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Discrete coherent states on the von Neumann lattice
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The discrete subset of coherent states on a lattice in phase space is used as an expansion basis for states

and operators in quantum mechanics. The nature of the expansion as well as the uniqueness of the expansion

coefticients is investigated. An explicit example is given for the harmonic-oscillator states.

I. INTRODUCTION

/

The use of coherent states in quantum mechanics
is by now well established, and their properties
and applications have been described in many ar-
ticles particularly since the early 1960's.' These
states are often referred to as the most classical
states and they are specified by the expectation
values 7 and p of the coordinate and momentum op-
erators. On one hand, because of their classical
nature the coherent states find different applica-
tions in a variety of problems in physics and in

particular in quantum optics. ' On the other hand,
these states have some unusual properties in the
framework of quantum mechanics, e.g. , they are
nonorthogonal for different pairs of x and p and
they form an ov'ercomplete set when x and p cover
all the points of the phase plane.

It is of interest to define a discrete subset of co-
herent states that are associated with the von Neu-
mann lattice. ' This subset is obtained from the
full set by restricting the values of 7 and p to a
lattice in the phase plane. The full set of coherent
states has been well studied by Bargmann, ' Glau-
ber, ' and Klauder, ' and by others since, and it
was shown that in spite of being nonorthogonal and
overcomplete, these states nevertheless provide
a good and useful basis for expansions of general
states and operators. More recently Bargmann,
Butera, Girardello, and Klauder' and Perelomov, '
have investigated the discrete set of von Neumann,
and have demonstrated the completeness of this
basis as well. Their proof has lately been simpli-
fied and generalized by using the kq representa-
tion. '

Perelomov in his paper' introduced the set of
functions biorthogonal to the discrete set of co-
herent states associated with the von Neumann lat-
tice. With their aid he derived some interesting
and remarkable properties of the von Neumann
set, and pointed out that they can be used as a ba-

sis for the expansion of a general state, some-
what in the spirit of Glauber's' approach for the
full set of coherent states. However, as Perelo-
mov notes, one has to be careful how such expan-
sions in a discrete nonorthogonal basis are to be
interpreted. We wish in this paper to go further
into the nature of thy expansions and of the prop-
erties discovered by Perelomov, and for this pur-
pose the kq representation proves an extremely
useful tool because both the von Neumann set and
the biorthogonal set there assume very simple
forms. We also give new results on the expansion
coefficients for the important case of the harmon-
ic-oscillator states. In applications, the, need of
expanding jn states on a discrete lattice arises,
for example, in the Pippard network for studying
Landau levels in a crystal. ' It was shown that
these lattice states correspond formally to the von
Neumann discrete set."

A normalized coherent state n) in one dimension
(to which we shall r'estrict ourselves) is definable
as an eigenstate of the annihilation operator g with
the eigenvalue a,

a n)=e~n),
where

1 „.x' - 1a= x+i —p, a= ~ x+i —p . (2)
2

A

Here g and p are the coordinate and momentum op-
erators, and g and p can be identified as coordi-
nate and momentum expectation values for ~a),
which has minimal wave-packet form in the x rep-
resentation:

(x -x)' i .pxxln)=, exp —,+- pxI 2S

The number X (X'= him&@) is a constant associated
with the harmonic oscillator for which the ground
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n&((

In)=exp (-2 n ') Q i,(, N).
N =(&

(5)

The states are nonorthogonal,

(P I u) = exp(--,'
I
n ' - -,' IP '+ nP*), (8)

and are complete, i.e. , if
I f) is any state, then

from the. condition (f In)=0 for all n it follows
that If)=0. Furthermore, they are overcomplete
However, they can still be used for expansions of
states and operators because

I= d'n—n)(n I,
W

where I is the identity operator and the integral is
over the whole complex plane. This permits us to
write, for any I f), the expansion

lf&=- fd nl~&~x)'(-*'lnl')f(n*& (())

f(u*)= exp(g IuI')(u
I
f)= g, /, (n*)", (9)

where (5) has been used. In this expression, f(n*)
is an entire analytic function of the complex con-
jugate a* of u; and in fact it can be shown' that (9)
affords a one-to-one relation between the f), and
the entire functions f(u*) that grow no faster than
exp[2(u*)'] and for which

d20, n* 'exp —u ' &.

Furthermore, the expansion coefficients in (8) are
unique so long as we keep the analyticity require-
ment that the function f depends only on n*; this
uniqueness is lost as soon as we allow more gen-
eral functions of u and u* (see, e.g. , Ref. 4, p.
2VVS}.

Operator expansions are written in a similar
manner; thus for a general operator T,

d' d'P
I & & IT IP& « I

(10)

where [again using (5)] (n IT IP) is expressed in
terms of an entire fundtion of n* and P, character-
istic of T. Most of our discussion below will deal
with expansions of states

I f); operator expansions

state is 0). We note some important properties
of the set of states In) '.' ' Every In) can be gen-
erated from IO) by translation in the phase plane
(x,p),

I n) = exp (- (xp —px) I 0),
I, k

and can also be expressed in terms of the harmon-
ic-oscillator states N) (N= 0, 1,2, . . .),

will be only briefly mentioned again at the end of
the paper.

The discrete subset of coherent states In„„)first
studied by von Neumann' is obtained by taking the
so-called von Neumann lattice of points

2r 2
CR na+ i—&'m

)))n a

in the complex plane, where a is arbitrary and the
lattice cell area is g. This area corresponds to
an area h in the phase plane, as is seen from (2).
The set of nonorthogonal In„„) is also complete, ' '
i.e. , for any state

I f) the vanishing of the scalar
product (f Iu„„)for all (m, n) leads to

I
f)=0. It

has, however, the strange property that it is over-
complete by just one member, '" that is, if any one
member is removed from the set, the rest are still
complete, but this is not true if two are re-
moved. "' Without losing generality we remove

I u„) and denote the remaining exactly complete
set by ( n „))'with the prime. We can then con-
struct the biorthogonal set' ( I n„„))' to ( I n„„))'.

(u, „,Iu „)=5,„5„,„[(m,n},(m', n') w(0, 0}].
(12)

The question then arises: Can we expand any state
vector

I f) in terms of the u„„) [(m, n) &(0,0)],
in the manner of (8}for the full set of coherent
states? The answer is yes, provided we are care-
ful about the nature of the convergence of the ex-
pansion; this remark takes emphasis from the fact
that, as we shall see, there is some nonuniqueness
in the expansion coefficients. It will be shown in
Sec. III that any state f) can be expanded in a ser-
ies [where the prime excludes (m, n) = (0, 0) ]

m&n

We have purposely used the sign - in (13}instead
of the equality sign in order to point out that the
series on the right-hand side does not converge to
the vector

I f) in the usual (mean} sense. Its pre-
cise meaning is given in Sec. III, where we prove
that

m&n

for any
I y) with a "smooth" (x I y) in the sense of

belonging to the test function space for (tempered)
distributions. In other words the expansion (13}
converges in the space of (tempered) distributions
and the sign, - means throughout the paper equiva-
lence in this space. 22~24 At this point it is natural
to question the uniqueness of the expansion for

I f)
in this sense, i.e. , to ask for the general solution
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of

~
f)- Q'c„„~n„„)

property of a(n) under lattice translations n- n
+ n „ in the complex plane. '2 Finally, we can also
see directly from (15) and (16) that

for the coefficients c „. There do exist relation-
ships among the basis functions

~

n „) relative to
the equivalence -; and we shall see in Sec. ID that
the most general relationship within the basis
(~n„„))' is

Q I ( 1)m+n+mnE(n )
~

n ) 0

where E(n) is an arbitrary polynomial in n with
E(0) =0. Hence the c „are not uniquely determined
but have the general form

c„„=(n.„if)+E(n„„).
The choice E(n)—= 0 gives the "canonical" solution.

In the relation (12') the quantities ()/)
~ n„„)are

known from properties of coherent states4 while
the (n„„~f) are new quantities that have to be cal-
culated. For the important special cases

~
f)= ~n)

or ~N), Perelomov' provides the expression for
the former whereas we show in Sec. II that the ex-
pression for the latter can be derived using classi-
cal complex analysis. We furthermore give a
proof of (13') when both

~ f) and ~)/)) are harmonic-
oscillator states, that is, independent of the proof
of Sec. III for the more gener'al. case. This result
is shown to yield some interesting summation iden-
tities.

II. EXAMPLE: HARMONIC-OSCILLATOR STATES

We first consider the coefficients (n„„~n) for
~

f)= ~n). This is just equal, of course, to the
complex conjugate of the coefficient in the expan-
sion (8) of ~n „) in terms of the ~n) and has been
given by Perelomov, ' from which

(n
~
n) ( 1)m+n+mn exp( —

~
n ~&)

a(n) exp(-vn')
n +//(2n n }

(18)

integrated along any contour enclosing the origin
and avoiding o, = u „. Writing formally

a(n) exp(-vn') a~a~
P~0

and taking C to be a circle of radius &~n „~, which
is always possible since e „0, we can expand-
(n —n„„) ' in powers of nln„„and obtain

(n N) ( ] )m+n+mn(Ni)1/2

(20)

TG go further we must use the power-series ex-
pansion of o(n),"

a(n) = n+ an'+ bn'+

from which the first few values of the a~ for I' even
are (a~= 0 for P odd)

1a0=1, a2= -v, a4=a+qv (21)
1 3a, =b;av- —v .
6

The first few terms of the coefficients (n„„~N) are
then

(n ~N) ( ] )m+n+mn(Nt)1/2

( ~
0) = -( -1)"'"'"" (I'I)

As a next illustration we calculate (n„„~N) for the
expansion of N), the harmonic-oscillator state.
To do this we substitute the expression (5) for In)
into (15) and equate the coefficients of n" on both
sides of the equation. Residue theory gives us

N
t')'/'I»-(-1)"'"' "

mn 21TZ

x a(n} exp(- vn') . (15)

Here a(n) is the Weierstrass o function of the the-
ory of elliptic functions, "

u(n)=nil'()- '
)exp( + ', ), ))8)

m&n

] N~
+(a+n v') + ~ ~ ~ ~

~ma
(22)

where the prime excludes 0.«=0, and v is a num-
ber depending on the lattice cell dimensions (v= 0
for a square cell). We observe from (16) that a(n)
has simple zeros at the lattice points and that in
(15) (n„„~n) vanishes whenever n = n„,„,(e n„„or
n„), in accordance with (12). The verification of
(12) for n= n„„proceeds via the quasiperiodicity

We readily obtain from (20) the recursion relation

~1/2
(n ~N) = (n„„~N —1)

( ] )m+n+mn(Ni }1/2

The closure relation
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~)& I ...,)=5...6...
8~0

can be cheeked using (19) and the expression

By using expressions (20) and (23) for the matrix
elements in (24) some interesting identities can be
obtained. If we introduce the sums

(N
)
n, „,)= exp( —n [ n, „, (

') — --", )",'j,
= gi ( ] )m+n+mn(n )P eXp( )

n
~

) (25)

derived from (5). By choosing the contour C as a
circle of radius greater than ~u„,„, the sum over
N can be performed to give

g &u„„(X&&X~n„,„,)
N -"0

for P integral (positive, negative, or zero) then
(24) takes the compact form

N

a„-~S
Q-"0

(24')

First, putting N=O and j/I=P~0 we have, using
a, =1 from (21),

( 1)m+n+mn exp(
~

u
~

) S,= -5„(Po0), (26)

o (n) exp(-vn')
n(n —a„„)(n—u .„,)

For n „4n, „,the integrand has no poles and clo-
sure is verified; if o. „=a, „, then it has a simple
pole at o, = n „and its residue is evaluated again
by using the quasiperiodicity of o(u),"yielding the
value unity for the last expression in this case.

A more interesting closure relation to check is
(»') m the case lf&= I» S-@i=—g nz s-i&i (27)

a result found by Perelomov. ' Then for N&0 and
M « N we arrive at some apparently new identities
enabling us to evaluate the sums (25) whenP
= —!P~ &0. For P odd, S ~v~ evidently vanishes
(since n = -u „) but the S ~v~ for P even are de-
termined from (24'), which we write in the slightly
rearranged form

g ' &M ~n „)&u„„X)=&„„.

We start by evaluating

.g ' &M
~
a„„)&a„„~a)

),)
n(n) exp(-va')

(M!)' i' n

(24) Here the summation is cut off where the sums (26)
vanish for positive integer, and we again used Qp

=1. Iteration of (27) yieids the negative-even-in-
teger sums

2S„,=a2, S 4=a~ -a, ,

S 6= g6 —2g4g2+ g2, . . . ,
3

where the a~ are known from (21). In this way we
obtain for example the identities

(u )4+1
x Q '(-1)"'"'"" exp(='

~
~')

—ge( ]) +n mn exp( ~u j )-2 . (n ~ mn

from (15) and (23). There is a well-known theorem
for analytic functions with only simple poles, that
equates the function to an expansion in terms of the
poles and residues (see Ref. 11, p. 134). From
this we obtain directly the relation

ot N+& (~ ) @+1~ I ( 1)m+n+mn ( mn)

(r(n) exp(-va') ~ n —n „
x exp( =,'

i
u i'),

whence

Q ' &M
~

n „)&a „~n) =e p(=,' ( ~')
mvn

Substituting for ~n) from (5) and equating coeffi-
cients of n, the closure relation (24) is immedi-
ate.

—g I ( 1)m+n+mn exp(
~

~

n' ~n)

nm

1=0 —2'V .

Equation (27) can equally be used to express the
a~ iteratively in terms of the sums S (~J The case
of a square lattice, with a„„=v v(m+ j~) and v= 0,
is a particularly simple one where from (21) the
av reduce to the expansion coefficients of o(a)/u.
It was shown in Ref. 7 that the identities (26) for
the S~ (P ~ 0) lead to interesting relations between
8 functions. We now find that the identities (27)
for the Sv (P &0) seem to give an alternative way
for calculating the expansion coefficients of o (a).
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Further discussion of these relationships is to be
published elsewhere. "

We close the section with a few remarks on the
expansions

m, n

(28)

m, n

(28')

among the von Neumann set discovered by Perelo-
mov. ' Our first remark is that repeated applica-
tion of the annihilation operator a on (28 ) (legiti-
mate in distribution space) gives, using (1),
P erelomov's other relations

g i( 1)eqkqnamn(+ )N
l

oi ) 0 (I~ 1)
mvn

(14')

This essentially proves (14), except for the state-
ment that the relationships (14') are exhaustive
(Sec. III).

The second remark is that we can obtain consid-
erable information on the coefficients &o. „lN)
in (28) without doing the exact calculation leading
to (20). Operatjng on (28) with (a)" and recalling
that a lN)=N'~' lN —1) gives

for the harmonic-oscillator states. We assume
here the results of Sec. III on the meaning and
properties of the equivalence, already summarized
at the end of Sec. I. For the special case N=Owe
have using (17),the relationship

It is worth remarking that all the results of this
section hold, with only trivial modifications, if we
choose a lattice of points e „=2m', + 2~go„where
m, and so, are any two noncollinear complex num-
bers chosen so that the lattice cell area is g.

I

&k+ 2vl a, q l f)= &kq l f),
&»q+~lf&= exp(fk~)&kqlf&

(29)

The ln „), which from (4), (2), and (11), are gen-
erated from lnoo) by discrete displacements in the
phase plane, have the kq representation

.2r(kq~a„„)=(-k)""exp i —qm —iaka) (kq~p),

III. EXPANSIONS OF STATES ANB OPERATORS

To clarify the nature of our expansion (13) it is
very convenient to go over to the kq representa-
tion, " in which the basis states

l
n ) take a par-

ticularly simple form. ' We recall that the general
transformation for a state

l f) from the x repre-
sentation to the kq representation is

j./2

&kql f)= 2 g exp(ikal)&q —/al f),
g= ~oo

where the real number a (lattice constant) may be
arbitrary but is here chosen to be the same quan-
tity as in (ll). The coordinates k, q run over a ba-
sic cell -v/a~ k~ nla, -~a-q- 2a, and the func-
tions in the 4q representation have the character-
istic periodicity

l0)-(N!) '~'g '&n„„lN)(n„„) ln ).
m, n

(28qq)

where

(30)

Thus comparing the iwo expansions (28') and (28")
for l0), and using the freedom expressed by (14)
or (14') we get

nmn"

where the coefficients a~ are to be determined.
Putting these expressions for &a„„lN) into the clo-
sure relation (24) together with (23) for the

&M la„„&, and using (26), we recover (27) with g„
replaced by a~. It is then an easy argument from
(26) and (27) that the a~ are completely determined
for P~N to be a~=a~, and that they are completely
undetermined for P&N. We therefore get complete
agreement with (22) for &n„„lN) if we arbitrarily
put the undeterminate coefficients equal to zero.
The justification for doing so, however, depends
on referring to the full calculation (19) of &n lN).

(kq~p)=(k, i,„) g exp(ikai —,) .

The simple form of (30) is due to the fact that for
the chosen area in the phase plane the momentum
and position displacements commute. ' The func-
tion &kq l0) has the important property that it has
just one zero in the kq cell, a simple zero at k= v/
a, q= 2a. It is convenient to observe that it can be
written

(31)

with

z agz= ~ka --~ .
2 X

In (31) 8,(g) is the e function which is well known
to be an entire complex function with only one
(simple) zero in the complex cell defined by the kq
cell." For use below, we note the form of the an-
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nihilation operator in this representation,

(32)

we have

x(k'q')&k'q'I0)= (q Ik'q')&k'q'Io&

The biorthogonal set
I a„„&also takes a relatively

simple form in the kq representation,

(-1)""exp[i(2v/a}qm -iakn] -(-1)"'"
(kq Jc(„„&- 2 (0)k )

(33)

The orthogonality relations (12}can be checked
directly; it can be seen, moreover, that the sin-
gularity in the denominator of (33) at k= 7f/a, q =-,a
is removed by the numerator.

The relation (13'}, which is to prove, now reads

(q) lkq) (kql f)dkdq

0

= (q Ik'q') &k'q'I0&.

Thus )((k'q') = (q) I
k'q'), since (k'q' I0) has the one

isolated zero. We used above the facts that a peri-
odic smooth function equals everywhere its Fou-
rier sum, and that ((w/a}2a IO)= 0. The sum (35),
therefore, equals (q) lk'q') and (34) follows by in-
tegration with (kq I f) [uniform convergence of (35)
allows term-by-term. integration].

Another way of writing (13), in view of the above
proof, is

&kqly& Dgkq)&kql0&

with

= P'(-1) (a„„(f)J exp(a —qm —ikan)
m&n

x (()()
I kq) (kq I 0)dkdq,

(34)

exp [ikan i(2v/—a)qm] —( -1)~'"
&k Jo&

x &"qj f&dkdq

(36)

De(kq) = g '( —()""(a (f)exp (i,—qm —(kan),
fsn

where D& is now a periodic distribution on kq space
(for a discussion of periodic distributions, see
Refs. 16 and 17, VoL II)." For example when I.f&
= IO), then using (17)

D(kq) = P'(-1)"'"exp (1
—qm -ikan)

mn

Q '(a„„jk'q') exp i —qm -iakn.2'
m, n

x &q Ikq) &kq I0&dkdq. (35)

A study of (33) shows us that

2 X
I &~„„lk'q') l«»st

I
n ls+

' Iml;

further, the integrals are the Fourier sum coeffi-
cients of the periodic function (q lkq) (kq I0) [peri-
odic from (29)] and consequently decrease faster
than any powers of lml and Inl. Hence (35) con-
verges (almost everywhere uniformly) to an in-
tegrable function g(k'q'); substituting (33) in (35)

where the integrations go over the kq cell. Here

I q)) is any function for which (kq I q)& is smooth(i. e. ,
continuously differentiable to all orders), so that
the

I q)& form the space of test functions for tem-
pered distributions. " Note that whereas the

I n„„&
are smooth, the

I c(„„)are not, due to a discontin-
uity at k= v/a, q= 2a. Proving (34) then tells us
that the sum on the right-hand side of (13) con-
verges to

I f& in the space of tempered distribu-
tions, and we give the sign - a corresponding in-
terpretation. Proceeding with the proof, consider
the sum

=1 —2m& k-- & q-- (37)

g' jn )&n I-i

is correct for any
I f& on the right and any smooth

I q)& on the left. It is always true therefore between
two smooth states, such as for IM& and IN) m (24),
because

&kq IN) = (w }-'f'(a"}"&kqj0)

is smooth. Here the creation operation a~ is the
Hermitian conjugate of (32).

Here 6 is the 5 function on the space of the unit
cell. The expansion (36}for IO) is then

(kqlo)- 1 2v~ k '- ~ q
'- (kqlo),

L a 2 .-

and this equivalence of distributions is the precise
meaning of the expansion (28') for I0). [The equiv-
alence is evident because ((v/a}aal0)=0. ] We re-
mark that in (36) for

I f&= 0), each term in the
expansion has the norm

I I (kq I 0) I I
= 1, so the con-

vergence is certainly not in the usual mean sense.
The result we have says that closure (using ™here
to relate operators)
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D(kq)(kq IO)-0,

with

. 2m
D(kq) = g ' c„„exp i —qm -ikam ) .

mn

(38)

(40)

There exist nontrivial distr ibutions satisfying this
equation. Because of the isolated zero of (kq IO)
we know from general distribution theory (see Ref.
17, VoL I, p. 100) that D is a linear c'ombination
of derivates of 8 function b,(k -v/a}b, (q —2a). In-
deed, if we first solve (39) without the condition
(40) which restricts us to distributions whose Fou-
rier series expansions have c„=0, we first note
that

k-- 4 q-- kq 0-0, (41)

Finally we come to the problem of nonuniqueness
in the expansions, discussed at the end of Sec. I.
Thus, in terms of the kq representation, we ask:
In the equivalence

(kqIf)- D(kq)(kqI0), (38)

what is the freedom in D(kq), where D is a periodic
distribution'P Evidently, any solution of (38) dif-
fers from the "canonical" one Dz(kq) of (38) by a
solution of

behaves like (z -s,) where z, = ~v -fa'/4A. '. Since
therefore

—(kq IO) 40,8

ig gp

it follows from the properties of distributions that
the most general. derivative (s/Bs*)"(S/Sap of the
8 function would not satisfy a relation such as (43)
or (41) if N40. We conclude that 3(kq) must be an
arbitrary linear combination of the distributions
(44) for M ~ 1; M= 0 is excluded because from (40)
the coefficient cpp 0 in D. This is then the degree
of nonuniqueness in the solution of (38). Equations
(43) are just the equations (14') in the kq repre-
sentation and therefore we have proved the state-
ment in Sec.d that (14) is the most general rela-
tionship among the Ic. ) [(m, n) w(0, 0)].

Corresponding to the expansion (13) for states
there is an expansion

0'mn O'mn ~ ~mn O'mn

for operators. The equivalence again means the
equality is true for all matrix elements between

I f) on the right and smooth
I y) on the left; in

other words

w ith

q $ fn+nm c
0 2 27K

mn

2r
x exp i—qm -ikan

a

(42)

By applying the annihilation operator (32}, with
the property a(kq IO) = 0 for the ground state, we
obtain from repeated operation

~ k-- ~ q-- kq0-0

with

(43)

2w ia
— " na+i m

.2g
xexp i —qm -ikan

a

This is legitimate, since tempered distributions
are infinitely differentiable. Near the zero at k
=v/a, q= ~a, an analysis of (31) shows that (kqI0)

is a distribution equality. There is of course the
same nonuniqueness here as for state expansions.

IV. CONCLUSIONS

We have shown that the discrete coherent states
on a von Neumann lattice in phase space form a
basis for expanding states and operators in quan-
tum mechanics. The expansion in the discrete
states is somewhat in the spirit of Glauber's ap-
proach for the full set of coherent states. Because
of the particular structure of the von Neumann lat-
tice (one state corresponds to a phase-space cell
of area k) the discrete coherent states seem to
have some special physical signif icance. Intriguing
is, however, the fact that one state can be re-
moved (but not more than one) and the system still
remains complete. '" This apparently has to do
with the nonorthgonality of the coherent states. It
is clear that for each state of the von Neumann
subset the minimal uncertainty is preserved and
from, this point of view the classical nature of the
discrete coherent states is unchanged. However,
if one tries to build any orthogonal set of states
on the von Neumann lattice it becomes impossible
to preserve their coherence property. ""The use-
fulness of the full set of coherent states in differ-
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ent applications in physics is quite well esta-.
blished. ' Discrete sets of states on a von Neumann
lattice have been used in a number of physical
problems9» & and we hope that this paper will
further stimulate the application of discrete co-
herent states.
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