5
~ ~ .
76 +4 79.8

[011] 92+4 96.6
92 +4 95.2
~ ~ ~ 77.0
73 + 6 76.6

100.7
82.6
79.8

94.8
92.7
78.2
80.1

92.8
75.5
72.0

87.4
84.1
70.8
73.2

92.9
75.5
72.0

87.4
84.2
70.8
73.1

from EPH. From the present ENDOR measure-
ments on the negative charge state no contradic-
tions with the general defect model were found.
The defect wave function seems similar to that
for the positive charge state', except that its
extent is somewhat larger. At more than 100 lat-
tice sites the wave function could be probed. As
a simple description of the defect wave function
an ordinary LCAO approach turned out to be ap-
propriate, accounting at least partially for a num-
ber of the observed properties.

For a description allowing an identification of
observed interactions with lattice sites a better
theory is needed. Extended Huckel theory, fre-
quently used during the past seven years, cannot
prove its promises if confronted with such a
severe test for its validity as presented by ENDOR
results. The identification for the two nearest-
neighbor shells, earlier made from EPR, could
be confirmed. For the two tensors Ml and G1,
corresponding to these lattice sites, agreement
with the LCAO description was very good.
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