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Using the Dj, point-group symmetry of an atom in magnesium and the defect-space matrix-partitioning
technique, the perfect- and defect-crystral Green’s functions are calculated in a two-neighbor defect-space
model in an axially symmetric host lattice. The magnitude of the lattice distortions for the first two shells is
found to be ~ 0.004 times the basal lattice constant, and the relaxation energy E, of the vacancy is 0.0026
eV. Approximating the medium by an elastic continuum, but using values of the strength tensor
corresponding to four different lattice models, the change in volume AV of the medium is found to vary from
—0.03 to —0.11 times the atomic volume and the relaxation energy is found to vary from 0.0014 to 0.014
eV. In the above approximation, expressions for A¥ and E, involving the bond-bending force constants are

derived.

I. INTRODUCTION

In this paper we investigate the static relaxation
of atoms surrounding a vacancy in magnesium ap-
plying the theory developed in the preceding paper’
(hereafter referred to as I), retaining the same
notation. We make the usual assumption? that if
V(7(n)) is the pair potential between the atom la-
beled 0 at the origin and the nth atom at a distance
r(n), and if the former atom is removed to create
a vacancy, then the effect of the vacancy on the
nth atom can be described by -V(»(#)). We also
assume that the potential V(|T(n) —T(’)|) between
any two atoms (z##’# 0) remains unchanged even
in the presence of the vacancy. This implies that
ghe forces (described by a 3p-dimensional vector
f) responsible for the relaxation of the atoms are
opposite to those acting on the (unrelaxed) atomic
positions in the defect space, i.e.,

Ja)=[(1/7M)V' ()] x0lm), (1.1)

where the prime denotes the derivative with re-
spect to 7 and the subscript # indicates that the
quantity is to be evaluated at 7 =7(n).

The results of I are applicable to the present
problem in the w— 0 limit. In the presence of “ap-
plied” forces {f(n)}, Eq. (2.1) of I becomes

(¢° -d9° ) =1%, (1.2)

where £° is the symmetry-reduced form of f. This
equation can be inverted to yield

W =g®fe, ' (1.3)
where
g% = -g0¢9)'g. (1.4)

Because of Eq. (1.1), f has the same symmetry
as that of the lattice, and hence the only mode
which contributes to the displacements is the com-
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pletely symmetric mode associated with the irre-
ducible representation (IR) s=A/. In this paper
the index s stands for A/ alone. The relaxation
energy due to the vacancy is given by

E, =53, (1.5)

The results of the calculation of U°, E,, and the
volume change AV due to a single vacancy are pre-
sented in Sec. III for a two-neighbor axially sym-
metric (AS) model (M1) of the host crystal.

First approximations to U and E,, denoted, re-
spectively, by w*® and W,, are obtained by using

&% (in place of g*) in Eq. (1.3). In this case we

have

;{rs:_gs £ (1.3a)
and

W,=3f5ws. (1.52)

If one approximates the medium by an infinite
isotropic elastic continuum (magnesium is the
most isotropic of all the hep crystals), then the
elastic displacement field W°(») evaluated at the
atomic positions [and denoted by \TI“"(n)] is given in
terms of the elastic strength A, the Lamé’s con-
stant A, and the shear modulus {, by the expres-
sion®

A xa(n)
dr(Ag+21y) [7r@)]®

The relaxation energy in this approximation is
we=3f.w=s, (1.5b)

wgn) = (1.3Db)

where W™ is the symmetry-reduced form of w™.

In Sec. IV we present the calculation of w™°, W,
and the approximate volume change AV™ due to the
vacancy on the basis of M1 and three other models:
(a) a three-neighbor AS model (M2); (b) a four-
neighbor AS model proposed by Iyengar et al.*
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(M3); and (c) a four-neighbor spline-fitted inter-
atomic pair potential proposed by Doneghan and
Heald® (M4). Explicit expressions involving the
bond-bending force constants (BBC’s) are also de-
rived in Sec. IV for the computation of AV* and
Wr. The manner in which the BBC’s and the bond-
stretching force constants (BSC’s) are obtained is
described in Sec. II.

Since the size of the defect space D is larger in
M2, M3, and M4 (the dimension of D is 57 in M2,
and 63 in both M3 and M4) than in M1, the expres-
sions for g° and 5¢° derived in I are no longer ap-
plicable to these models. Although atomistic com-
putations of 0° , AV and E, are not done for M2,
M3, and M4, the approximate calculations help in
assessing the reliability of the atomistic calcula-
tions of M1 and in demonstrating the importance
of the BBC’s for point-defect calculations. These
questions are discussed in Sec. V.

II. BBC’S AND BSC’S

-> - — — N
The vectors f°, u®, w®, and w™ are obtained as

follows. Symmetry considerations show that the
vector V (=f, §, W, or w°) has the form

0"
()= v, (2.1)
vau
and
’—an
(M= v,
L0
Then ¥ (=1°, etc.) is calculated from the equation
@) =9 (@=1,2,3,4)
as
v,
- v
=62 ? (2.2)
vg |’
Uy

and the relaxation energy, using Eq. (1.5), is
E,=3(fiu,+fouy+foug+fu,). (2.3)

Similar expressions are obtained for W, and W
on replacing by w and w™, respectively, in Eq.
(2.3).

In M3 and M4, the forces and displacements for
atoms on the third and the fourth shells have to be
considered too, whereas for M2, these quantities
have to be included for the third shell alone. Let
the atom numbered 18 [%(18) = (0,2a/¥3,3c¢)] rep-

resent the third shell (which consists of six atoms)
and the atom numbered 20 [X(20) = (0, 0,c)] repre-
sent the fourth shell (which consists of two atoms).
The general forms of the vectors v(18) and V(20)
@=1, 4, W, or W°) are

0 . 0
v(18)=| vy | and V(20)=| v, |. - (2.4)
Vs Vg

It can be shown easily that Egs. (2.2) and (2.3), in
this case, have to be generalized to the following:

v, -
vy

Us

(2.5)

3-1/2, v

and
E, =3 ;f,u, + (Frthgt Fathg) - (2.8)

(For M2, f,=f;=0.) Similar expressions are ob-
tained for W, and W;".
The shell radii »; (i=1,2,3,4) are
r,=(1+292)"24=0.99554q,
Y,=a,
5= (1+&9)Y2g=1.411a, 2.7

and

r,=v,a=1.622a (y,=c/a).

The BBC’s for these shells (i.e., (1/7)V/(r) atr
=7, for ¢=1,2,3,4) are denoted by Bp, ap, vz, and
85. The BSC’s (i.e., V”(r) atv=7r, for i=1,2,3,4)
are denoted by B, ag, ¥, andd,.

These parameters for M2 are obtained by making
use of the following expressions:

4a 2
' = 1 C
Ve © 3V27, [( ¥ Vo> a

2 4
<1 - —->C13 3)/2 Css] ’ (2.8a)

Bé= (a/ﬁyu)(c44 + Cls) - Yé ’ (2'8b)
Olc="13’[% Voaﬁ(cu"’clz)"ﬁé—4y‘;] ’ (2.8¢)

a
BB*?’B=W (C44‘st); (2.84d)
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TABLE 1. BBC’s and BSC’s for all models (dyncm™).

M1 M2 M3 M4

Bs —284 327 543 -34
on —144 332 700 -19 -
Ve 0 -611 ~1650 -318
o8 0 0 614 41
“Bs 12562 10767 10789 11370
o 11204 10861 9992 12366
s 0 599 2149 495
8 0 0 303 _322

Yptdp =%[% yoa\/?(C“ ‘C),:s) - (BB""YB)] 3

(2.8e)
ap+Pp=5[4m*Mv @, ) - 6a, - 28!]. (2.9)

In these equations
Q=@ —0Qp, (2.10a)
B:=Bs=Bs=(a/7)(Bs —Bs) » (2.10b)
ve=ve=vh=(a/r)(vs = vs), (2.10c)

and v (q,.,) is the maximum frequency of the
[0110] 1ongitudinal-optical phonon. Equations
(2.1a)~(2.1e) are obtained by making use of a cor-
rected version of Tables (3¢) and (5¢) of Ref. 4.
The values used for the elastic constants at 298°K,
in units of 10'? dyn cm~2, are®

C,,=0.5943, C,;=0.6164,
C,;=0.256, C,,=0.1642,
C5=0.214, C,=0.1691,

(2.11)

and we take’
v10(d,,,)=6.88 THz.

The parameters for M1 are obtained from Egs.
(2.10b)-(2.10e) on setting y5=7.=0, and those for

M3 are taken from Iyengar et al.” For M4, these
were calculated from the potential proposed by
Doneghan and Heald.® In Table I we list the BBC’s
and the BSC’s for all four models. The lattice dis-
persion, using the expression given in Table 5(c)
of Ref. 4, was computed in the [0001] direction,
for all the four models and agreement with the re-
ported data’ was reasonably good in each case.

In concluding this section, we note the following
relations between the force components and the
BBC’s:

fi==@N3)Bs, fs=(2a/N3)ys,
f2==(c/2)Bp, fo=(c/2)vs,
fy=aap, f7=0,

f4=0, fa=cdy,

(2.12)

II. LATTICE CALCULATIONS

The results of this section are based on M1
alone. The perfect-crystal Green’s functions were
calculated up to eight shells by using the expres-
sion®

Wo(k1G5)WE (k' )
wi@ -

-1
Zapllr, k") =N Zj
B

x exp{ig-[X(x) -X@'x)]}.
(3.1)

The computation of the eigenfrequencies w j(cI)

(j is the branch index) and the corresponding po-
larization vectors W was done by diagonalizing the
dynamical matrix at N =3960 { points in the first
Brillouin zone. The independent parameters® oc-
curring in the Green’s functions are tabulated in
Table II. The following results are obtained for
the various quantities of interest:

TABLE II. Perfect-crystal Green’s-function parameters (units of 10~¢ cm dyn") for the representative atoms up to

eight neighbors.

Shell
number SI SZ S3 34 Ss SG A4 A5 AG
0 25.270 25.270 21.945 0.0 0.0 0.0 0.0 0.0 0.0
1 8.1703 6.9396 8.1554 1.0662 0.8990 1.5571 0.0 0.0 0.0
2 8.7403 . 10.6550 5.6728 1.6581 0.0 0.0 ~0.1291 0.0 0.0
3 5.7944 5.4261 4.5483 0.0 0.2256 0.0 0.0 0.0 0.0
4 4.5850 4.5850 5.3354 0.0 0.0 0.0 0.0 0.0 0.0
5 5.6340 5.1167 3.7783 1.0082 0.5718 0.4425 0.0 0.0 0.0
6 5.2703 7.3638 3.8555 0.0 0.0- 0.0 0.0 0.0 0.0
7 4.0944 4.3662 4.4679 0.2354 0.6422 0.3708 0.1238 -0.1004 -0.1738
8 4.9237 6.0109 2.8130 0.9415 0.0 0.0 0.0101 0.0 0.0
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11.5630 -1.4853 -2.0777 0.4184
2= -1.4853 19.0190 4.9379 -1.7670 (10 emdyn™)
~2.0777 4.9379 16.1730 -0.1190
0.4184 -1.7670 -0.1190 11.8990
4036 -6068 0 0
5¢° = -6068 8240 O, 0 (dyncm™),
- 0 0 11204 O
0 0 0 -144

12.6640 -3.8473 -3.3811 0.6448
. -3.8473 23.8720 7.7647 -2.2295 (10" cmdyn™),
- -3.3811 17.7647 20.4160 -0.3204

0.6448 -2.2295 -0.3204 11.9260

5.2634
oo 7.3934 (10-6 dyn) , *
—4.6224
0.0
1.8531 1.6772
2 34262 | jomay  gen| 37492 [ q0us,
-1.5323 ~1.7059
-0.3212 -0.3616

W7”=0.00253 eV, E,=0.00267 eV .

IV. SEMICONTINUUM CALCULATIONS

6741

The parameters A, and u, are obtained by taking the Voigt average of the elastic-constant data for single

crystals, Eq. (2.11):
A= (C,,+Cy3+5C,,+8C,, —4C,,) =0.2364 X 10" dyncm™2,

Ho=(7C,, = 5C,, + 2C4, + 12C,, - 4C,;) = 0.1742 X 10" dyn cm™.

The strength A is defined as one-third of the trace of the strength tensor

‘ 1.\'!5: Z fa(n)xg (n) ’ )

and is calculated in the four-neighbor model as
—V3f,+3f,+2V3f, 0 0
A=a 0 —V3f +3f,+2V3f, ]
0 0 Yo(=3f5+3fg+2fs)

(4.1)

4.2)

4.3)
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TABLE III. Displacement components wy2g for all
models (units of 107%q).

M1 M2 M3 M4
wi 2.346 2.512 7.036 2.866
wy 3.295 3.528 9.883 4.026
w§ -4.008 —4.292 ~12.020 -4.898
wg 0.0 0.0 0.0 0.0
w —1.648 -1.764 —4.942 -2.013
Wy —1.157 —1.239 -3.471 —1.414
wy 0.0 0.0 0.0 0.0
wy -1.523 -1.631 —4.570 ~1.862

The scalar strength to be used in the continuum
calculations is thus

A= %a(—2~/-3'f1 =3V fo+6f3+ 4‘/-3f5 +3Yofe+ 27’0]“8) .
(4.4)

The expression for the volume change per atomic
volume, i.e., AV*/Q (2=4/3v,a° is the atomic
volume), is found by using Eqs. (4.4) and (2.12) in
Eshelby’s formula,®

AV?/Q=A/Q0g+21,)

_ 273 Gra+1)Bp+2a5+ (3v+2)ys+3rits

ay, 3+ 61U,
(4.5)

Replacing the #’s by the w*’s in Eq. (2.6), and
making use of Egs. (4.5), (2.12), (1.3b), (2.10b),
and (2.10c), one obtains for the relaxation energy
the expression

w,=a’ <%Vi><%ﬁ-(ﬁg +3ag+4vi+ %) . (4.8)
The results of the calculations of w®, AV*/%, and
W, are summarized in Tables IIl and IV. It may -
be remarked that in M1, one can express AV®/Q
and W, in terms of the elastic constants alone, by
substituting for @y and Bz [Eqgs. (2.8d) and (2.8¢) with
¥p=0]in Egs. (4.5) and (4.6). It must also be em-
phasized that for a finite elastic medium, image

TABLE IV. Volume change AV® in units of Q (=46,462
X 10”4 cm®), and relaxation energy W, in eV.

av® we
M1 ~0.0358 0.00136
M2 —~0.0384 0.00147
M3 ~0.1075 0.013 60
M4 ~0.0438 0.002 75

effect corrections ought to be made. As shown by
Eshelby,® this has the effect of multiplying A, AV™,
w”, and W by a factor of (3, +6.,)/ (3, +24,),
which is equal to 1.659 for magnesium.

V. DISCUSSION

The (perfect lattice) force constants which are
used in our calculations in the various models are
widely different (see Table I). However, the cal-
culation of the dispersion all over the Brillouin
zone does not differ significantly in the various
models, besides reproducing reasonably well the
observed dispersion at selected points. As a
further check, we have computed also the perfect-
crystal Green’s-functions in M2, M3, and M4
(these results are not reported in this paper, as
they are not directly relevant). Close agreement
with the results quoted in Table II (which are based
on M1 alone) is obtained. That the response of the
lattice is rather insensitive to the choice of the lat-
tice model has been mentioned previously by Tew-
ary and Bullough® in the case of copper.

The situation is quite the contrary in the case
of defect properties. This is clearly due to the
fact that the defect is simulated by a set of “ap-
plied forces” which differ from model to model
both quantitatively and qualitatively. For example,
the forces on the first shell in M1 and M4 act
inwards towards the vacancy, whereas they act
outwards in M2 and M3. In the absence of a direct
experimental measurement of E,, it is not possible
to conclude which particular model is the most ap-
propriate one for defect calculations. Compared
to the experimental value of the vacancy forma-
tion energy (values reported range from 0.58 to
0.89 eV),'>!! our calculation yields a very small
value for E,. The approximate calculations (of
W) based on a combination of discrete and con-
tinuum models (M2, M3, and M4) lend further sup-
port to the smallness of this quantity. It should be
mentioned that Doneghan and Heald, whose potential
was used in M4, used a different method of cal-
culation and reported AV=-0.13 £ and E,=-0.13
eV. Our approximate calculations (i.e., of AV~
and W;) in M4 yield values for AV and E,, respec-
tively, that are smaller than the above values by
factors of 3 and 48, approximately. Since the
forces used in our calculations (in M4) are derived
from the same potential that the above authors
have used in their calculations, it is hard to be-
lieve that such large discrepancies can arise mere-
ly by the use of the defect forces {f*(n)} instead of
the perfect forces {iln)}. [Unfortunately the auth-
ors in Ref. 5 have not given the details of their
calculations. For example, it is not clear how a
“first guess” of AV (or E,) was made.] It would
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be interesting to extend the results of I (for the IR
A! only) and perform defect-lattice calculations in
M2, M3, and M4. Only such calculations would
confirm or disprove the results of Doneghan and
Heald® conclusively.

Note added in proof. Use of the proposed poten-
tial of Ref. 5 together with the calculated values
of E, (for M,) and W, (for M2, M3, and M4) yields
for the vacancy formation energy the values (all
in eV) 0.727 (M1), 0.715 (M2), 0.716 (M3), and

0.727 (M4). Results of the lattice calculations in
the four neighbor extension of M1, M2, M3, and
M4 have been forwarded for publication in
Pramana.
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