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The problem of the scattering and absorption of a plane electromagnetic wave by a gyrotropic sphere is
solved in this paper. This is a generalization of the classic Mie scattering problem to the case where the
dielectric constant is a tensor having axial symmetry. For this problem, Maxwell s equations are not

separable in spherical coordinates. The method of solution involves the expansion of the electromagnetic field.
inside the sphere in a complete set of vector spherical waves, which are solutions of the ordinary vector wave

equation. The amplitudes of the scattered spherical waves are found to be expressible in the form of a series

of ratios of determinants dependent upon the components of the dielectric tensor, the wavelength of the

incident plane wave, and the sphere radius. These scattering amplitudes are examined in various limits. In
the limit when the dielectric tensor is a scalar, the Mie results are recovered. When the wavelength of the
incident plane wave is large in comparison to the sphere radius, our previous results for helicon oscillations
are obtained in addition to new resonant structure induced by the incident electric field. Under conditions

when the wavelength inside the sphere is also large compared to the sphere radius (but large compared to the
incident wavelength), previous results in the Rayleigh limit are obtained. Selected applications of the results

of this paper have been made by Dixon and Fnrdyna (helicon oscillations, electric dimensional resonances

and cyclotron resonance in metals and semiconductors, Alfven resonances in semimetals), and by Markiewicz

(Alfven oscillations in electron-hole droplets).

I. INTRODUCTION

We consider the problem of the scattering and
absorption of a plane electromagnetic wave by a
gyrotropic sphere. This is a generalization of the
problem of the scattering by a dielectric sphere,
discussed in the classic paper by Mie. ' The dif-
ference lies in the assumed form of the dielectric
relation between the displacement vector D and the
electric vector E:

D=~ E.

Within the sphere we take the most general form
of the dielectric tensor consistent with axial sym-
metry:

(1.2)

In the classic Mie problem the dielectric tensor is
taken to be isotropic (e„„=0,e„=e„„=e). The
basic difficulty of our problem is that there is no
coordinate system in which the MaxweQ equations
are separable and which has both axial and spheri-
cal symmetry. In an earlier paper on the helicon
oscillations of a sphere we showed how to sur-
mount this difficulty and we apply here an equiv-

alent technique to the more general problem. '
The basic equations are the Maxwell equations

for fields varying in time Oce '~':

curl@ —i(to/c) B=0, curlB+s(to/c)5=0,

curl curl (Z
' ' D) —(to /c') D = 0. (1.4)

where 8 is the magnetic field, c is the velocity of
light, and D and E are related by the dielectric re-
lation (1.1). The boundary conditions at the surface
of the sphere follow from these equations by stan-
dard arguments. 3 The normal components of 8 and
D and the tangential components of E and B are all
continuous at the surface. These boundary condi-
tions are not all independent, as we shall see ex-
p)icitly in our later discussion.

The problem we consider then is to find the so-
lution of these equations corresponding to an in-
cident plane wave plus outgoing spherical waves
(scattered waves) outside the sphere (where we
take the dielectric relation to be isotropic). In-
side the sphere we take the dielectric tensor to
have the general axially symmetric form (1.2).
That is, inside the sphere D must satisfy the equa-
tion obtained by eliminating B from (1.3) and using
(-1.1)
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Here

~ax
2 2 2 2

~~~ + ~xy ~~~ + ~~~
0

Finally, in Sec. IID we give expressions for the
cross sections and discuss the solution in various
limits.

l 6x &xx

~xx + ~my ~xx+ ~ay
0 (1.5)

is the inverse of the dielectric tensor (1.2). We
call (1.4) the gyrotropic wave equation.

In Sec. II we discuss the classic Mie problem,
since much of the strategy is the same as in our
more general problem. There we introduce vec-
tor spherical waves, expand the incident plane
wave in terms of these waves, and apply the bound-
ary conditions to obtain the solution. We then con-
struct the cross sections. These items are pre-
ludes to corresponding items in the discussion of
the more general problem.

In Sec. III we construct the solution for the most
general axially symmetric dielectric relation. The
first task there is to construct the general solution
of the gyrotropic wave equation (1.4) inside the
sphere; outside the sphere the fields have the same
form as in the Mie problem. We then apply the
boundary conditions to obtain the solution. In Sec.
IV we discuss various limiting cases of the solu-
tion.

The applications of the theory depends upon the
particular form of the dielectric coefficients e,-;,
their dependence upon frequency and upon various
material parameters as weQ as external param-
eters such as magnetic field. This is generally
determined from calculations based upon more or
less simplified models of the material medium.
In the following paper by Dixon and Furdyna se-
lected applications based on the single relaxation-
time magnetoplasxna are given. "These include
helicon and electric dimensional resonances in
metals and semiconductors, cyclotron resonances,
and Alfven resonances. These applications, and
many others, are of considerable experimental
interest and are worthy of much greater develop-
ment. If the history of the classic Mie solution is
any indication, the scope for further discussion of
our solution is enormous. In Sec. V we discuss the
possibilities for further work.

A. Vector spherical waves

The vector spherical waves are solutions in
spherical coordinates of the vector wave equa-
tion4:

V(i U) -V&&(V'XV)+q'U=o. (2.1)

V2~+q2u =0. (2.2)

The scalar spherical waves regular at the origin
are

u, „(qr)=j,(qr) 1',„(r),
)=0, 1, 2, . . .; gz =0, +1, . . ., +I (2.3)

where j, is the spherical Bessel function, ' and 7,
„

is the (scalar) spherical harmonic. ' We shall also
want the outgoing spherical waves

u,"„&(qr) =h,"' (qr) r,„(r), (2.4)

where h,"' is the spherical Hankel function. '
The vector spherical waves regular at the origin

a,re of three kinds:

&,„(qr)=(1/q) &u,„,
C, (qr) =[I(I+I)] "'Ku,

A, „(qr)=(i/q) V XQ,„,
where

(2.5)

L=-irXV.
(K is the infinitestimal generator of rotations for
a scalar field. ) With the help of well-known formu-
las from vector analysis, ' one can readily verify
that these vector fields satisfy the vector wave
equation (2.1). In the same way one can also dem-
onstrate the following identities:

(2.7)

They can be expressed in terms of simple vector
analytical operations on the scalar spherical waves,
which are solutions in spherical coordinates of the
scalar wave equation

H. SOLUTION FOR AN ISOTROPIC SPHERE

In Sec. IIA we introduce the vector spherical
waves, giving the essential formulas we need.
Then in Sec. IIB we expand the plane wave solution
of Maxwell. 's equations in terms of these waves.
With these results it is a simple matter to con-
struct the Mie solution; this we do in Sec. II C.

VxA& =ZOIC, , Vx8, =0, Vx C, = -iqA

(2.8)

The vector spherical waves can be expressed
explicitly in terms of vector spherical harmonics':
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l
Ai. =

I,2„1I j "«»Yr", i+~«)
and the amplitudes E, and B, are constant vectors
mith the relations

1/2

jl -1(qr) Yr
~ l -l(r) B1—— Q XE1, E1 = — Q XQ1.

(o " ' ok
(2.16)

)1/2

jr"(«»r", r"(r)ill . (21 + 1 )
1/2

+ ig-1e" &i, )-1& ~

(2.9)
Consider first the expansion of the electric fieM

E(r) in (2.14). We begin by using the spherical unit
vectors

e, = —(x+iy)/W2, e, =z, e, =(x —iy)/W2

C,„=jr(qr)Yr", r(r).
The vector spherical harmonics YL, in turn can
be expressed in terms of simple operations on the
usual scalar spherical harmonics:

Yi" „~(r)=[(l+1)(2l+1)] +'r"'Vr ' '1',„(r),
Y", ,(r) =[l(l+1)] ~'LYr„(r),
Yr, ,(r) =[l(2l+1)] ~'r "'Vr'Yr (r).

(2.10)

In the app1. ication of the boundary conditions me

shall also need the formulas

r A, „=[l(l+1)]"'[j,(qr)/qr]Y, „(r"),
r B,„=[dj,(qr)/d(qr)] Y, „(r),
rC, =O,

and

(2.11)

r x Ar„=-i [jr(qr)/qr +djr(qr)/d(qr)] Yi" r(r)

=- -inr(qr) Yr, (r),
r" x B,„=z [l (l+ 1)]"'[j,(qr)/qr] Yr" r(r), (2.12)

r Cx, „=ij,( rq) f(l/2l+ I)"'Yr „,(r)

+ [(l+1)/(2l+ 1)]rj'Y" (r")]

These all follow directly from the definitions (2.5)
with the use of (2.9), (2.10), and, in the case of
the first formula in (2.11), the identity

I,'Y;„=l(l+1)Y,„. (2.13)

Finally, we shall want the outgoing vector spheri-
a1 maves A,' ', B,' ', C~~", which are obtained by r

placing u, „withu,'" in (2.5). If the spherical Bes-
sel functions j, are replaced by spherical Hankel
functions Jg', ', the formulas of this section hold as
well for the outgoing vector spherical waves.

(2.IV)

to expand the amplitude

1
Er= Q e* ~ Ere (2.18)

Next we use the well-known expansion

e' '= P(i)'(21+ I)j,(kr)Z, (k r), (2.19)
k=0

and the addition theorem for spherical harmonics':
l

P, (k r)= g Y,„(k)*Y,„(r),
I=-l

to obtain the expansion

(2.20)

E(r) =4s P(r )'j, (kr)
1 =.0

e„Y,„(r)= g Yf,(r")(l 1LM ) lm1m'), (2.22)

where (l1LM
~
lm1m') is the Clebsch-Gordan co-

efficient. Inserting this expression for each pro-
duct in (2.21) and using the orthogonality relation
for the Clebsch-Gordan coefficients,

P (I ILM I 1m 1m')(lmlm'~ I 1L,'M') =5.,.5„„,,
m$ m

(2.23)

we get the result

(2.21)

The products of spherical unit vectors and spheri-
cal harmonics can be expressed in terms of vector
spherical harmonics':

B. Expansion of a plane wave

The plane-wave solution of Maxwe11's equations
(1.3) in an isotropic medium with dielectric con-
stant c is

L L+1
E(r) =4ii Q Q P (i)r Yf,(k)i*

L=1 8=-L / =L"1
' E,j,(kr) Y",(r) .

(2.24)

E(&) E &ik r BP) B &ik'r

where

k' = aid'/c',

(2.14)

(2.15)

The products of spherical Bessel functions and
vector spherical harmonics in this expression can
be expressed in terms of vector spherical waves
using (2.9). This allows us to rewrite (2.24) in the
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form
oo

E(r) =4v P P (i)'[Y,",(k)*&&k E A, „(kr)
t =0 m=-t

—i Y', „(k)*kE~ B,„(kr)
+ Yq"((k)*' Eg C(„(kr)],

(2.25)

where we have used the relations

choose the axis of cylindrical symmetry as the
polar axis.

C. Mie solution

The classic Mie problem is the scattering of a
plane electromagnetic wave by a conducting di-
electric sphere. The medium outside the sphere
has a real isotropic dielectric constant e„while
inside the sphere the dielectric constant is iso-
tropic and of the form:

( l+j )»
Y, - (k)+ I 21,1 Y, ~ (k) Eg = &) +$ (47T(T/(4)) 4 (2.30)

= -ik && Yq, (k),

Yg,g-y(k)
I& 21 1 I Yg

~
gq. g(k)

(2.26)

Yq", (k}*xk BgC, (kr)] .

(2.27)

In the same way we obtain the corresponding ex-
pression for the magnetic field:

t

B(r) =4m Q Q (i)' [Y)q(k)*&&k ~ B,A, „(kr)

which follow from (2.10).
Using now (2.16), we see that the coefficient of

B, vanishes, as it must since V ~ E =0, and we can
write (2.25) in the final form:

oo t

E(r) =4m P g (z)'[Y,",(k)*&k.E A, „(kr)
t =1 m=-t

k2 = 6 M2/C (2.32)

The expansion of the plane wave in terms of vec-
tor spherical waves is given in (2.2V) and (2.28);
the scattered fields can be expanded in terms of
outgoing spherical waves

E„„=4rP ((V(y; XP'{qr)
l~m

B„„=4vg(') Ig, „A,'. (kr)
t, m

(2.33)

where e, is the background (or lattice) dielectric
constant, and p is the conductivity. The fields
outside the sphere correspond to the incident plane
wave plus an outgoing scattered wave:

$k l'+E
(2.31)

B«, = B~e'" '+ B«8f p

where

t=l m=-t

+ Yq, (k)*&&k E~ C, „(kr)] f, CP'(qr)) .

(2.28)

The expressions (2.27) and (2.28) are our desired
expansion of the plane-wave solution of Maxwell's
equations in vector spherical waves. They have
been arranged so that the terms proportional to the
electric amplitude E~ correspond to electric or TM
waves, while the terms proportional to the magnet-
ic amplitude B~ correspond to magnetic or TE
waves. ' There being no natural axis of symmetry
for an isotropic sphere, the most obvious choice
of the polar axis in the Mie problem is the direc-
tion of propagation of the incident plane wave, i.e.,
z =k. In this case

From formulas (2.V) and (2.8) it is obvious that
these scattered fields fulfill Maxwell's equations
(1.3). In the same way it is clear that the fields
inside the sphere can be expanded in regular vec-
tor spherical waves

E,„=4vQ(i}' a, „Aq„(qr)— c)„C,„(qr)I,

(2.34)

B,.„=qrg ({)'(r,„X,„(qr)+ a,„C,„(qr)),tm ™
where

(2.29) 2 & %2/C2 (2.35)

and vanishes for other values of m. For this choice
of axis the expansion is well known. ~ We will
need the more general case when we attack the
problem of a gyrotropic sphere, where we must

The coefficients f,„,g,„,a,„,and c,„arede-
termined from the boundary conditions at the sur-
face of the sphere. The continuity of the tangential
components of the electric field requires r &E,„,
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=rxE. at the surface of the sphere. Using (2.12)
and the orthogonality of the vector spherical har-
monics, this gives

a,„n,(qa) =f,„n', '(ka) +Y(",(k)*xk ~ E~n, (ka),

(2.36)

a, qaj, (qa) =f,„kah((~'(ka) +Y(,(k}*xk~ E~kaj, (ka).

(2.41)

Continuity of the normal component of the magnetic
field gives

and

j,(qa) hI" (ka) „,- - j,(ka)

(2.3V)

{ka} „(} - j,

(2.42)

where

n, (x) =- —— —[xj,(x)],

ng"'(x) -=—„[xh',"(x)] .
(2.36)

+Y" (k)+xk E e
0

(2.39)

In the same way from the continuity of the tangen-
tial components of the magnetic field we get

c,„n,(qa) =g,„n,"&(ka) + Y,",(k) *Xk B,n, (ka),

(2.40)

The continuity of the normal component of the dis-
placement vector requires e,r E,„,=c~r" E;„.Us-
ing (2.11) and the orthogonality of the spherical
harmonics, this gives

j((qa), h&"'(ka)
(m 1 qa (m

x—=ka, y = qa.

Then, from (2.36) and (2.39) we find

(2.43)

The six equations (2.36), (2.37), and (2.39)-(2.42)
are not independent since (2.42} is identical with

(2.3V) and, using (2.32} and (2.35), it is seen that
(2.39) is equivalent to (2.41). We discard equation
(2.3V) so that the electric coefficients a, „andf, „

are determined from (2.36) and (2.39), which come
from the electric boundary conditions. Similarly
we discard (2.41} so that the magnetic coefficients
c,„andg,„aredetermined from (2.40) and (2.42),
which come from the magnetic boundary conditions.
This diff ers from the universal practice of applying
boundary conditions only to the tangential components
of the fields. " Our choice, however, is more con-
venient in discussing the quasistatic limit, where
the wavelength of the incident field is large com-
pared with the sphere radius, but the wavelength
inside the sphere is not necessarily small.

The solution of these equations is straightfor-
ward. To simplify the notation we introduce

j (y) h(')(x)
a, = ic~' ~, ' n,"'(x) —e, ' n, (y)~ Y,",(k)+Xk E„

I

f( =
I &2 '„' n((y)-&i ' n((x) x

'- nI"( }- ~
' n((y)

X

(2.44)

where we have used the identity':

n,"'(x)j,(x) —n, (x)h,"'(x)=j,(x) h,"'(x) —hP'(x) j,(x) =ix ' (2.45)

Similarly, from Eqs. (2.40} and (2.42) we find

j y) h"' x)-3 Jl y (1)(x) ( n (y) Ym (k)s xk, P

(2.46)

g,„=
i

' n, (y) — ' n, (x)
i

' n("'(x) — ' ' ' n, (y) i Y,",(k)*xk
II~I



18 SCATTERING AND ABSORPTION OF ELECTROMAGNETIC. . .

These expressions for f,„andg,„arewell known.
Thus, in terms of the coefficients a, and 5, used by
van de rHulst and by Kerker,

f,„=a, Y-P, (k)*xk E~, g,„=-b, Y)",(k) xk B, .
(2.47)

For a summary of notations used by various auth-
ors see Kerker's Table 3.1, pp. 60-63.

D. Cross sections

The intensity (energy per unit time per unit area)
of an electromagnetic wave varying in time (xe '~'
is given by the time average Poynting vector"

S = (c/8v) Re (E x B*). (2.48)

The differential scattering cross section is the
ratio of the scattered energy per unit time per
unit solid angle far from the sphere to the inten-
sity of the incident plane wave, that is,

easily obtained from (2.33) and (2.5), using the
asymptotic form of the spherical Hankel function':

k")(x)-(-i)"'x 'e'", x»1.
In forming 8, , and 8„„in (2.49) we use, respec-
tively, the first and second terms in (2.50). The
result is

(2.52)

lt'« I
Fl'

IE IE

The total scattering cross section is

.„„=JEE (";„)
(4 '

g I f).l'+(~/ck)'I g,„l'
I(k IE

(2.53)

(2.54)

where we have used the orthonormality of the vec-
tor spherical harmonics'

l„„=limr'r 8„„I'do', l
S;„,. (2.49) dQY", .(r} Y"*,(r) =5 ~ 5,.~,5„.„.(2.55)~

~
~ ~

The fields far from the sphere have the asymptotic
form

E e &T&' r + Fe r(k r/r
out

B,„,-B,e '"' ' + (ck/&o) r x Fe' k "/r,
where

(2.50)

F(k, r)= . p f, Yp, (r)xr — "g,„Yp(r)I

(2.51)

is the vecto~ scattering amplitude. This result is

The abso+tion cross section is the ratio of the
power absorbed by the sphere to the incident in-
tensity, that is

a',b3
=- dQr ~ S

)g=a
' Sjnc ~ (2.56)

In the integral we form S from the fields (2.31)
just outside the sphere. The integra1 itself can be
performed using (2.9} and the orthonormality of
the vector spherical harmonics. After a fair
amount of algebra the result can be expressed as

(44 '
p If, I'+(rcfck)'IE, „I' f, Y, ,(k)xk E, —„(rc"fck)E,Y„.(k) E,") (2.57)

The total cross section (extinction cross section) is the sum of the scattering and absorption cross sec-
tions

(4n ~ f, Y"„(k)xk E,* (&o/ck)g, YP-, (k) ~ Ef
v —o (+Gb —— ~Re

'( S, m lE I' (2.58)

Comparing this with (2.51) we see the well-known
relation between the total cross section and the
imaginary part of the forward scattering ampli-
tude"

o...=(4v/k)imlF(k, k) E,*/IE, I ]. (2.59)

Note that the various cross sections are in fact
independent of the incident field amplitude IE, I

= (cu/ck) IB, I, since the vector scattering amplitude

P and the coefficients f, and g, are all propor-
tional to jE, ).

From the point of view of the (isotropic) Mie
problem the above results are unnecessarily com-
plicated, since the direction of the polar axis is
left arbitrary. However, in the discussion of the
scattering by a gyrotropic sphere we must choose
the polar axis along the axis of symmetry of the
dielectric tensor, so this generality will be re-
quired.
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A. General solution in a gyrotropic medium

We want to find the general solution of the gyro-
tropic wave equation (1.4). It will be convenient
to express the inverse dielectric relation occur-
ring in this equation. in vector notation

E =7 ~ D = (D+ yZ Ds + WZ x D)/e, (3.1)

where

III. SOLUTION FOR A GYROTROPIC SPHERE

In Sec. DIA we construct the general regular
solution in spherical coordinates of Maaovell's
equations for a gyrotropic medium. In Sec. IIIB
we expand the fields inside the sphere in terms
of this solution; the fields outside have the same
form as in the isotropic case. We then fit the
boundary conditions to obtain an infinite set of
coupled equations for the expansion coefficients.
In Sec. III C we discuss the numerical solution of
these equations, obtaining expressions for the co-
efficients f,„andg,„whi ch characterize the scat-
tered fields. Finally, in Sec. III D we discuss the
auxiliary eigenvalue problem which occurs in the
general solution.

need the formulas"

~ ( m
/& X~r~= M ~&/(/+1)

6)r E~«~

i3XP,~ Z I
™»'g)~ LEE PE

m
+E(I El) r r )

where

~rsl=-H(/+ I, m) 6. E. a++H(/&m)6&E, r-). =

H"„,= [(/+ I)//]'~'H(/+ l,m)6„„,
+ [//(/+1)]"'H(/, m)6„,, = L,„,

LESE
= [(l+1)/(l+ 2)] ~'H(/+ 1,m)6E „E,

+ [//(/- 1)P'H(/, m)6„,, = X,"„,
with

H(l, m) = [(l' —1)(l' -m')/l (4/ -1)]' '.

(3.4)

(3.5)

(3.6)

&~+&xv

&xx

E~+6„
~xx&ge

(3.2)

Using the identity

2 V2 = V+2 x(2 xV) (3.V)

We will seek a solution of (1.4) in the form

D= Q [a,„X,„((/r)+c(gE ((/r)],

where q is as yet undetermined. The irrotational
vector spherical waves 8, do not occur in this
expansion since divD is zero. In forming (3.1) we

and (3.4), the remaining formulas which we need
are easily obtained;

&'~E (=sE +r&'~t' +~gt ~E' + ~tt ~E' )l' (3 8)

1 V,J l(l'„.X,.„+1)=."„.8„„+;)II„,V, . ),r& l&l+1

where

BEE.=H(/+2, m)H(/+1, m)6„„,+I H'(/+1, m)+ H'(l, m) 6„~,+H(/, m)H(/-1, m)6„~, ,=Rp„,(l+1, l

S„,= —
[ ( + ,S)I(1+mEEm)Ill„S, , + [I(I+1)) 'I' -(I+1}ll'(I+1,m)+Ill (l, m))il„,

l+2 )'
g/g FIB

g y 1/2
+

2 H{l,m)H(/ - I,m)6„.. . (3.9)

&E)l = —[m/(l+2)]p(/+I, m)6, ,~, +, —[m/(I-1)]H(/, m)6. E .=P"„,,

QEE
= (m//) [(/+ I)/(/+ 2)] ~'H(/+ I,m)6, E, , ~

—[m/(l+ 1)][l/(l —1)]'~'H(/, m)6„,,
Putting expansion (3.3) in (3.1) and using formulas (3.4) and (3.8), we get the following expansion for the

electric field vector:
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t' .™ ns
rrg Itrgg +&ttg"g i—

Wt(t 1.trgr I+cg (&I'g"g +iW gg &

m
+ rrg I r&gg~+iW~ ~ &]rim&rg~l +cg~5'Qgg'+iWJ!r&) ~g~m

ggg(my —sw)&
+ a, (yF"„,-iwM„,)+c, 1- . &. 15„,5, , I.E($+ 1) j (3.10)

Remembering that R = e 'D, we put this expression
in the gyiotropic wave equation (1.4). We then use
the curl formulas (2.8). Finally, equating sepa-
rately the coefficients of Xg and 0g„to zero, we

get an infinite set of equations for the coefficients
gl and Cl~y

m
&its-&—&l lt(t+ 1)& w

d- @) gm& l odd,

a, , E even,
(3.13)

while for the even solutions we write

responding to odd and even parity for the corre-
sponding D. For the odd solutions we write

+egg(Mrtg i Pg g i
=0

m . y m')
l(l+ 1) W l(l+ 1) I "

- ag, ~MPg+i =T gtg =0,

where we have put

q' -=[a/(1 —ix w)](o'/c' .

(3.11)

(3.12)

d+ (y) gmg

c, , l even.
(3.14)

Then Eqs. (3.11) can be written in the form of an
eigenvalue problem

(Itgg +i 3tgg &gr ~)Cg =0 l=1 2ma ~ ma

l ~=a

(3.15)

For every value of A, for which there is a solution
of these equations, there will be a corresponding
solution given by (3.3) of the gyrotropic wave equa-
tion.

The solution of Eqs. (3.11) are of two types, cor-

where a=+, and

(3.16)

3g gr' =(-)'(rH(t +1, m)5g, „,+[m/l (l +1)]5g,g

+(-}"rgrH(t, m)5g. g r

& -(m/l)H(l +1,m)5r.„,+[m'/l (l +1)]5g.g

-[m/(l+1)]H(l, m)&g g „rr=(-)',
H(l +2, m)H(l +1,m)5gi g+, —[m/(l +2)]H(l +1,m)6 gl g+r g

@+INC

8+1 l
H (l + 1, m) + H'(l, m)

(3.17)

—[m/(l-1)]H(l, m)&g g r+H(l, m)H(l-1, ggg)5g. g „

( )g+r

57 =P gt, (&}Cr (qr)+Z dg (&)Ar (qr), (3.13}
Ilodd leven

The infinite matrices SR„'~ and X»' are real and
symmetric so that when i y/W is real the eigen-
values A are real. Further discussion of this
eigenvalue problem is given in 3ec. III|..

For each m, o', and eigenvalue A there mill be a.

corresponding regular solution D& of the gyro-
tropic wave equation. Thus

and

Dx = Z4 (~}Ar (qr)+ ~ dg'(~}c.(qr),
lodd leven

(3.19)

where q is given by (3.12}. The corresponding
electric field is found from (3.10). Using (3.11)
we can write
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~nba ~ &~+ ~ma
D7 + „,~~.(~)B~.(~r),

e[l (l + 1) ' ~' (3.20}

where

~[f(f+1)]'"Q @„y(S,„+Q",„)+(!W 6...+f 7( o =(-) "
i [$(f +1)]»2

(3.21)

—Z d.(~)A.(~r )
Cg

+ Z «(&)(: (sF)),
leven

(3.22)

g d'i. (~)C(.(~r)
lodd

™

Finally, the corresponding magnetic field is ob-
tained from the first of Eqs. (1.3), using the form-
ulas (2.8) for curl

boundary conditions at the surface of the sphere.
The continuity of the tangential components of

the electric field requires r p' E„t=rx E;„,at the
surface of the sphere. Using (2.12) and the ortho-
gonality of the vector spherical harmonics gives

',",
' ' g(G-(»,", ~;.(~)., (")

"n-(~) '("}
qa l+ 1.

=f, o. ,' (ka)+Y„(k)*xk E,u,(ka) (3.2V)

—p d;„(x)X,„(qF)).
l even

(3.23) ( f) +

p Gma(1)da (&)
A(7s)

4v a=(-) l

The symbol used here B™), for the magnetic field
should not be confused with the symbol B, for the
irrotational solutions of the vector wave equation.

B. Satisfying boundary conditions

The electric displacement. vector D inside the
sphere is a linear combination of solutions (3.18)
and (3.19}, which we write in'the form

G ma

X,m, a
(3.24)

The corresponding electric and magnetic fields are

where we have used the definitions (2.38). The
subscript o =(-) "on the left-hand side of (3.2V)

means that the parity o is odd if l is even and
even if l is odd; the meaning of the subscript
o =(-) in (3.28} is just the reverse. The continui-
ty of the normal component of the displacement
vector requires e,v E,„(=r D . Using (2.11)
and the orthogonality of the spherical harmonics,
this gives

and

Z & —~ '(&)E™)(r)
X,m, a

Z & G (~)B7 (r)
X,m, a

(3.2 5)

(3.26)

(-f) '
Q &0 G~g~)do (~)

A(&s)
43' ), (d qa a ( )&+&

"&' (ka} +Y (k}~x g E elm 2 pa
+ l l j 2 ya

These expansions take the place of expansions
(2.34) of the fields inside the sphere in the Mie
solution. The fields outside the sphere are of
the same form as in the Mie solution. They are
given by Eq. (2.31), where the incident plane
wave fields are given by (2.27) and (2.28), and the
scattered fields are given by (2.33). The coeffi-
cients f,„,g, , and G '(X} are determined by the

(3.29)

In the same way from the continuity of the tangen-
tial components of the magnetic field we get

Q. (a (z)4„(x)n (sa))

=g)A+I') (ka) +Y™(k)*x k ~ B,o., (ka) ', 3.30)
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p G"'(~)~l (~)il («)4g c ) ( )E+y

=f +ak~ "(ka) +Y»(k)*x k ~ E paj, (ka) . (3.31)

Continuity of the normal component of the magne-
tic field gives

( ~)
+ g Gma(~)da (~)A («)

4m gg fy ( )~

I(') kaki' (ka), ~~(k), ~ k. B i s(ka)
(8 82)

x=ka, y=qu, (3.33)

where here p is given by (3.12). Eliminating f,
between (3.27) and (3.29), and g,„between (3.80)
and (8.82), we get equations for G" (X), which can
be written in the form

and (3.29) are also equivalent. Just as in the Mie
solution we discard equations (8.28) and (3.31), so
that the electric coefficients are determined from
the electric boundary conditions and the magnetic.
coefficients from the magnetic boundary conditions.

Vfe now a.rrange these equations in a form more
suitable for their solution. To simplify the nota-
t|on we introduce

The six equations (3.27)-(3.32) are not indepen-
dent. This is obvious since (3.82) and (8.28) are
identical, while using (2.32) we see that (3.31)

QX, '(X)G"'(A) =r, ' l =1 2
X

where

(3.34)

xn(" x(„)A(y) «s (x) d (~) ( )i
y k(»(x)

X .(~) (
~

( )
«A(y)»I"(x) d. („)

A(y) ~a (~) ( )s+g
y

lm P

(3.85)

4w(i)' V»(k)+x k ~ B„a=(-)',
HI( )~&~ -Y„(k)+~k ~ E„o=(-}"'.

(3.36)

In obtaining these expressions we have used (2.45}.
Equations (3.34) determine G"'(X). The coeffici-
ents f,„andg,„canbe expressed in terms of this
quantity by eliminating the terms involving E, be-
tween (3.27) and (3.29), and the terms involving
B, between (3.30) and (3.32). The results can be
expressed in the form:

g [I', (A)G (A)] & &
i+ i, (3.37)

g l( ) g [Fnla(P)G lag(P)] g (3 38)

where

ji(y)x&, (x)
( ) d. ( ) ( ),

y j(x)
cq j (y) x~,(x) gf ( ) (3 39)

&' (~) a= (-)"'cq j (y}
jm

Again we have used (2.45).
For each m and o equations (3.34) are an infin-

ite set of inhomogeneous linear equations for the
quantity G"'(A.).

C. Numerical solution

N

~ ~&,a'a =~, ,
=1

where

(3.40)

Our method of numerical solution is the same
as that in Ref. 2. %e truncate the eigenvalue
problem (3.15) by replacing the matrices by their
N x N upper-left-hand correr (i.e. , I= 1,2, . . . ,N),
There will then be N discrete eigenvalues X,(k
=1,2, . . . , N}, which in general will be complex,
since the quantity»y/W is in general complex. We
accordingly approximate the infinite set of equa-
tions (3.34) by the finite set of equations

XP»'—=X, (X»), G» = G '(X»). (3.41)
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Similarly we approximate the expressions (3.37)
and (3.38) by

ftm 4 i xt 1~ taGa Je=(-)t+t' » ' ' &N
47T (2)

(3.42)

% m
=

4
. t I tt a )e=( )t ~

x'j, (x)
0=1

where

Yme = Yme(y ) (3.43)

The approximate equations (3.40) are, for each
m and 0, a finite set of inhomogeneous linear
equations for the quantities G~™.By Cramer's rule
the solution is"

Yl2 Yl3

Z 21 22 23
l1

X31 X32 X33 ~ ~ ~

X11 X12 X13

X21 X22 X23

31 32 33

(3.4V}

But, recalling the familiar rule for the expansion
of a determinant in terms of the elements of a
row, the numerator in this expression for Z„,is
just the determinant of the matrix obtained by re-
placing the (l')'th row of X by the l'th row of

, the matrix whose elements are the Y,~.
Thus, suppressing the indices ~ and 0,

("P= t t 'cof(X,~') jdet(X ),
1

(3.44)

where the denominator is the determinant of the
N x N matrix X whose elements are the X„.
Inserting this in expressions (3.42), we can write
them in the form

X X X3

l1 l2 l3
l2

X31 X32 X33

X1 X2 X

X21 X22 X

X3, X32 X33 (3.48)

X jt(x) I me mei
ftm 4 ( )t ( tt'+t' }e=(-tt+t

X jt(X) Iwme mes
ll &l i&-& )l ~

where

E~",Y, cof(Xt".'„)
det(X )

(3.45)

(3.46)

and so on.
With this interpretation of Z„,as the ratio of

two determinants, the expressions (3.45) repre-
sent, for N large, a solution of the Mie problem
for a gyrotropic sphere. With these expressions
the various cross sections can be calculated using
the formulas given in Sec. IID. Rather than ex-
hibit all the resulting expressions we will here
write down only the expression for the forward-
scattering amplitude. Thus, from (2.51) we get

F($ y},E mte(t, t' t=a+ Q (-i)"'xj,(x) QZt";, rex
l=l l =1 m=~ n(l, l' )

.Yt t(k) xp Et*
( )t, t

(3.49)

where we have used (2.16) and i3.33). The total
scattering cross section is related to the imag-
inary part of the forward scattering amplitude
through (2.59).

It is not our intention to claim that the method
of numerical solution outlined in this section is
unique. For the applications we and others have

I

made, it has been found to be computationally
efficient and accurate.

D. Auxiliary Eigenvalue problem

The auxiliary eigenvalue problem (3.15) can be
solved exactly. The solution is"

d'. = (i)'(-) (2l+ 1)(l —m) t

sin 8 4(tl(l+ 1)(l+m) (
X

dP~
mXPt —cos 8 sin'8 ', o = (-)'

dcose '

dPmim cos8P("--A. sin'8 ', o=(—)"',
d cos8

(3.50}
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Here we choose, say, the branch of the square
root with positive real part. Then for each 8
with 0 ~ 8& m there is a unique eigenvalue given by
(3.51) and a corresponding eigenvector given by
(3.50). The spectrum of eigenvalues is therefore
continuous, lying along an arc in the complex X

plane joining the two points A. = +1.
This solution can be checked directly by in-

serting (3.50) in (3.15)and using the recursion rela-
tions for the Legendre polynomials, "although we
should vrarn that. this is quite laborious. %e in fact
discovered this solution by expanding the fields in-
side the sphere in terms of plane-wave solutions
of the gyrotropic wave equation (1.4), expanding
these plane waves in terms of vector spherical
waves, fitting boundary conditions, and finally
comparing with the equations obtained in Sec.
III B.

The spectrum of eigenvalues being continuous,
the sums over X appearing in Sec. IIIB should
be interpreted as integrals, a convenient choice
being

(s.52)

The solutions (3.50) are not normalized, but this
is not important since a change in normalization
only results in a multiplicative factor in the quan-
tities X, '(X) and Y", '(&), which cancels in the
expressions for f, and g,„.Th'is is seen most
explicitly in the (3.47) and (3.48) where a common
factor in each column obviously cancels between
the numerator and denominator determinant.

One might expect that a knowledge of the exact
solution of the eigenvector problem would be an
advantage in numerical computations. It seems,
however, that the numerical solution of the trun-
cated eigenvalue problem, described in Sec. IIIC,
gives a "best fit" to the eigenvalues and eigen-
vectors in each order, with corresponding rapid
convergence. An attempt at numerical solution
using the exact eigenvalues and eigenvectors has
been made by Dixon, using the Purdue University
CDC 6500 computer ~s He used the exact eigen-
functions in the expressions (3.41) and (3.43) for
X»' and Y» with X~ given by (3.51) with

8 =%v/(V+1), @ =1, 2, . . . ,N. (s.53}

He found that the convergence was much slower
than with the method described in Sec. IIIC. In
fact, before satisfactory accuracy was obtained
the matrix size N becam'. so large that round-

where PP= P—P(cos8) is the Legendre polynomial
and the eigenvalue X is given by

zy y sin2psin'8+ cos8 1 — . (3.51)28'cos 8

off error in the matrix elements in the deter-
minants produced spurious results.

IV. RESULTS IN VARIOUS LIMITS

Here we discuss the form of our result in var-
ious limits. The first is that of an isotropic
dielectric relation, which we call the Mie limit.
There we show that we recover the results of
Sec. IIC. The next is the limit where the wave-
length outside the sphere 'is long compared with
the sphere radius, although no restriction is made
on the wavelength inside the sphere. This is the
limit appropriate to most of the applications dis-
cussed in the following paper by Dixon and Fur-
dyna. " When we further specialize to the case
where the- wavelength inside is long compared
to the sphere radius, we speak of the Rayleigh
limit. The geometric-optics limit, where the
sphere radius is large compared with the wave-
length, is of great and enduring importance in the

classic Mie problem. However, we are unaware
of any applications of importance in this limit for
gyrotropic spheres, and therefore do not pursue
it here.

A. Mie limit

To recover the classical Mie solution for an
isotropic dielectric relation from the solution of
Sec. III, we must set e„„=&„=&, and e„„=0. That
is, the parameters in the inverse dielectric rela-
tion (3.1) must take the limiting values

y 0, 8'-0, E E, . (4.1)

From (3.21) we see that d,', -0, and from (3.12)
that

cq/~ (4.2)

independent of X. Then the expression (3.35) for
XP'(X) becomes

j (y) xo. '"(x)

Xms(y)
(o

~) cq j,(y) xo. ',"(x),
( )

cq ' (ue y h"'(x)

~ o=(-)'",
and the expression (3.42) for YP'(p) becomes

~
jg(y) x~(x)

( )
. (,) ( ),j,(x

Y846() )
(d

( )
cq Jt(y) xQt(x) ~ ( )

cq ' ~~, y j,(x)

(T ( )/+1

(4.3)

(4.4)

Recalling that y =qa = (&,/e, )'~'x we see that the
quantities in large parentheses in these expressions
are independent of A; the only place X appears is
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in the quantities d;„(X).This has the consequence
that in forming the ratio of determinants Z»',
[illustrated in (3.56) and (3.57)] the quantities fac-
tor from each row in both numerator and denom-
inator determinants. Hence, Z»', will be propor-
tional to a ratio of determinants involving only

the d;„(&).But in this ratio when l'pl two of
the rows in the numerator determinant are iden-
tica1 and the determinant vanishes. When I' =l
this ratio is unity and, since the common factors
from all the other rows cancel, we are 1eft with

cq j,(y) xn, (x)
/

~ cq j,(y) xn,"'(x)
cq ' &oe, y j,(x) cq '

a&e y h,'"(x)

Using this in (3.45) with r, given by (3.36), and recalling (4.2), we can write

(4.5)

f, =(a, ' n, ()) —a, ' a, (x) c, ' n)"(x)-c, ' a, (y) Y,",())) xk. z, , (4.6)

which is identical to the corresponding expression
(2.44) for the Mie solution. In the same way we
recover the expression (2.46) for g,

I'", '(&) become

j&,(y)d;. (&), n=(-)'

B. Small-ka 1imit

We now consider the case in which the wave-
length of the incident wave is long compared with
the sphere radius. In our formulas this cor-
responds to the limit

j,(y)
p) (

—n &(y) + l d& (A)

j&(y) ~g (~) ( )&,)
40&

(4.11)

x=Qg -0, (4.7) j„,(y}d; (&), o=(-)'

while y =qa is fixed. For small x the spherical
Bessel functions can be approximated by'

j&(x)=x'/(2l +1)!!,h,"'(x)=-i(2l —1)!!/x'",
(4.8)

where (2l+1}!!=1 x 3 x5 ~ ~ -(2l +1) and from which,
using the definitions (2.38), we find

n, (x) =(l + 1)x' '/(2l + 1)!!,
n && & (x) = i l (2l ] ) I & /x&+2

(4.9)

(2l + I}j,(y)/y =j, ,(y}+j&.,(y),
(4.10)

(2l + 1)dj, (y)/dy =lj, ,(y) —(l + 1}j„,(y) .

The expressions (3.35) and (3.39) for X, '(X) and

We will also use the recursion relations for spher-
ical Bessel functions'

Thus these quantities, and therefore also the
quantities Z»'. defined by (3.46), approach a limit
independent of x. Qn the other hand ~, ' as given
by (3.36) is

~Y&"&(k)m xk.B, , o =(—)'

4mi"'x' '(
(2i —1) &

'l

( Y«(k)~ xk E„ (4.13)

Therefore in the sum in the expressions (3.45} the
dominant term comes from l'=1. In these same
expressions the prefactor is

x'j, (x)
4mi'

xi+2

4«i'(21 + 1)!! (4.14)

Hence, we only keep f,„andg, , the f, and g, „

I mug) (
—n, (y) — (l + 1) ' d', „(x)j,(y)
Cg

(4.12)
lj( }yz() (z) ( )&+$
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for higher l being negligibly smaller. Putting
these results together the expressions (3.45) give

and in these terms the dominant contribution
comes from Xi,'~, which becomes

~X3 A

Z e~ ~ B,lai
(24 )g/ a 11 ai 1 0

where we have used the formula

(4.15)
Hence, using the formula

Y, (i) =(3/4v)'~' e

(4.1V)

(4.18)

1/2
Y,", (a)= —i( axe (4.16)

we see that the scattered fields take the form of
dipole fields

Esca« = + (r 0/r '), 5 .« = —& (r M/r ')
and the fact, which follows from (2.16), that 5 E,
= k 8, =0. Note that the direction of propagation k
no longer appears in these expressions for f,
and g, , which is to be expected in this limit
where the wavelength is so long that the incident
fields are uniform across the sphere.

With the expressions (4.15) we can form the
various cross sections introduced in Sec. II. D (the
absorption cross section dominates). However, in
this long-wavelength limit one usually views the
incident fields as uniform ac fields which induce
ac dipole moments in the sphere, and it is these
which are the quantities of interest. To obtain
expressions for the induced electric dipole mo-
ment 0 and the induced magnetic dipole moment
M, we make a small-jar expansion of the expres-
sions (2.33) for the scattered fields. Using (4.8)
in (2.9) in which j, is replaced by hn&, we see that
in the sums in (2.33) the terms with I =1 dominate

(4.20)

1

1 3 mM=2a Z11 e ~ Ble (4.21)

In these expressions the quantities Z» are ratios
of determinants given by (3.4V) with I =1 and with
X| (A.) and Y, (X) given by (4.11) and (4.12). Ex-
plicitly, for u=+ (even parity or electric) we get

(4.19)

where, using (4.15) and g =%a, the induced dipole
moments are given by

( Cd

I cuba
( ) 2 la J l(3a

~

d+ (y )
'fa 21(Xi!) g+ (g )1 ya ~ y j I ia a ~ y

t aia

I ( ) 3 q j(y) d (g) q j (3') g (g).

(y )+ cuba J|(3'a d+ (~ )
&Qa A(3'a) ~+ (~ ).. .

cq&
' ' me, y, '

co& y,

(4.22)
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and, for o = —(odd parity or magnetic) we get

( ) 2 cled j(ya) d (~) Wa j(ya) g (~)...

(4.23)

Here y, =q, a, with

(
'I~ I I ), gp I 7 Vk t

k
(4.24)

In (4.22) and (4.23) the typical element in the first
three rows of the numerator and denominator de-
terminants are indicated. Note that numerator and
denominator differ only in the first row.

The expressions (4.20) and (4.21) represent a
complete solution in the small-ka limit. From
them one can easily obtain expressions for other
physically observable quantities. For example,
the power absorbed from the electric and magnet-
ic fields is

[j,(y, )/y~]d,' (A~) (incorrect) (4.26)

instead of

r ~ D and r" x E), while in the case of magrietic ex-
citation one neglects electric multipoles and ap-
plies magnetic boundary conditions (continuity of
B). The fields inside the sphere are treated with-
out approximation as in Sec. III. Unfortunately,
when this approximation method is applied to the
gyrotropic sphere problem it gives ari incorrect
answer. ! The quasistationary result differs from
our small-ka limit only in the even rows of the
determinants. In the electric case, the even rows
of (4.22) are given by

6e]ec 2 CO

6'm„=-,~ImM B* .
1

(4.25)
j, ,( y~ ) d, (X, ) (correct), (4.27)

In the magnetic case, the even rows of (4.23) are
given by

We conclude with some remarks concerning the
relation of our small-ka limit with the correspond-
ing results obtained with the so-called quasista-
tionary approximation. " This approximation,
which is appropriate to the small-jpa regime
where the wavelength is long compared with the
sphere radius, consists in expressing the fields
outside the sphere as a superposition of multipole
fields. In addition, in the case of electric excita-
tion one neglects Qe magnetic multipoles and ap-
plies electric boundary conditions (continuity of

j,(y„)d, (a~) (incorrect), (4.28)

instead of

(a ) (correct) (4 2&)
Xa

( ( )„ceoii ya d (~)
y

fm
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This failure of the quasistationary approximation
is surprising, since it is known that it gives the
correct answer for the small-ka limit of the clas-
sical Mie problem. ' The reason is that in the
gyrotropic sphere the electric and magnetic multi-
poles are coupled through the fields inside the
sphere, and it is incorrect to neglect the magnetic
multipoles when fitting boundary conditions in the
electric case and vice versa.

y=- qa-0 . (4.30)

Here we will keep the lowest-order corrections to
this limit. Since in Sec. IVB we neglected such
corrections in forming the small-Qa limit, to be
consistent we must here assume

q)) Q (4.31)

We will need the first two terms in the expansion
of the spherical Bessel functions'

j, (y) =[y'/(2f +1)!!](1 —y'/2(2f +3)+~ ~ ~ ), (4.32)

and, using (2.38),

n, ( y) = [(f + 1)y' '/(21 + 1)!!](1 —y'/(2l + 3)+ ~ ~ ~ ) .

(4.33}

We begin with the electric coefficients. There we
will need the identity

&; (» = —2[ (1 —m ') y + i (A. —m )W] d', (»,

C. Rayleigh hmit

In the Rayleigh limit the wavelength inside the
sphere as well as outside is large compared with
the sphere radius. Thus we obtain this limit from
the results in Sec. IVB for the small-ka limit and
assuming

2c
Z,".(»=, ~ 1 y (1 m')y imW

+1 ——-i—di~(»~
. V

2

2cq y' i, . - 4.35X,"'(»= 1 —
1 (1 —m')y —im W

+ 1+ —i d;„(A.),. V

2c, 10

where quantities of order y4 have been neglected
and we have introduced the small dimensionless
parameter

V = -i(1 —iXW)y' = -iZ(&oa/c)'. (4.36)

e —e,[1+(1 -m')y —im W- —,', iV]
, e+ 2c,[1+(1 —m')y —im@'- —,'oiV]

(4.37)

This expression, which includes the lowest-order
(in V) corrections to the Rayleigh limit, is the
same as that obtained by us previously using a
perturbation technique, "excepting only that here
g, is not taken to be unity.

To obtain the corresponding result in the mag-
netic case it is necessary to expand the first two
rows of the determinants in (4.23). Using (4.32)
and (4.33) in (4.11) and (4.12) for l=1, o'= —(the
elements in the first rows}, we find

But the quantities in square brackets in (4.35) are
independent of X. This means that these quanti-
ties can be factored from the first row of the num-
erator and denominator determinant in (4.22),
leaving two identical determinants which cancel.
Hence, Z»' is just the ratio of F", '(» to X, '(»
given by (4.35). Putting this in (4.2Q we get the
following expression for the induced electric di-
pole moment:

(4.34)
1'i (~)=i', y'(1-i'~y')d, (» (4.38)

which can be verified using the definition (3.21) of
and the eigenvalue equation (3.15) with l = 1.

Using this in (4.11}and (4.12) for the cask l =1
and o =+, inserting the above expansions, and
using (3.10), we can show

and

XP (»=(1-—', y')d, „(», (4.39)

while for 1= 2, a = —(the elements in the second
rows), we find

X." (» = (c/~2~a NA y'(1 ——,'.y')+ 5«'(1 --,' y')ld..(» ——,'.«'(1 —~'y')(1 —i!W) '&2.(~6, (4.40)

where we have used (3.10) and (3.32). But, on account of condition (4.31), ««y, we can neglect the terms
proportional to x' in this expression and write

X," (»= —,',y'(1-,4y )d,„(». (4.41)
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Using the eigenvalue equation (3.15) for l = 1, one
can verify the identity

(4.42)

We now rearrange the denominator determinant
in (4.23) by multiplying the elements of the sec-
ond row (4.41) by the factor

(3ce,/4&uaj)[5(4 —m')]'~'(my+ iW), (4.43)

using the identity (4.42), and subtracting the re-
sult from the elements of the first row (4.39). The
elements of the first row become

X", —(3cc,/4u&ai)[5(4 -m')]'~'(my+ iW)X,

'(1-—' ')d,„,(4;44)

where we have used (3.12), (3.33), and (4.36). But
now the elements (4.38} in the first row of the
numerator determinant differ from the elements
(4.44) in the first row of the denominator deter-
minant only by factors independent of A. . The ratio
of the determinants is therefore just the ratio of
these factors. Putting this in (4.21), we get the
following expression for the induced magnetic
dipole moment:

0* ~ B 0
30 1+ -,'m'y - -,im ~- i-,~ry

V. SUMMARY AND CONCLUSIONS

In this paper we have formally solved the prob-
lem of the scattering and absorption of a plane
electromagnetic wave by a gyrotropic sphere. The
complexity of thi. problem arises from the fact
that the gyrotropic wave equation [Eq. (1.4)] is
not separable in spherical coordinates.

Our tenchinque for solution has involved the fol-

This result was also obtained by us previously. "
We should emphasize the importance of the con-

dition (4.31), which in effect says that the waves
within the sphere must be much slower than those
outside. If we relax this condition, the terms of
order V in the electric dipole formula (4.37) are
no longer meaningful since we have already
dropped terms of order (ka)2, which would be larg-
er. However, the lowest order result, obtained by
setting 0 = 0 in (4.3V}, is valid without the restriction
(4.31). On the other hand, the magnetic dipole
formula (4.45), since it is proportional to V, is
never valid without the restriction (4.31).

lowing steps.
(i) Expand the incoming plane electromagnetic

wave in the regular vector spherical waves A,
and C, [Eqs. (2.2V) arid (2.28)].

(ii) Expand the scattered wave in terms of out-
going vector spherical waves A,'" and C',", with
amplitude coefficients g, and f,„[Eq.(2.33)]. The
scattering and absorption cross sections are di-
rectly related to these coefficients [Eqs. (2.54} and

(2.5V)].
(iii) Inside the sphere we chose to solve for the

electric displacement vector D. We expanded D
in terms of the vector spherical waves A, and
C,„.[Eq. (3.3)].

(iv) We found that in order for this expansion
to be a solution of the gyrotropic wave equation,
special conditions on the expansion coefficients
a, and c, must be satisfied. We found that these
special conditions could be cast in the form of an
auxiliary eigenvalue problem [Eq. (3.15)] in which
the components of the eigenvectors d, were a,
and c, and the eigenvalues X determine the spec-
trum of allowed wavevectors q [Eq. (3.12)] inside
the sphere. The solutions to this eigenvalue prob-
lem were found to be separable into results of
even and odd parity (c' = +).

(v) Thus, for each eigenvalue A., magnetic quan-
turn number m, and parity o' we found a solution
ZP~' of the gyrotropic wave equation [Eqs. (3.18)
and (3.19)], The general solution, therefore in-
volves a sum over all of these solutions, in which
we called the expansion coefficients G"'(X).

(vi) The electric field E and the magnetic field
B could then be written down using the inverse
dielectric relation [Eq. (3.1)] and Faraday's law
[Eq. (1.3)], respectively.

(vii) The boundary conditions were applied in
Sec. IIIB. We required (a) continuity of B, (b) con-
tinuity of the normal component of D, (c) contin-
uity of the tangential component of E. The appli-
cation of these boundary conditions led to six scal-
ar equations for the unknown coefficients G"'(A)
inside the sphere, and the unknown amplitude co-
efficients f, and q,„outside the sphere. Only
four of these six equations are independent.

(viii) These equations were, in fact, found to be
matrix equations of infinite size. We outlined a
.numerical technique for their solution in Sec. III C,
using the method of truncation. The results for
f, and g, „couldbe expressed as a single sum
over Z«[Eqs. (3.45) and (3.46)]. Each element
Z„,could be expressed as the ratio of two Ã XN
determinants when the matrix equations were
truncated at a size N &&¹

In Sec. IV we examined the general solution in
various limits: (i} Mie limit when Z- c,. (ii)
Smail-ka limit. (iii} Rayliegh limit (qa-0).
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In the following paper by Dixon and Furdyna" two
selected applications of the solutions presented
in this paper are given: (i) A gyrotropic sphere
made from a single-carrier semiconductor at
microwave frequencies. (ii) A compensated, two-
carrier magnetoplasma sphere.

Markiewicz" has used our results to analyze
Alfvdn-wave oscillations in an electron-hole drop-
let at microwave frequencies.

There are a number of directions where exten-
sions of this work may prove interesting and use-
ful.

(i) It is clear that the mathematical techniques
developed here could be extended easily to in-
clude magnetic materials (paramagnetic, ferri-
magnetic, and ferromagnetic) that are either con-
ducting or insulating.

(ii) Although the theory presented in this paper
is equally valid for large ka as for small ka, the
phenomena and resonant structure expected at
ka a2, where the scattering cross section begins

to compete with the absorption cross section, re-
mains largely unexplored. New numerical algor-
ithms will probably have to be developed to prop-
erly examine this domain of incident wavelengths.

(iii) It is apparent that the extension of the re-
sults of this, paper to slightly deformed spheres
would be useful in a number of research areas.
Except at very low frequencies, this appears to
be a rather forbidding task.
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