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- The formal solution to the interaction of a plane electromagnetic wave with a gyrotropic sphere, which was
developed by Ford and Werner in the preceding paper, is carried out numerically. We discuss the resonance
spectra of two free-carrier systems made gyrotropic by the presence of a dc magnetic field. The first system
is a gyrotropic sphere consisting of a single-carrier n-type semiconductor with microwaves incident on the
sphere. Such a system displays a series of magnetic and a series of electric dimensional resonances that are
associated with all multipole orders of the scattering coefficients. The resonant internal magnetic and
displacement field patterns are similar in some respects to their isotropic (Mie) sphere counterparts. . The
resonant internal electric field patterns, however, differ markedly from those of Mie resonances, since the
electric fields in the gyrotropic sphere are restricted, for the most part, to planes perpendicular to the dc
magnetic field. The presence of a space-charge density inside the gyrotropic sphere is another departure from
the Mie situation, where no space-charge density exists. The second system considered, a compensated two-
carrier magnetoplasma sphere (similar, in many respects, to electron-hole drops), represents a stark contrast
to the single-carrier magnetoplasma. The structure of the spectra of electric and magnetic dimensional
resonances of the compensated system differs in a qualitative manner from that of the 'single-carrier system.
The internal field patterns also reQect this difference and emphasize the importance of the near-surface
region in the resonant interaction of a compensated two-carrier magnetoplasma with electromagnetic fields.
The disparity in the behavior of the resonance spectra of the two systems underscores the wide range of
phenomena that can be described via the Ford and Werner solution of the gyrotropic-sphere problem.

I. INTRODUCTION

In the preceding paper, ford and Werner' have
developed a formal solution to the problem of the
scattering of a plane, electromagnetic wave by
a gyrotropic sphere, i.e., a sphere composed of
a medium which is described by a dielectric ten-
sor of the form

-&xy &xx

0 0

This generalization of the problem of isotropic
Mie scattering does not yield, with the exception
of certain limits, "closed-form analytic expres-
sions for the various cross sections which de-
scribe the wave-sphere interaction. Consequently,
the numerical computation of the expressions
given in the preceding paper forms an integral
part of the total discussion of the gyrotropic
sphere problem.

In this paper, we explore various aspects of
the numerical solution, seeking to identify general
trends and to provide physical insight into the
interaction of a plane wave with a gyrotropic
sphere. The gyrotropy in the examples we con-
sider will arise from the presence of a dc mag-
netic field. Our attention will be focused mainly
on the situation in which the magnetic field and
the direction of incidence of the plane wave co-

incide. Under these circumstances-, the incident
plane wave can be resolved into two circular po-
larizations which interact independently with the
gyrotropic sphere, and the two modes of excita-
tion can be separately examined experimentally
(see Fig. 1).

Our discussion employs examples using the
parameters appropriate to spheres made from
semiconductors and irradiated with microwaves.
We choose this parameter range because of our
own experimental interest and experience in it."
We exclude other related topics of interest, such
as low-frequency helicon standing-wave resonan-
ces in metals and the behavior of the resonance
spectra of semiconducting spheres in the Ray-
leigh-limit, because they have been previously
discussed. '~ We emphasize those features of the
resonance spectra which require the general solu-
tion of Ford and Werner for their understanding,
such as the electric and magnetic dimensional res-

'

onances shown in Fig. 1; and we ignore features
that are adequately characterized by expressions
valid under more limited circumstances than is
the Ford and Werner solution, such as plasma-
shifted cyclotron resonance (PSCR).

In Sec. II, we review propagation in an unbounded
gyrotropic medium and the Drude dielectric tensor
elements, and we discuss the extinction cross
sections for geometries of special interest. In
Sec. III, we describe the interaction of an electro-
magnetic wave with a gyrotropic sphere made of
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a medium having a single type of free carrier.
In Sec. IV, we discuss the situation which exists
when the gyrotropic sphere medium is a com-
pensated, two-carrier magnetoplasma. Final. ly,
in Sec. V, we consider various aspects of the
computations involved in the gyrotropic sphere
solution.

II. BACKGROUND

A. Normal modes of propagation in an unbounded medium

In the presence of a dc magnetic field 8,
where the 2 direction is chosen parallel to B, the
dielectric tensor of an isotropic semiconductor
(or an anisotropic semiconductor, if B lies along
an axis of threefold or higher symmetry) takes
the form given by Eg. (I). This gyrotropic tensor
can be diagonalized in the coordinate system
given by the three unit vectors e:
e, = -(I/R2)(2+i/), e, = (I/R2)(2 ig), 0, =2-,

resulting in the form

Magnetic Field (kG)

FIG. 1. Extinction cross section (ot«) for a 1.0-mm
radius sphere in free space (&2

——1) as a function of mag-
netic field at 35 GHz. The direction of propagation of
the microwaves incident on: the sphere is the same as that
of the dc magnetic field. The sphere consists of an
n-type semiconductor with material parameters as fol-
lows; E') = 17.5, N= 10 ~ cm 3, p= 2 x10~ cm /V sec, and
m*=0.014 m~, where me is the free-electron mass. The
dimensional resonances, marked as electric (E) or mag-
netic (M), are labeled according to the convention given
in the text. The two linearly independent circular polar-
izations for incident electromagnetic radiation are plot-
ted on the positive 8 field side of the axis for the cyclo-
tron-resonance-active (CRA) polari. zation and on the
negative side for the cyclotron-resonance-inactive (CHI)
polarization. A matrix size of 15 was employed in the
cross-section calculation. The parameters used are
typical of n-type InSb.

For any given angle 6I between 8 and the direc-
tion of propagation of the plane wave in the gyro-
tropie medium k', two independent polarizations
may propagate. These are the normal modes of
the system. Each normal. mode is described by
a distinct propagation constant q, which is re-
lated to an effective dielectric constant by the

relationship

q', , = ((u'/c')e, '", . (4)

B. Extinction cross section for particular geometries

The interaction of an electromagnetic wave with
an object on which it is incident is conveniently

For an arbitrary angle 8, the normal modes are
elliptically polarized and are described by quite
complicated effective dielectric constants.

Two geometries are of particular interest:
8=0' or k' [[8 (the Faraday geometry) and e=90'
or k'j.B (the Voigt geometry). In the Faraday
geometry, the normal modes are two opposite
transverse circular polarizations, one (labeled
"+")having the direction of its electromagnetic-
wave fields 8, and E, specified by e„ the other
(labeled "-")having them specified by e,. The
effective dielectric constants associated with the
two normal modes are &, for the "+"circular
polarization and e for the "-"circular polariza-
tion. For single-carrier gyrotropic media, the
two circular polarizations are often referred to as
cyclotron resonance active (CRA) or cyclotron
resonance inactive (CRI) according to whether
the polarization can or cannot induce cyclotron
resonance of the carrier in the bulk medium.
For negative carriers, the "+"polarization is
the CRA polarization.

In the Voigt geometry, propagation of the nor-
mal modes is described by the effective dielec-
tric constants

and e, = (e'„„+e„',)/e„„.
One normal mode (Ii) has the electric field parallel
to z (the direction of the dc magnetic field). The
other normal mode (&) has the magnetic field B,
parall. el to 2, while E, is perpendicular to 2.
These modes are often referred to as the ordinary
Voigt (OV) and extraordinary Voight (EV) geome-
tries, respectively. '
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described in terms of extinction, absorption, and
scattering cross sections. In this paper, we con-
cern ourselves exclusively with the extinction,
or total, cross section for the interaction of a
plane wave with a gyrotropic sphere. The sizes
of the spheres which we employ in our examples
are sufficiently small for the absorption and
extinction cross sections to be nearly equal and
for the scattering cross section to be negligible in
comparison with the other two. We limit our
discussion to two geometries: the one in which
the direction of propagation of the incident wave
(k) is parallel to B, and the one in which k is

perpendicular to B. By way of analogy with the
unbounded gyrotropic medium nomenclature, we
refer to these geometries as the Faraday and the
Voigt geometries, respectively.

The combination of Eqs. (FW 2.59) and (FW 8.49)
from the preceding paper" (all equations referenced
from the preceding paper by Ford and Werner
will have FW prefixed to the equation number)
gives a general expression for the extinction cross
section of a gyrotropic sphere. For the Faraday
geometry, the general expression for the ex-
tinction cross section reduces to

em' E

R g P ( 4)
'-

[(21 1)(2I I)] ~ ( ) P P ~™x

Ii

The sum of m over 2l+1 values in the general
expression has been reduced to a sum over only
two values, each of which corresponds 'to a cir-
cular polarization of the incident wave. Since
each value of m is associated with a different
auxiliary eigenvalue problem (FW 3.15), the con-
tribution of each value of m to the total cross sec-
tion is independent of the other. Thus, in the
Faraday geometry, each circular polarization of
the incident wave interacts independently with the
gyrotropic sphere, producing two different res-
onance spectra.

For the Voigt geometry, the general expression
for the extinction cross section reduces to an
expression, given in Appendix A, which shows
that two linear polarizations exist which interact
independently with the gyrotropic sphere. One
linear polarization ((~) has E, paraHel to 2 and

B, perpendicular to both 2 and k. The other linear
polarization (&) has B~ parallel to 2 and E, per-
pendicu1. ar to both 2 and k. In analogy with propa-
gation in unbounded gyrotropic media, we refer to
these linear polarizations as ordinary Voigt
(OV) and extraordinary Voigt (EV), respectively.

In the dipole limit (or small-ka limit), ' where

[ ka( «1 so that the gyrotropic sphere is located in
time varying but spatially uniform electric and
magnetic fields, any arbitrary external electric
or magnetic field can be resolved into three com-
ponents, labeled m =+ 1, 0, -1. Each field compo-
nent interacts independently with the gyrotropic
sphere so that three independent electric excita-
tions and three independent magnetic excitations
are possible. Even though a time-varying elec-
tric (or magnetic) field can not exist without the
presence of a companion magnetic (or electric)

field, we will, in considering compensated two-
carrier magnetoplasmas, discuss electric and
magnetic interactions as if they could be excited
independently.

The two circular polarizations of the Faraday
geometry reduce to the m =+1 and -1 cases for
the electric and magnetic fields in the dipole
limit. For the Voigt geometry in the dipole
limit, the OV polarization, which has E~ ~[2,

B,&2, and B,&k, excites the m =0 electric
mode with E, while B, excites both the m =+ 1 and
m =-1 magnetic modes. For the EV polarization,
B, excites the m =0 magnetic mode, while E, ex-
cites the m =+1 and m =-1 el.ectric modes.

C. Drude dielectric tensor elements

In experiments carried out at microwave fre-
quencies, the magnetic field is varied so as to
change the values of the elements of the dielectric
tensor and thus sweep through various gyrotropic
sphere resonances. The dielectric tensor is re-
lated to the conductivity tensor o' by the expres-
sion

e = e( + 4178 0/&d ~'
where e& is the lattice diel.ectric constant and u
is the frequency. The Drude expressions, which
we employ throughout the paper, for the dielectric
tensor elements of a semiconductor with L types
of carriers and an isotropic band structure are'

4lpg tg(l —t(dTg)
xx =Kg+1 (I - ~ f&) 7(u+&„)'r'
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~oP 7,
6'gg = 6g +$

(d 1 Z hl7g
(10)

which satisfies the requirement'

= ei —(a&i,/(u((u+ (ii ) =-2. (16)
where

aPi„4v—-Nie /mj*

is the plasma frequency,

(u, i =q,a/mg+c (12)

is the cyclotron frequency, v' is the relaxation
time (p = er/m* is the carrier mobility), q is the
carrier charge (including the sign), m* is the
effective mass, N is the free carrier density,
and the subscript I refers to the Lth type of
carrier. Also,

L 2
(kg 7 g

6q = 6g+4
(u 1-i((oa &li, i)r,

'

Certain parameter ranges in the microwave
region yield interesting simplifications of these
expressions. For single-carrier systems in the
high-field limit, where

(
~,

~

» &u, and
~
v,

~

» r
Eq. (13) reduces to the form

(13)

e, =e, +4nNqc/Bid. (14)

This equation states that, in the Faraday geome-
try, the behavior of the two normal modes as-
sociated with the two independent circular polar-
izations is nearly identical. .

III. SINGI.EXARRIER RESONANCES

A. Resonance spectrum

The resonance spectrum shown in Fig. 1 is an
example of a spectrum one might observe as a
function of magnetic field for a semiconducting
sphere in the Faraday geometry. The major
features of the spectrum of a gyrotropic, single-
carrier magnetoplasma are magnetic dimensional
resonances, electric dimensional resonances,
and PSCR.

When the gyrotropic medium is characterized
by low losses, i.e., [ id + &u, ( »r ', PSCR occurs
at the magnetic field and for the polarization

This form suggests that, in considering the be-
havior of the extinction cross section in the
Faraday geometry, B ' rather than B is the more
appropriate parameter. In the helicon 1.imit,
where ~~2/e, iii&& [e,(&&ar and ( iii[ &&r ', the ex-
pressions for e, are those given in Eg. (14) with
eg omitted. In compensated, two-carrier systems
(carriers are of opposite sign), we are in the
Alfvdn limit when &u»/Me, » ( , id~&i1&/r anid

erg&&1, where /=1, 2. In the Alfvbn limit, we
have

Although the derivation of the resonance condition
(16) is, strictly speaking, valid only in the Ray-
leigh limit (ka«1 and [qa( «1}, our calculations
have indicated that it continues to hold for sphere
sizes exceeding the Rayleigh limit but satisfying
the dipole limit.

The electric and magnetic dimensional reso-
nances are two intermeshed sets of resonances
having the same general pattern of behavior.
Each set of resonances consists of a fundamental
resonance, labeled (1, 0), and a series of har-
monics, labeled (n, 0), where n = 2, 3, 4, ... .
We shall refer to the fundamental and its harmon-
ics as major resonances. In addition, each of
these major resonances has a series of smaller
resonances, or satellites, associated with it.
The satellites are labeled (n, m}, where
rn =1, 2, 3, . .. . The electric and magnetic di-
mensional resonances are distinguished by using
the notation E(n, m) and M(n, m), respectively.

In many cases of interest, al.l the dimensional
resonances occur in the interaction of the gyro-
tropic sphere with the CRA polarization. In those
cases, for eachseries of resonances, the funda-
mental [i.e., the (1, 0) resonance] occurs at the
highest magnetic field. Its harmonics [the (n, 0)
resonances, with n& 1] occur at progressively
lower fields as n increases (see Figs. 2 and 3).
The satellites occur on the low-field side of the
major resonance with which they are associated.
The electric and magnetic major resonances
aiternate in position. The M(1, 0) resonance oc-
curs at the highest magnetic field; the E(1, 0)
resonance is the next major resonance below the
M(1, 0}. The M(2, 0) resonance is below the
E(l, 0) resonance, and so on. This alternation
of the two series is shown in Fig. 4.

With decreasing radius, the M(1, 0) resonance
moves to a limiting magnetic field position (which
is observed in the sphere response to the CRA
polarization), gradually losing its dimensional
character and changing into a dimension-inde-
pendent resonance in the Rayleigh limit. "~' '"
The magnetic and electric harmonic and satellite
resonances disappear as the radius is decreased
and do not appear to merge into some dimension-
independent Rayleigh-limit resonance.

Unlike M(1, 0), the E(1, 0) resonance is not as-
sociated with the Rayleigh-limit electric reso-
nance, i.e., with the PSCR. As with all the other
resonances except the M(1, 0), it simply disap-
pears as the radius of the sphere is decreased.
The strengths of electric resonances grow faster
than the strengths of the magnetic resonances
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FIG. 2. Evolution of the
magnetic dimensional reso-
nance spectrum with in-
creasing sphere radius for
the Faraday geometry. The
extinction cross section
shown is the sum of the
terms associated with g&f
(l odd) and f,f (l even). The
sphere is in free space
(~2-—1)and is made of sin-
gle carrier {m-type) mat-
erial havixg the paramete»
~, =17.5, N=10f~ cm 3, p
= 2 x10~ cm2/V sec, and
m* =0.014 m~. The incident
plane wave has a frequency
of 70 GHz, and its m netic
field is expressed as
= Bfef. The matrix size
used for the caleuIation was
15.

with increasing radius. The M(1, 0) resonance
strength is roughly proportional. to the fifth power
of the sphere radius (Fig. 2) while the strength
of the electric resonance E(1,0) is proportional
to about the seventh power of the radius. The
strengths of the electric resonances also in-
crease more rapidly with frequency than the
strengths of the magnetic resonances. Thus,
although only magnetic dimensional resonances
are observed in the low-frequency standing-wave
helicon experiments, "at microwave frequencies

the two types of resonances can be of the same
order of magnitude, with the electric resonances
often being the stringer, as is the case in Fig. 1.

The dimensional resonances are not restricted
to the CRA polarization. As the sphere radius
increases, the dimensional resonances, present
only in the CRA polarization for small spheres,
may appear in both polarizations. For the Fara-
day geometry, a given resonance is approximately
linked to a particular value of c,a2. As a in-
creases, smaller values of E, are required for
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electric dimensional reso-
nance spectrum with in-
creasing sphere radius for
the Faraday geometry. The
extinction cross section
shown is the sum of the
terms associated with f& f
(l odd) and g, f (l even). The
sphere and calculation para-
meters are identical with
those listed in the caption
of Fig. 2. Note the pattern
of major resonances and
associated satellite reso-
nances.
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FIG. 4. E'volution of the
complete dimensiona1 reso-
nance spectrum with in-
creasing sphere radius for
the Faraday geometry. The
pattern of alternating mag-
netic and electric major
fi.e., (n, 0)j resonances is
apparent. Note that the
E{1,0) resonance can be
quite large, its strength ex-
ceeding that of the first
harmonic magnetic reso-
nance M(2, 0) for the Iarger
sphere s izes.

the resonance to occur. Thus, for CBA excita-
tion (which corresponds to e, for the n-type
semiconducting spheres we are using as examples)
increasing the radius moves the resonances to
progressively higher fields, since, for ~,&e, &,

decreases with increasing B [see Eq. (14)]. Note, .

however, that E, is always larger than e,. When
a is so large that a given resonance condition re-
quires «&„ that resonance cannot be obtained
in the CRA polarization. The resonance will then
occur in the CRI polarization, for which e&c,.
It is clear from Eq. (13) that changing the
sign of J3 changes a given circular polarization
from CBA to CRI or vice versa. Consequently,
we can display both CRA and CRI responses on a
single magnetic field axis, where 8&0 corresponds
to the CBA interaction, 8 &0 to the CRI. This is
done in Fig. 1, where the sphere parameters are
such that the fundamental resonance M(1, 0) oc-
curs in the CRI pol.arization.

B. Internal field patterns and resonance identification

We have calculated the fiel.ds within the gyro-
tropic sphere at the dc magnetic fields at which
resonances occur. The internal field patterns in
the x-s plane are particularly helpful in charac-
terizing the resonance interaction and labeling the
resonances. The patterns shown in Figs. 5 and 6,
as well as all other internal field patterns de-
scribed in this paper, - result from an incident cir-
cularly polarized wave propagating parallel to

B. The patterns shown are calculated with the
incident fields 8, =B,&, and, due to (FW 2.16),
E, =iB,e,/We„where e, is the dielectric constant
outside the sphere (in most cases, @&=1). The
deci.sion to set Bx =+&ex rather than Ex = E'er wa
arbitrary, based sol.el.y on the fact that the pri-
mary dimensional resonance M(1, 0) happens "to
be magnetic. The magnitudes of the arrows shown
in the field patterns are proportional to the com-
ponents of the fields in the plane being displayed.
Each arrow is centered on the point at which the
internal field is calculated.

Figure 5 shows the electric, magnetic, and
generalized displacement [defined by (FW 3.1)]
fields for the two fundamental resonances. The
fields are cal,culated as complex quantities. The
imaginary parts of the fiel.ds are displ. ayed for
the M(1, 0) resonance while the real parts of the
fields are displayed for the E(1,0) resonance.
The manner of display is a consequence of the
calculations being carried out in rotating coor-
dinates and merits some clarification. Our co-
ordinates are fixed by the incident microwave
magnetic field, which is

B,e "'=B,e,e "'=-(B,/R)(P+iP)e
The field plots are instantaneous "snapshots"
of the x-s pl.ane. For t =0, which is the circum-
stance for all the field calculations, 8, is entirel. y
real in the x-z plane. For a magnetic resonance,
the internal magnetic field oscillates 90' out of
phase with the "drivi. ng" external magnetic field
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FIG. 5. Internal field patterns for the M(1, 0) and
E(1,0) resonances in the x-z plane. The dashed line
indicates the sphere boundary, The arrows are centered
on the point at which the appropriate field (magnetic,
displacement, or electric) was calculated. The mag-
nitude of the arrow is proportional to the magnitude of the
component of the given field in the x-s plane. The direc-
tion of the arrow indicates the direction of the component
of the field lying in the x-z plane. The dc magnetic field
lies in the z direction, and the magnetic field of the
incident plane wave is 8&

——A&el for both resonances.
For the M(1, 0) resonance, the imaginary parts of the
appropriate field components are plotted. For the
E(1,0) resonance, the real parts of the appropriate field
components are plotted. AQ the internal field plots are
calculated at the same instant of time (t = 0) and employ
r esonances associated with very low-loss material para-
meters.

B, and is, therefore, imaginary in the x-z
plane at t =0. The electric and displacement fiel, ds
are induced 90' out of phase with the internal
resonant magnetic field in a plane perpendicular
to it. Due to the rotation of fields considered

FIG. 6. Internal displacement fields for the E(1,0)
resonance, at the top, and its satellite, the E(1,1) reso-
nance. The magnetic field B~ of the incident plane wave
is 8&

——B&e&. The displacement fields are plotted as de-
scr ibed in the caption to Fig. 5. Note that the field
patterns are similar along the axis (with the exception
of a'180' phase shift) but differ markedly somewhat
above and below the z axis.

here, the electric and displacement fields also
appear as imaginary in the x-z plane. Thus, all
three fields associated with the resonance ap-
pear coplanar and in phase.

The same arguments underlie the display of the
fields associated with E(tt, m) resonances. The
driving electric field is imaginary in the x-z
plane at t =0. The internal electric and displace-
ment fields are coplanar and 90' out of phase with
the drriving field. The induced magnetic field is,
in turn, 90' out of phase with those internal fields
and perpendicular to them. As a result, all.
internal fields associated with E(n, m) resonances
simultaneously appear as reel on the x-z plane,
as presented in Figs. 5 and 6.

The identification of resonances is done by
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following a labeling scheme that is a simple exten-
sion of that proposed by Ford and Terner, '
merely adding the labels E and M to denote the
two different resonance series. Ne have found
that the internal magnetic or the generalized
displacement fields serve equally well. as the
basis of a labeling scheme, since both fields as-
sume readily identifiable forms at resonance
which are unique to and characteristic of the
particular resonance. The electric field patterns
are not readily useful as a basis for a labeling
scheme due to the complex nature of the patterns,
even though each resonance has a unique electric
field pattern associated with it.

Examining the magnetic field patterns shown in
Fig. 5, we see that the M(1, 0) resonance has two
nodes along the z-axis and that the magnetic field
varies through roughly —,

' cycle across the sphere
along that direction. The E(1,0) resonance has
three nodes, or a full cycle, along the z axis.
The M(2, 0) resonance has 4 nodes, or 1 —,

' cycles;
the E(2, 0), five nodes, or two cycles. The pat-
tern can be continued indefinitely. The number of
&-cycle variations indicates whether the reso-
nance is electric or magnetic and what the value
of the first index n is. The internal displacement
field pattern could also be used in such a scheme.
In the case of the displacement field, the M(l, 0)
resonance shows a ~ -cycle variation across the
sphere along the z axis (but antinode-to-antinode
instead of node-to-node} and one node at the
center. The E(1,0) resonance shows a fuH-cycle
variation in field strength, with two nodes along
the z axis, and so on.

The satellites associated with each of the (n, 0)
resonances can be readily identified in the same
manner. The variation in the appropriate field
along the z axis is the same for the satellite res-
onances as it is for their associated major reso-
nance, as shown by the displacement field pat-
terns for the E(1, 0) and E(1, 1) resonances in

Fig. 6. The two resonances differ, however,
off the z axis. The manner in which the major
resonances and their satellites differ is empha-
sized by the schematics for the magnetic (Fig. 7)
and displacement (Fig. 8) fields, Each (n, 1)
satellite has a field pattern which reproduces
above and below the z axis the pattern of field
vortices that exist along the z axis. The field
pattern of each (n, 2) satellite reproduces the
z-axis pattern twice above and below the z axis.
Such behavior is characteristic of the field pat-
terns (magnetic or displacement fields) of the
sateHites for both types of resonances, electric
and magnetic.

Along the z axis, the internal magnetic field is
small near the surface of the sphere for all res-

M(I, I) M(l, 2)M (I,O)

E(I,2)E ( I, I)E ( I,O)

M(2, I)M (2,0) A
X

A

A

7

MAGNETI C F I E LDS
E(2,O)

FIG. V. Schematic diagrams of the internal magnetic
field patterns for the lowest-order dimensional reso-
nances, obtained from our internal field calculations.
The schematic is intended to draw attention to the over-
all pattern of the magnetic field in the x-z plane at
resonance. The circular or elliptical loops are centered
on field nodes, and the arrows indicate the direction of
the field.

onances while the internal electric or displace-
ment field is close to amaximum near the surface.
This behavior is consistent with regarding the
gyrotropic sphere as a dielectric cavity. At res-

M (I,O) M (I,2)

E(I,2)E (I, I)E (I,0)

M (2, I)M (2,0)
X

is

A

DISPLACEMENT FIELDS
E (2,0)

FIG. 8. Schematic diagrams of the internal displace-
ment field patterns for the lowest order dimensional
resonances, as revealed by our field calculations. Note
that the central pair of loops in M(2, 0) and M{2,1) is
"equivalent" to a single, larger loop.
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onance, a standing-wave pattern is set up which
is the result of internal waves being reflected
from the sphere surface. Upon intensa/ reflection
at near normal. incidence, the magnetic field of
these waves undergoes a phase shift of 180',
while the phase of the electric field is not shifted
on reflection. Consequently, near the surface,
we would expect the standing-wave magnetic field
to be small (nearly a node) due to destructive
interference and the electric field to be large
(nearly an antinode) due to constructive inter-
ference.

C. Comparison of the gyrotropic sphere resonances
-in the Faraday geometry with Mie sphere resonances

A comparison of the gyrotropic sphere calcula-
tions with isotropic (Mie) sphere results is in-
structive. Consider the scattered fields, which
establish the externally observed behavior of
the spheres. In the preceding paper, the scat-
tered fields for both the gyrotropic and isotropic
spheres have been expressed as a multipole ex-
pansion in terms of the scattered wave coefficients
f,„and g,„. From the fields associated with these
coefficients, we can identify f,„and g, as elec-
tric and magnetic multipole coefficients, respec-
tively, where l denotes the multipole order (l =1
denotes dipole, i =2 quadrupole, etc.). The scat-
tered fields associated with each multipol. e are
linear1y independent, and the various cross sec-
tions for a sphere are calculated as a linear super-
position of the cross sections associated with
the individual. multipoles.

The expressions for the scattered field coeffi-
cients for an isotropic (Mie) sphere, f, and

g, , are given in Eqs. (FW 2.44) and (FW 2.46)
and are related to the usual Mie coefficients a&

and b, by Eq. (FW 2.4'7). As the frequency, di-
electric constant, or sphere size is varied, each
a, Mie coefficient displays a series of electric
dimensional. resonances, labeled E,„, where l
denotes multipole order, n =1 indicates the funda-
mental for a given multipole resonance, and
n = 2, 3, 4, . .. indicate higher harmonics. Thus,
E,„resonances indicate electric dipole resonan-
ces; E,„ indicate electric quadrupole resonances,
and so on. Similarly, b, displays a series of
magnetic Mie resonances labeled M&„.

It is important to note that in the Mie case not
only the scattered, but also the internal fields
corresponding to a given multipole oscillation are
linearly independent of all other multipole fields.
This means that any multipole resonance can be
excited independently of all other resonances of
different multipole order, i.e., each multipole has
separate resonance conditions. Also, the contribu-
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FIG. 9. Extinction cross section for a 0.3-mm radius
sphere as a function of dc magnetic field. The upper
part of the figure shows the extinction cross section.
The lower part of the figure shows the individual con-
tributions to the extinction cross section arising from
the first three terms associated with the electric reso-
nances. The multiplier shown for each term indicates
the scale of the spectrum arising from that term with
respect to the scale of the total cross section shown
at the top of the figure. Note that no trace of the mag-
netic resonances appears in any of the individual terms
displayed. Also note that the individual contributions to
the total cross sections are not all positive. The calcu-
lation was performed with 8& ——B&e& and a matrix size
of 15 for a single-carrier magnetoplasma described by
the parameters listed for Fig. 2.

'tion to the extinction cross section associated with
'eachmultipole(i. e. , eacha, and b, coefficient) isal-
'ways positive.

In sharp contrast to this, in the gyrotropic
sphere situation, the dipole terms f„and g» to-
gether display the full set of resonances exhibited
by a complete solution, including all multipole
terms. The sphere resonances arise from minima
in the denominators of the Z»', but expressions
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(FW 3.47) and (FW 3.48) show that there are only
two different denominators, corresponding to the
two parities, o'=+ and a =-, resulting from two
different eigenvalue problems. Thus, the reso-
nances that appear in f„also appear in all elec-
tric multipole coefficients f» for l odd and ail
magrietic multipole coefficients g» for / even,
as shown in Fig. 9. Likewise, the resonances
that appear in g„also appear in all g» having
f odd and all f» having l even (Fig. 10). This is
a consequence of the fact that the gyrotropy leads
to a coupling of all multipole orders of the inter-
nal fieIds. " Also, the higher-order terms in the
series for the gyrotropic sphere cross sections
[Eq. (FW 2.58)] are no longer required to be
positive. Consequently, an independent physical
interpretation of each higher-order term. is

0 30 . 60 90 l20
Magnetic Field (kG)

FIG. 10. Extinction cross section for a sphere with a
radius of 0.3 mm as a function of dc magnetic field. The
upper portion of the figure shows the extinction cross sec-
tion, while the lower portion shows the individual con-
tributions to the extinction cross section from the first
three individual terms (g&&, f&&, g3&). Note that these
terms make contributions (positive or negative) only to
the magnetic resonances. The multiplier indicates the
relationship between the scale of each individual con-
tribution to the cross section and the scale used for plot-
ting the extinction cross section.

questionable. However, the total cross sections
always remain positive, as required physically.

In the Mie sphere situation, magnetic multipole
resonance fields have no radial electric field
components at the surface of the sphere; elec-
tric multipole resonance fields have no radial
magnetic field components at the surface of the
sphere. For the gyrotropic sphere, on the other
hand, radial components of both magnetic and
electric fields appear at the sphere surface for
all resonances. Consequently, our labeling of
resonances as electric or magnetic is based
solely upon whether the resonance occurs in the
electric dipole term f«or the magnetic dipole
term &u, since these terms provide the dominant
contributions to the cross section for the sphere
sizes we are dealing with.

We now compare the calculated Mie resonance
field patterns with those for the gyrotropic
sphere. The x-z sections of magnetic field for
the lowest-order (fundamental) magnetic and
electric gyrotropic sphere resonances (Fig. 5)
and Mie sphere resonances (Fig. 11) are very
similar, as is the displacement field for the
gyrotropic sphere resonances in the x-z plane
when compared to the electric field of the Mie
resonances in the same plane. (Note that the
electric and displacement fields have identical.
patterns in the Mie case. ) From the similarity
of these, as well as higher-order Mie resonance
field patterns, to those of the major gyrotropic
sphere resonances, we conclude that the Mie
(1,n) dipole resonances correspond to the (n, 0)
resonances observed for the gyrotropic sphere.

Unlike the similarity noted for the magnetic
and displacement fieMs, however, the electric
fields differ radically for the gyrotropic and Mie
resonances. As pointed out above, the Mie elec-
tric and displacement field patterns are identical.
In the gyrotropic sphere, on the other hand, the
electric field is, for the most part, restricted to
planes perpendicular to the z direction due to the
fact that a large conductivity is associated with
the direction of the dc magnetic field. The elec-
tric field can be restricted to such a plane be-
cause a volume charge density can exist inside
a gyrotropic sphere. This is also in sharp con-
trast with the isotropic sphere case, where no
volume space charge is to be found at any time.

A comparison of the internal field configurations
for higher-order Mie resonances (Fig. 12) with
those shown schematically in Fig. 7 emphasizes
the mixing of internal fields which occurs in the
gyrotropic sphere. Such a comparison indicates
that the satellite M(1, 1) resonance might be
related to the octupole rather than the quadrupole
Mie resonance. The magnetic field of M(1, 1)
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FIG. 11. Internal mag-
netic and electric fields for
the M&& and E&& Mie dimen-
sional resonances. The
magnetic field of the inci-
dent plane wave is Q =B&B&,
and k. is parallel to z. As
with the gyrotropic sphere,
the imaginary parts of the
M&& resonance fields and the
real parts of the E&& reso-
nance fields are plotted on
the same plane at the same
instant of time.

shown in Fig. 7 can couple to a dipole scattered
field, which is associated with gyp its character
along the z axis is clearly dipolelike. At the
same time, its resemblance to the Mie octupole
field pattern suggests that it will also couple to
the octupole scattered field, associated with g3$,
rather than the quadrupole scattered field, as-
sociated with g». Such a situation is consistent
with the appearance of magnetic resonances in
only the g& with odd l.

As previously mentioned, the difference be-
tween the gyrotropic and isotropic sphere prob-
lems is particularly emphasized by the fact that,
while there is no induced volume charge density
in an isotropic sphere, a volume space-charge
density is present in the gyrotropic sphere. From
Eqs. (FW 3.20), (FW 3.25), (FW 2.V), and (FW
2.3), we get an expression for the volume charge
density p at any point in the sphere

~=~rV ~ E

Figure 13 shows the charge density for a M(1, 0)
resonance in the x-z plane. The pattern the
charge density assumes for a M(1, 0) resonance
resembles an electric quadrupole. This is another
illustration of internal mixing: when a resonance
occurs in g», it wiH also occur in f», the elec-
tric quadrupole term (see Fig. 10).

D. Empirical resonance conditions

In the perturbation treatment of the gyrotropic
sphere satisfying the Rayl. eigh limit, ' certain ex-
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FIG. 13. Volume charge density in the x-s plane in-

side a magnetoplasma sphere for a M(1, 0) resonance.
The(+) and|-) signs shown on the figure indicate the sign
of the volume charge density at the point upon which the
symbol is centered. The size of the sign is proportional
to the magnitude of the volume charge density at the
point.

resonance discussion, Based upon this idea, we
have developed empirical resonance conditions
adequate for the purpose of quick identification

„of the major resonances. Our resonance condi-
tion for the major magnetic dimensional reso-
nances is

(&u'a'/c') Re[a~) =n(n —&)I' . (20)

FIG. 12. Internal magnetic fields for the M2& and M3$
Mie dimensional resonances. The magnetic field of the
incident plane wave is B~—- B&e& and k is parallel to k.
The imaginary parts of the fields are plotted.

pressions containing the principal dielectric ten-
sor elements were developed which functioned in
a manner analogous to the principal dielectric
tensor elements for an infinite gyrotropic medium.
The expressions were

e„=2e, egg/(&, + egg)
(effl

For the major electric dimensional resonances,
our relationship is

(usa'/c') Re(e&}=n(n+ —,')s', (21)

QP @PE

where P is either "+"or "-,"depending upon the
polarization of the incident radiation which pro-
duces the resonance. The index n is the index on
the major resonances (n, 0).

When the high-field-limit expressions for e,
are used, the resonance positions for magnetic
resonances are given by

and

=2tie /(6~ +6 ), (19)

For electric resonances, the resonance positions
are given by

where the subscripts +1 and 0 refer to the compo-
nents of the exciting field. In the helicon limit in
the Faraday geometry le„I» Ie, I, so that
e,'," =2c,. This suggests that the e, might remain
an appropriate tensor element for the dimensional

-4sNqc w ~C'n(n+ —,')
B

(d aS 2 -~~ ~ (23)

Note that 8& can be positive or negative. A neg-
ative 8& indicates that the resonance is excited
via the opposite polarization to that associated
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with &„A comparison between the resonance
positions of the major resonances as calculated
via the general solution (the dots in Fig. 14}and
the resonance positions predicted by Eqs. (22)
and (23) (solid lines) is shown in Fig. 14. The
figure demonstrates the utility of Egs. (22) and (23).

FIG. 14. Magnetic fields at which the major dimension-
al resonances occur for various radii. The solid lines
are the resonance fields calculated via Eqs. (22) and
(23). The dots represent resonance fields determined via
numerical computations employing the full Ford and
Werner gyrotropic sphere solution.

The resonance spectra exhibited by gyrotropic
spheres made of compensated, two-carrier mag-
netoplasmas are qualitatively quite different from
the resonance spectra of single-carrier magneto-
plasmas. We describe the spectra seen in the
dipole limit. The resonance spectra displayed for
the dipole limit are calcul. ated via the method
outl. ined in Sec. III C of the preceding paper, '
employing the expressions (FW 4.20) and (FW
4.21) rather than the general solution.

In the Faraday geometry, the spectra are nearly
identical for m =+ 1 and m = -1. Consequently,
we show the electric (Fig. 15}and magnetic (Fig.
16) resonance spectra for only the m =+1 case.
We have developed no labeling scheme for the
compensated, two-carrier magnetoplasma reso-
nance spectra. The fundamental magnetic reso-
nance, that is, the resonance which merges into
a Hayleigh-l. imit magnetic dimension-independent
resonance as the radius is decreased, is the only
resonance apparent at small radii. As the radius
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FIG. 15. Development of the dipole-limit transverse (m = + 1) electric resonances with increasing sphere radius for a
compensated, two-carrier magnetoplasma. Matrix sizes as large as 19 were used in the calculations of the extinction

. cross sections shown. The parameters of the semiconductor sphere were &&
——&2

—-16, N~=N~=10 cm 3, 7&—7~= 5 x10
sec, m'L= 0.277 m„and m~e= 0.135 m'~, where the subscripts e and h refer to electron and, hole parameters, respective]y.
The external field has a frequency of 25 GHz. The calculations were performed according to the algorithm of Sec. IVB
of the preceding paper (Ref. 1). The parameters used are appropriate for electron-hole drops in Ge.
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FIG. 16. Developmentof
the dipole-limit transverse
(m=+ 1) magnetic reso-
nances with increasing
sphere radius for a compen-
sated, two-carrier mag-
netoplasma. Note the evo-
lution of resonances on the
high-field side of the fun-
damental dimensional res-
onance, which, as the rad-
ius is decreased, merges
smoothly into a dimension-
independent resonance. The
parameters of the sphere are
those listed for Fig. 15.
For a sphere radius of
100pm, the transverse mag-
netic resonances are about
100 times as strong as the
transverse electric reso-
nances (Fig. 15).

is increased, other resonances develop on the
high-field side of the fundamental, resonance
(totally unlike the single-carrier situation). Even-
tually, the next-higher-field resonance becomes
stronger than the fundamental resonance. It, in
turn, will, be surpassed, eventually, by the next-
higher-field resonance above it. At small radii,
the strength of the fundamental resonance initially
varies faster than a' and then increases at a rate
less than a' for larger radii. The resonance

IO

45-

50-
Z)

kl
D

Magnetic
Longitudina I

LLI
O

5
'C
R'
O
4J 4

o

80~

RadiUs

(pm)

mal .

~i JlL

.j..

2O

0 I I

8
Magnetic

12
Field (kG)

FIG. 17. Development of the dipole-limit longitudinal
(m=0) magnetic resonances with increasing sphere radi-
us for a compensated, two-carrier magnetoplasma. The
units used on the vertical axis are the same as those
of Fig. 16. The material parameters for the sphere are
listed in the caption to Fig. 15.
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FIG. 18, Resonance field as a function of sphere
radius for the prominent high-field resonances of Fig.
17, which displayed longitudinal (m =0) magnetic spec-
tra. The widths of the lines suggest the relative strength
of the resonances.
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spectra for the electric m =0 (longitudinal or
OV-dipole-limit) situation shows a similar pattern
of resonances.

The fundamental resonance (which also merges
into a Rayleigh-limit magnetic resonance with de-
creasing radius) for the magnetic longitudinal
(m =0) case again does not remain the highest-field
resonance (Fig. 17). A set of resonances is
present which repel each other as the resonances
tend to cross one another, thus keeping the fun-
damental resonance the lowest field resonance of
the set. The behavior of the primary set of reso-
nance fields in Fig. 1V is displayed in Fig. 18.
A series of resonances exist but the resonances
only have sufficient strength to be observed when
their positions fall near an imaginary line which
coul.d be drawn on Fig. 18. The electric trans-
verse situation is similar to the magnetic longi-
tudinal situation. There are sets of resonances

and not just single resonances involved in forming
the primary features of the spectrum. In the
electric m =+1 case, though, the resonances in
the set are easily visible at higher fields before
they interact with another resonance in the set
(Fig. 15). Also, the fundamental. electric reso-
nances, unlike the magnetic resonances, do not
merge into Rayleigh-limit resonances as the
radius is reduced.

B. Internal field patterns

The internal field patter@.s bear out the striking
dissimilarity between the one- and two-carrier
magnetoplasmas. As Figs. 19 and 20 show, the
fields and charge densities near the surface are
extremely important. [The field patterns are for
the magnetic (m =+1) fundamental resonance and
were calculated employing the full gyrotropic
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tions (FW 3.40) were solved for the GP' using
Gaussian elimination with iterative improve-
ment. " The G„' thus determined were substituted
directly into Eqs. (FW 3.42) and (FW 3.43) to
determine f,„and g, . Sums over l from 1 to N
were then used in the calculation of-the desired
cross section [Eqs. (FW 2.54), (FW 2.5V), or
(FW 2.58}j.

The auxiliary eigenvalue problem (FW 3.15)
was modified to read

Q (3gf;.W+iyJ(gg' —X'6), ,)d', .„=0, /=1, 2, 3, . . .

~a

A J

FIG. 20. Internal magnetic field for the fundamental
resonance of a compensated two-carrier magnetoplasma
in the x-y plane. The magnetic field of the incident
plane wave has the form S=B~e~. The figure shows the
imaginary component of the internal field. The largest
magnetic f ield component shown is about 6& times
larger than the largest magnetic field component shown
in the x-g plane (Pig. 19).

solution. ] In the x-z plane, the magnetic field
pattern of the fundamental resonance is similar
to that of the M(1, 0) resonance. The magnetic
field patterns of all the resonances above the
fundamental look very similar to this pattern in
the x-z plane. The electric field is again, for
the most part, restricted to the plane perpendic-
ular to the dc magnetic field, but it only has sig-
nificant magnitude near the surface. The field
patterns suggest that for compensated two-
carrier systems the resonance spectra may be
extraordinarily sensitive to the near-surface
region of the sphere, since all the fields are weak
near the center of the sphere and much stronger
near the sphere surface. [Note the magnetic field
pattern in the x-y plane shown in Fig. 20. The
magnetic field in the x-y plane is significantly
stronger than in the x-z plane. ]

V. NUMERICAL SOLUTION OF THE GYROTROPIC
SPHERE PROBLEM

A. Numerical ilgorithm

The algorithm used for most of the numerical
computations described in this paper differs from
the technique empioying the Z„. (FW 3.46),
which was outlined in Sec. III C of the preceding
paper. ' Instead, the set of N homogeneous equa-

q' = [Z'/(1 iA'-)]H. /c' (25)

to determine the q associated with each value of
This modification removed severe computa-

tional. difficulties which occurred when W neared
zero. The modified auxiliary eigenvalue problem,
which involves a general complex matrix of size
N, was solved via KISSABLE' routines certified
for CDC 6000-series computers.

The internal fields, given by Eqs. (FW 3.24)-
(FW 3.36}, were calculated by truncating all
sums with the first N terms. Specifically, the
sums in Eqs. (FW 3.24)-(FW 3.26) over all the
values of ~ included the N values of A. given by
the truncated eigenvalue problem (FW 3.15); and
the sums on / in Eqs. (FW 3.18)-(FW 3.20),
(FW 3.22), and (FW 3.23) were terminated atl=¹

%ith %=19, the calculation of the extinction
cross section of a gyrotropic sphere for a given
dc magnetic field required roughly 13 sec on a
CDC 6500 computer; with N =15, the calculation
was done in about 7 sec. Completion of the calcu-
lation of the internal fields at all. the positions on
a 201-point grid required approximately 500 sec
of computer time with X=13.

B. Convergence of the numerical algorithm

The algorithm used in the numerical, computa-
tion has demonstrated rapid convergence with in-
creasing matrix size (the ortler of the matrix is
X) in calculations of all the cross sections (ab-
sorption, scattering, and extinction) and of the
internal fields. Figure 21 demonstrates the be-
havior of the calculated extinction cross section
as a function of A' for a single-carrier magneto-
plasma sphere. As a general rule of thumb, cal-
culations of the cross sections and internal fields
of a single-carrier magnetoplasma sphere require
a smaller value of N to obtain a given degree of

(24)

The eigenvalues A,
' were then substituted in the

expression
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APPENDIX A: EXTININCTION CROSS SECTION
FOR VOIGHT GEOMETRY

For the Voigt geometry, the ene
for the extin t'

y, e general. expression
'nc ion cross section

o qs. (FW 2.59) and F
be reduced to the form

goV EV
'tot tot + tot y

ale e co

(A1)

w ere otpt and 0 are the cot are e contributions to oto.
e V and EV corn onen

plane wave.
p nents of the incident

The contribution to th io
from the OV corn o

e extinctioion cross section
o n p ane wavecomponent of the incide t l

min( l, l ')

1= r =1 m =- mm( S, S')

r (l + m) I !(l'+ m)!!
(l —m —1)!!(l' —m-

, ( + m —1)!!(l'+ m —1)!!BJ'L+m-
(l —m)!!(l' —' m)!!

l'-m) odd and (l-m) odd, o= —"
l' —ml —m) even and (l —m) eveven, v= -)

0, (l' —m) odd and (l —m) even,

) even and (l —m) odd0 I,'-m

Re ~
~-~' 2r x 2l+1 2L'++ —m)! (l' —m)!

, , (x) ll'(l+1)(l'+1) (l+m)! (l'

1}!!lR

(A2)
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where E, = E,2+E~!l~, B,=B,2+B~Q~, k =kk, 2 &&k =!!~, and min(l, l') means the smaller of l and l'.
The contribution to the extinction cross section from the EV component of the incident plane wave is

min( l l ')
v)~ = —,g g g Re (-1)' ' j,(x) (2l+1)(2l'+1) (l-m)! (l'-m)!' ~' ~

l'=1 m=-min(l, l') k&»(x) ll'(l+1)(l'+1) (l+m)! (l'+m)! ~

m' t' . . .
' -', , (l'-m) even and (l-m) even, a =(-)'"1)!!(l,

1

(l+ m)!!(l'+ m}I! [B,l' 1

(l —m —1!!l'-m —1!!
0, (l'- m) odd and (l —m) even,

g0, (l' —m) even and (l —m) odd.

Thus, the OV and EV linear polarizations inter-
act independently with the gyrotropic sphere,
since each polarization is associated with a dif-
ferent parity of o' for any particular value of m.
This is due to the fact that every combination of
m and o' corresponds to a different eigenvalue
problem (FW 3.15) and thus produces a sphere
response different from that of the other parity.

(
ggm!y+i ~ gm!y g / 0ll ~ 11 lm

We set d,
' =1 and, using Eqs. (FW 3.16) and

(FW 3.17), evaluate JR/; and 31«' to get

(81)

APPENDIX B: EQUIVALENCE OF %=1 EXPRESSIONS
AND PERTURBATION SOLUTION RESULTS

IN RAYLEIGH LIMIT

In getting the numerical solution to the gyro-
tropic sphere problem, various infinite sums are
terminated after N terms. In this appendix, we
show that, for N =1, the truncated gyrotropic
sphere solution yields the perturbation-theory
expressions derived by Ford, Furdyna, and
Werner2 for power absorbed by a gyrotropic sphere.

With N = j., the auxiliary eigenvalue problem
(FW 3.15) becomes

where the f'„"o are defined by Eqs. (18)-(19).
Considering only the o'=- case, we use Eqs.

(FW 3.37) and (FW 3.34) to arrive at the expres-
sion

x2j, (x) Y," (X) „
4m X" (~) ' (84)

g,.—
15(24 )u. Q 1 2 2( m }~

m"-»
(86)

The magnetic dipole contribution to the extinction
cross section is, according to Egs. (FW 2.58)
and (FW 2.16),

4~ ' Y„A,' +k B

2w ka'~' ' ~(efo
Im

where x =ka. The dipole-limit expressions
(FW 4.11) and (FW 4.12) for Y", '(A) and X,"'(A.),
coupled with Eqs. (FW 2.29) and (FW 3.36), reduce
Eg. (84) to "j (&) " j,(y)

gym = '

k( &( ) g ~

( )
(&m'8)i (85)

1 m~ 1~0 ~

where y =qa. Employing Eg. (FW 4.32), we find
that, in the Rayleigh limit,

~l

—+7', (4--m ) o=+.elm . y
sP

(82) (87)

Now, the incident intensity of the plane wave is

Then, utilizing Eqs. (FW 3.12) and (8.2), we
find that

~( ff)
C2 m

10+6 Cgg

c fgg(f~+f )+8f, f

2f~E
~c' —,'f„[(-,'+m)f +(-,' —m)f, ]+—,'f, f '

m=+1, o=+ (83}

(88)

so that the power absorbed by the sphere from the
external magnetic field, which is 0„, multiplied
by the incident intensity, is

a'~' " (eff)
(P"= ~ Im m

m=-1

f

which agrees with the Hayleigh-limit perturbation
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result of Ford, Furdyna, and %erner. 2

Returning to the a =+ case, we use Eqs. (FW
3.3V) and (FW 3.34) to get

3&m

(24m) ' ~ . 2e, +e„(l-Se,&d'a'/c )

x(e„* E,). (B14)
&'i, (&) F (~)
4' X '(X) ' (B10) The electric dipole contribution to the extinction

cross section is
By replacing a, (y) and j,(y) in the dipole-limit
expressions (FW 4.11) and (FW 4.12) for FP'(A)
and XP'(&}with the first iwo terms in their series
expansions (FW 4.32) and (FW 4.33), we get a
Rayleigh-limit expression

F,"'(A).2 —2c ~q'/(u'e, -(c 'q'/(o'Z) a', (X) ——,
' a'q'

X,"'(A) 2+c'q'/uP», —(c'q'/&o'e)b, ',„(X)——,'a'q'' (815}

(4w)' (pf, Y,",lk)Xk ~ E;)
S& 1

+1
= 2mka'Im,

26 +E (I ——'E Id' (c ))
xle.* E,I'

where

ck~~(A. ) = ~(3m —2)y+imW .
Equation (811) reduces to

(811)

(B12)

Again, the power absorbed from the external el.ec-
tric field, which is a«, (S S,„,), is

Y, '(A. ) 3 If'
X, '(&) 2c, + e„(l—-', e,(o'a'/c') ' (B13)

Thus, in the Rayleigh limit, Eq. (B10)becomes

x [e+ ~ E,/', (B16}

which is identical to the Rayleigh-limit result of
Ford, Furdyna, and %erner' when the dielectric
constant outside the sphere is &2 instead of 1.
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