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Defect Green's function and T matrix for an hcp lattice with a substitutional impurity
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Starting with a two-neighbor defect space model for a substitutional impurity in an hcp lattice, we apply

matrix-partitioning and Green s-function techniques for the study of atomic vibrations in the defect space.

Using the fact that the defect site has the point-group symmetry of the Group D», we set up, and decompose

the total representation 1 (D3I,) of the group as I'(D3Jg) 4A I 2A I 8 3A&'8 4A'z 8E 5E The

symmetry-adapted basis vectors of the 39-dimensional defect space are calculated using the projection

operator technique and the projected forms of the Green's function and the perturbation matrices are derived.

The formal results obtained here are applicable to a variety of problems in hcp Crystals.

I. INTRODUCTION

In the lattice statics of crystals with impurities
one is concerned mith the local distortion of the
lattice around a defect, while in the lattice dynam-
ics of crystals with impurities one is interested
mainly in the impurity-induced change in the vi-
brational modes of the host crystal, i.e. , in local
and resonance modes. These are of importance
in infrared-absorption, Raman-scattering, and
Mossbauer-effect experiments. The most con-
venient theoretical approach to defect problems
in crystals is linear-response theory, which leads
naturally to the use of crystal Green's functions.
Vfe mention in this connection the recent review
article by Taylora and the mork of Maradudin2 for
the dynamic properties of defect crystals, and the
article by Tewary' for static properties. Ludwig
and Dettmann4 have applied group theory to certain
impurity problems in crystals with structures of
the simple cubic, NaCl, CsCl, diamond, zinc-
blende, and CaF, types. For these symm tries,
Ludwig and Dettmann have supplied tables for the
symmetry-adapted basis functions, which greatly
simplify the solution of defect problems in lattice
statics and dynamics. (AgrawaP has corrected an
error in their result for the fcc case. ) However,
no such table is available for solving impurity
problems in the hcp structure. The present paper
fiQs this need, and it is hoped that it mill facilitate
systematic defect calculations in hcp crystals.

We derive, for a hcp crystal, explicit theoretical
expressions for the symmetry-reduced crystal
Green's function and perturbation matrices which
are needed for the analysis of those dynamic or
static substitutional-impurity problems which pre-
serve the D» point symmetry (of the impurity site).
We assume that the defects perturb the force con-
stants of the host lattice up to second-nearest
neighbors, 12 atoms thus being affected. In Sec. II,
we outline the method of our calculation and in Sec.

III, we apply the symmetry properties of the hcp
lattice to obtain the most general forms of the
Green's-function and the force-constant matrices.
The defect model is described in Sec. IV, and in
Sec. V, we apply group theory to obtain the symme-
try-adapted basis vectors of the defect space, and

block-diagonalize the perfect-lattice Green's-func-
tion and perturbation matrices. Finally, in Sec. 6, we

discuss our results and indicate some possible ap-
plications. The applications of the theory to the
lattice statics of a single vacancy in magnesium is
presented in a companion paper.

II. THEORY

Since the theory of the dynamics of a crystal mith

an impurity atom is well known, ' we shall merely
quote the important results relevant to our purpose.

In matrix form, the time-independent equatioas
of motion of the perturbed crystal reduce to

[&o'M —P + &L(&o)] I'I = 0, (2.I)
where the perturbation matrix 5L(ur) = —&o'hM

+ Et', ~ is the normal-mode vibration frequency of
the defect crystal, M and P are the mass and
force-constant matrices of the perfect lattice, and
hM and d@ are the corresponding perturbation ma-
trices owing to the presence of the defect in the
lattice. For the hcp. lattice, each of the above ma-
trices is 6N x 6N, where N is the number of unit
cells in the crystal. The matrix 6I- can be written
as a 2 x 2 block matrix in which the only nonvan-
ishing block 5l (=-~'5M+&p) is a Spx 3p (p«N)
matrix, p being the number of atoms (including
the impurity itself) disturbed by the presence of
the impurity. It is this Sp-dimensional space, the
so-called defect space, which mill be the object of
our study. Basic to the investigation of defect
problems are the perfect and the defect crystal
Green's function matrices and the phonon-scatter-
ing matrix. The relevant blocks of these matrices for
the defect-space calculation are the 3p & Sp ma-

6727



6728 DEBENDRANATH SAHOO AND HRUSHI KESH SAHU

gs=(I -g«) 'g= g(I —«g) ' (2.2)

trices g(~), g*(co), and t(u&), respectively. These
matrices are related to each other by the following
equations:

tern X.
The actual calculation of the c, & e, matrix A',

involving the multiplication of a 3p x 3p matrix with
3p-dimensional vectors, is simplified considerably
by the following trick. We first calculate

t=&l(l g-«) '=(I-«g) '«. (2.3)
q~"(l») =A, (l», l'»')P;~(l'»') (2.3)

The introduction of the symmetry coordinates'
for the various irreducible representations (IR's)
of the point group 9 of the impurity site, (taken as
the origin of coordinates} block-diagonaiizes the
matrices g(&o) and &l (&o) simultaneously. A faith-
ful Sp-dimensional representation of 9, called the
total representation I'(9}, consists of a set of Sp
x Sp matrices

3.,(l», I »', S) = S.,KS-'x(l'»'), x(l»)), (2.4)

r(9) =g ec,r'(9), (2.5)

where

(2.6)

The symmetry-reduced form of the matrix A
(which stands for g~ g*, &l, or f } in the sth IR is
given by the expression

A'(a, a') =P" (l»)*A &(l», I'»')g" (I'»'), (2.7)

where S is a 3 x 3 orthogonal matrix effecting the
group operation on the individual atomic sites.
Here E is the lattice index, a is the sublattice in-
dex, and n, P denote Cartesian components; and
S is written in the Cartesian coordinate system X
whose origin is at the impurity site. If 8 is of or-
der h, there are h such matrices S (and hence ma-
trices 8). The technique of decomposition of
I'(9} into its IR's I"'(9) makes use of the characters
X(S) of the elements S in F(9) and the corresponding
characters y'(S} of all the IR's I"(9):

for a particular site (l»). Then for all other sites
(I,K) which belong to i'he same shell of neighbors
(with respect to the defect}, the quantity q'~(LK) can
be computed by means of the relation

~s

q sal(LK) P S~ saV(i») I s (S)

x 5(S ix(LK), x(l»)). (2.9)

In this equation r;,„(S}is the (X'X) matrix element
of the inverse of the matrix representation I"'(S)
of the element S. The proof of Eq. (2.9) is given
in Appendix A. Having obtained all the g's in this
manner, the matrix A' is calculated by means of
the fomula

s(a at) psalm(1»)~sa x(I») (2.10)

The fact that the matrix A, satisfies the relation
A ~(l», l'»') =A~ (l'»', l»} (permutation symmetry)
implies that A' is a symmetric matrix. Thus we
need to compute A'(a, a') only for a') a (or for
a ~( a).

The application of an operation. S on any lattice
site yields another site on the same shell of neigh-
bors. This means that the defect space D consists
of invariant subspaces D, where m is the shell in-
dex. In a two-neighbor defect-space model such
as the one we are considering here, m takes on
only three values: 0, 1, and 2, corresponding,
respectively, to the defect, the first, and the sec-
ond shells. Thus all defect-space calculations can
be done separately in each D . The following di-
rect-sum decompositions exists

where p"~ is the symmetry-adapted basis vector
(SA V) for the &th row in the ath occurrence of the
sth IR, and the result is independent of X. In Eq.
(2.7) and in the rest of the paper, repeated Cartes-
ian and lattice indices (a, l, », etc. ) are summed
over their respective ranges. There is no summa-
tion over X and s. The range of X is from 1 to f,
(the dimensionality of the s IR), and that of a is

from I to c,. The calculation of the complete or-
thonormal set QP is done by means of the standard
pro3ection operator technique, ' for which it is nec-
essary to know the explicit matrix representation
I"'(9) of the sth IR (for f, ) 2) in the coordinate sys-

D=Q RED,

r(9) =g 6 r "(9),

paddy g @psalm

~sat g g~saXm

(2.11)

(2.12)

(2.13)

(2.14)
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Corresponding to those decompositions, one ob-
viously has the following:

s= cs (2.15)

x(s)=gx (s), (2.16)

(2.17)

~8( I) g y
gaum (g )~8a'Xm (f&} (2.1S)

III. hcp LATTICE

A. Coordinate systems

Figure 1 illustrates the choice' of the axes of
X (unit vectors i, j, S) and the crystallographic
axes (primitive lattice vectors a, b, c}, along with

The projected forms of the defect Green's-function
matrix and the t matrix are given by equations
obtainable from Eqs. (2.2) and (2.3) by making the
replacementg-g, g*-g*, 5$-5/, t-g, and

I -I (the f;dimensional unit matrix).

FIG. l. Orientation of the Cartesian and the crystallo-
graphic axes in the diatomic hcp crystal in the basal (XF)
plane. The Z axis which coincides with the c axis is
perpendicular to the plane of the paper, directed out-
wards. The black dots represent atoms in the basal
plane with a spacing a from the central atom, and the
open circles with crosses represent the projections of
the six atoms in the Z=+21c planes.

all the atom positions up to the second neighbor
of the impurity which is supposed to be located at
the common origin of the coordinate systems. Of
the two atoms in the primitive cell of the perfect
lattice, one is located at the origin, i.e., at x(01)
=5, and the other at

lg

x (02) =
g a+ 3 b+ —,

' c = -(3)-'~' sg + —,
' c$ .

TABLE I. Atom-index labels and the Cartesian and crystallographic coordinates of all the
atoms in the defect space.

Subspace
Sublattice Crystallographic

index coordinates
Cartesian

coordinates

0

T 0

1
za
1
za

1—za
1
za

-a/&3

a/2&3

a/2&3

-a/&3

a/2&3

a/2&3

1zc
I
zc
1—zc
1zc
1zc
1zc

0 T

0

0
1
za

1
za

—,
'

&Pa
1=z&3a

—z&3a
1

=zW3a

0

0
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Here g is the lattice constant in the basal plane,
and c is the separation between two adjacent atom-
ic planes parallel to the basal plane.

B. Defect space

TABLE II. EIements of the group &3„. Here a=~ v3,j.b=» a=-a, and 5=-b.

Our Czachor '8 Common Matrix operation {in-
notation notation notation ternational notation)

S0

The 39-dimensional defect space D consists of
three invariant subspaces: O', D', and B'. Only
the atom at the origin labeled by n=0 belongs to
Do; those labeled by n = 1, 2, . .. , 6 belong to D';
and those labeled by n=7, 8, ... , 12 belong to D .
Thus D is of dimension 3 and D' and XP are of
dimension 18. Table I gives the relation between
the atom indices n, the site indices (/v), and the
Cartesian coordinates x (/k) of all the atoms in D.
We note that if the ratio c/a &~~, as in the case
of Mg, Co, etc. , atoms 1-6 are the first neigh-
bors and atoms 7-12 are the second neighbors;
while if c/a & v as, as in the case of Zn, Cd, etc. ,
the role of the two groups of atoms are reversed.

S5

S7

S8

S10

T04

y10

T12

F03

T13

SB(Z)

S,'(z)
bx+ ay,

bx+ ay,

8

ax+ 5y, X

ax+ Fy, Z

bx+ ay, ax+ 5y,

x j

bx+ ay, ax+ 5y, z

CB (Z) bx+ ay, ax+ hy,

CB'(Z) bx+ ay, ax+ by, z

C2Q) bx+ ay, ax+ 6y, X

C2 (2)

C2(3) bx+ ay, ax+ by, z

C. Symmetry properties ~Reference 6.

arid

+(/1, 02) =P(/1, 02) =g(02, /1)

y(/1, 01)=+(/2, 02) =y(02, l2),

(3.1)

(3.2)

with similar relations for g.

D. Matrices g and P

The group 9 for the atom n =0 is D», the group
of the trigonal prism. In Table II we list all the
elements of this group and relate our simplified
notation to the notations used in the literature to
facilitate comparison. In addition to the usual
requirements of space-group symmetry (i.e.,
translational and point-group symmetry), the fol-
lowing restrictions due to the particular D,', space-
group structure are worth noting:

by

M "~=T""MT"" (3.4)

(where tilde denotes the transposed matrix).
Czachor' has given the expressions for all the
matrices I""(i.e., the "multiplication table" ).
Using this multiplication table, the bond invariance
under the point-group operations, and Eqs. (3.1)
and (3.2), we obtain the most general forms of the
matrices g and +. For our purpose the force
constants up to two neighbors and the Green's
functions up to eight neighbors are needed. Let
us use the abbreviations

g (0, n) =g (n),

~(01, /K) =g (/v),

In obtaining the most general forms of the
Green's-function and the force-constant matrices
for each shell, it is convenient to write the sym-
metric and antisymmetric parts of a general 3x3
matrix M as

0 A4A,
M= S, S, $, I+ -A 0

86 S5 S3 -A6 -As 0

(3.3)
The effect of transforming M by means of the ro-
tation matrices T"" (/L, v=0, 1, .. . , 5) is denoted

and let~+ denote the Green's function corres-
ponding to the Pth shell (note that g 0~ (01) is the
self-term). A similar notation will be used for ~.
Whenever a superscript appears outside the ma-
trix, it is to be understood that each of the ele-
ments of the matrix will depend on the super-
script. We shall list now the general forms of the
Green's-function matrices up to eight shells of
neighbors:

(s, o o)"'
g&»(000, 1)= 0 Si 0

&o o'sI
'



18 DEFECT GREEN'S FUNCTION AND T MATRIX FOR AN hcp. . .

al(TOO, 2)

—,'n(S, -S,) mS,

The general forms of the matrices g'~' up to two
neighbors, in the notation of Iyengar et al. ,

' are

n+X 0 0
;W(s, —s, )

~s, S5

S5

S3
0 0 y+p

P "i(000, 1) = 6 0 a+A. 0

S, —.'v 3(s, s,) o &»
p, V3j, &go

g ~ '(100, 1)= ~&3(S, —S,)

o a, o ~»

S2

0

0

S3

P"'(100, 2) = — -V 3p X+ p, g

„-v 3o -o v

(3.6)

+ -A4 0 0

0 0 0

o.'—P VSP 0 0 6 p

p"'(1001)= — v 3p n+ p p 6 0 p

0 y 0 0 0

g" (200, 2)= S,

s
S2 S,

S5 S3

0 P ~(6)

g (6&(210 1) 0 S2 0

0 0 S,

"s, o o "&»

g "'(210,2) = 0 S, S,

p S5 S3

s, o 0"&')
g' (001,1)= 0 S, 0

0 0 S,

s, s, s, ~» (3.5)

It may be noted here that the shell numbering
(1,2) used here corresponds to the case when the
c/a ratio is less then the ideal value. If c/a is
greater than the ideal value, the shell labels 1 and
2 should be interchanged.

IV. DEFECT MODEL

We assume that the impurity has a mass defici-
ency 4M with respect to the host atom, and that the
only force constants which are, affected by the pres-
ence of the impurity are P(p, n) (n=1 to 12) and
P(n, n) (n=0 to 12). The elements of the matrix 5l
are given below. We have

100
5l(0, 0) = —&o'hM 0 1 0

001
S

g "'(101,1) = 2&3(s, —S,)

S S,

2'(S, S) S,

S, V3S,

&3S,

0 0

0 bn+bA 0

0

(4.1)

o

+ -A~

g "'(200, 1)= 2v 3(S, —S,)

0

0

-'&3(s s) o

S3

6I (o,~}=&y(0, ~)

= &1(n, 0) (n = 1,2, . . . , 12), (4.2)

&I (n, n) = ~g(n, n)

= -6y(p, n) (n=1, 2, . . . , 12). (4.3)

It is sufficient to give the general forms of 5l(0, 6)
and 5l(0, 11).alone, since any other 5I(o, n) (n40)
can be obtained from one of these by an appropriate
rotatiori. We have

p ~ p (8)

+ -&~ 0 0

0 0 0

bA —b p -W3bp -0 36a'

&I(0, 6) = -~34 p. dA+ 6p -4o
-v 3no —Eohv

(4.4)
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and

5I(0, 11)=

hn —bP v 3bP 0

v 3bp ho. +hp 0

0

(4.5)

TABLE IV. Matrix elements E' (m, n=1, 2) of the
group elements {~S] in the IR E'. Here a=~zv3, b=~,
and the bars above a, b, and 1 denote negative signs.

0 1 2 3 $4 5 6 7 8 ~9 1p

Although the matrix $(0, 11) has an antisymmetric
part (i.e. , the parameter &), the perturbation ma-
trix 5$(0, 11) cannot have an antisymmetric part
(i.e. , b &= 0). This follows from the sum rules

12 12

P ~P(n, 11)=0 and g &p(11,n)=0. (4.6)
n=0

The only nonvanishing terms in the above sums
correspond to n= 0 and 11. Hence we obtain

—5$(11,ll) = &$(0, 11)= ~p(II, 0) = &P(0, ll). (4.7)

1 5 5 b I b 1 b b b 1 b

E1& 0 a a a 0 a 0 a a g 0 a

E~~ 0 a a a 0 a 0 a a a 0 a

Egg 1 b 5 b 1 b 1 b $5 1 5

Omitting tedious details, we list below the pro-
jected Green's-function and perturbation matrices.
,Since these matrices are symmetric, we do not
write down the elements of the lower triangles.

V. APPLICATION OF GROUP THEORY

The procedure for obtaining the SAV's and the
projected A' matrices (i.e. , g' and &l) has been
described already in Sec. II. The characters
X"(S) (nt = 0, 1,2) are listed in Table III. The char-
acters y'(S) may be found in Wilson et al. ,' whose
notation for the IR's we follow. We obtain the fol-
lowing decompositions:

I'o(D,„)=A,"$ E',
1(D ) 2A'$A" $At $2A't$3E'$3E" (5 1)

C, C, C3 C4

D2 D3 D4

03 04

d A. —2A p -2'

and

I'(Ds„) = 2A,'$A,"$2A,' $A,"$4E' $2E",

1(D,„)=4Af $2A,"$3A,'$4A~" $8E'$5E".
E2"

g(A", ) = 5l (A", ) =

An —26P

Eh+24 p. 0

Making use of the character table of D», and the
representation matrices for the IR's E' and E"
with respect to X which are given in Table IV, we

apply the projection operator technique and obtain
the complete orthonormal set of vector g

"~"which
are listed in Tables V-VII. It should be noted that
in Tables V-VII, the repetition index a is not la-
beled from 1 to c, , but in the following order, re-
spectively: 1 to c,' for D', c,'+ 1 to c,'+ c,' for D',
and c,'+c,'+1 to c,'+c,'+c,' for D'.

5l(A', ) =

F3

-g 8, —g v 3S~ -p Bs-~gv 3S,

g &3K, —gS,

0

TABLE III. Character table for the total representa-
tion I™and I'.

TABLE V. Symmetry-adapted vectors $~~ normalized
to unity.

Xm

$p $~, $& $3,$4, ~ S6 Sg~SS $9~$1p, Si1
I 2&3 3~g ~a

Atom
number

s=A"
2

A, =1
s =E'
A, =l
@=1

s=E'
A.= 2
a=1

x, ($)
x, (s)
X,($)
X(S)

3
18
18
39

-1
0
0

-1

1 -2
0 0
6 0
7 -2
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TABLE VI. Symmetry-adapted vectors g~ normalized to 6. Here a= ~v3,
e=3 x 2 f=2 2~3 g=2 ii2

1b=g, 2-3/2

Ai
1 1
1 2

A" A'i 2

1 1
1 1

Alt2
1 1
2 3

gt
1
3

gt
2
3

1 1
1 2

0 0 1
1 0 0
0 1 0

1
0
0

0 0
1 0
0 1

0
0 0

0

0 5
0 a

0 1 0

a 0
$ 0
0 1 0

0 0
1 0 0
0 T 0

a 0 b

b 0 a
0 T 0

0 b$0
0 T 0

a 0
a 5 0
0 0 1

a 0
0

0 0 1

1 0 0
o T o
0 0 1

a 0
b 0

0 0 1

a 0
a b 0
0 0 1

c e

0 0

0

C

d
0

0
0

f
0
0

f

0
0
f
0
0

f.

e
0

d

0

d
e
0

d
e
0

2
C

0

2
C

0

d
C

0

0
0

0
0

0
0

0
0
8'

C

0

0

0

d

0

0
0

0
0

0
0
h

0
0

0
0
g'

0

d
e
0

e
d
0

e
d
0

0
0
f
0
0

f

0
0

f
0
0

f

C

d
0

C

0

C

d
0

C

d
0

TABLE VII. Symmetry-adapted vectors P"~2 normalized to 6.
same meaning as in Table VII.

The symbols a to h have the

8 = Ai AiN A2
1 1 1 1 1

a= 3 4 2 2 3

All2
1

gt
1 1
6 7

@t

2 2
6 7

2
8

@ll

1 1
4 5

Ett

2 2
4 5

1 0 0 5 a 0
0 1 0 a b 0
0 0 1 0 0 1

a 0 1 0 0
a h 0 0 1 0
0 0 1 0 0 1

d
C

0

0
h

0

d
e
0

0
0
0

d
0

d
e d
0 0

0
0
0

C

d
0

d
C

0

0

0.
0

0
0
f

0
0

f
0
0

0
0

5 a
a
0 0

0 X a 0
0 a 6 0
1 0 0 1

C

d
0

f
0
0

0
f
0

e
d
0

0
0

0

0

0
0

0
0

f
0
0

f
0
0

10 T 0 0 5 a 0
0 1 0 a b 0
0 0 T 0 0 1

C

d
0

d
C

0

d
e
0

d
C

0

0
0

0
0
f

0
0
f

0
0
g'

b a 0
a 5' 0
0 0

1 0 0
o T o
0 0 1

12 b

a
0

0
0

0 T

5 a 0
b 0

0 0 1

d
C

0

f
0
0

0
f
0

e
d
0

g
0
0

0
g'

0

0
0

0
0

f
0
0

f
0
0
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A~ A3 A4

G, G, G4

03 04

6(hy+ 6v) —&o'b,M 0 0 0

&l(A,")=
hX -2h p. -2h, o 0

b, v 0

g(&') =

Bj Ba B3 B4 B5 Bs B7 Bs

I~ I3 I4 I5 IQ I7 Is

J J J J J

KKK K K

U5 ~e U7 ~s

Vs V7 Vs

s

Xs

5l(E') =

6(«+ dX) —ur2LM 0 0

0

0

0

0

0

0

0

0

0

0

0

0

g(~ll) g 1/2

L~ L3

M~ M3

N, 3

—,'r, —2Wsz,

N5

--2'Wsr, + —,'z,

AX —2+ p, 2+o 0

0

0 0

0. 0

6l (gtt) hA+2hp. 0 0

ay 0
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The expressions for the symbols A„.. . , Z, in
terms of the Green's-function parameters are given
in Appendix B.

Having obtained the projected forms of tht: mac-

trices g and &l it is trivial to calculate the ma-
trices g*s and P, and so we do not write down the
explicit expressions for these here.

VI. DISCUSSION

For an isotropic substitutional defect in a di.-
atomic hcp crystal (6P =0 in this case), the only
modes of vibrations in the defect space which are
affected (by the defect) are the A,"and E' modes

The parameter y in the P matrix is the bond-
bending force constant' and is usually much small-
er than the parameters o,'and P which are mainly
dependent on the bond-stretching force constants.
If it is assumed that ny «na or b,p and can be
neglected, then it can be seen that the IR's A.,"andE"do not contain any of the perturbation param-
eters corresponding to shell number 2. These
parameters refer tothe first shell in those crystals
for which the c/a ratio is larger than the ideal val-
ue; hence, for these crystals, there is no contri-
bution to the matrix &E coming from the A,"andE"modes. (This is true only in the nearest-neigh-
bor approximation. )

The results derived in this paper have a variety
of applications in the study of substitutional point
defects in hcp crystals. Some. of these applica-
tions were mentioned in the Introduction. Per-
haps the simplest of all such applications is the
study of the static relaxation of atoms around a
vacancy. %'e have investigated this problem for
the case of magnesium, and our results are re-
ported in the companion paper.
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Proof of Eq. (2.9): Using Eq. (6.7.62) of Ref. 2,
theactionofthe matrix S(S) on the vector q'~ is
given by

S„.(LK, l»; 8)q"."(I»)

= S„(LK,I»; S)A,~(i», l'»')g'"(l'»')

= 6„(LK,l»; S)A „(l», l"Ic")S),„(l"»",L 'K' j S)

x 6 (LIKI lt»t 8)yalA(ll»l)

fs
= gA (LK L'K')g""(L'K')r' (8)

fs
= g q'„"'(LK)r'„.„(s).

In the second equality, use is made of the fact that
the 3's are orthogonal matrices. On employing Eg.
(2.4) in the left-hand side, multiplying both sides
by the inverse matrix F~„„, and summing over X,
leads to Ecl. (2.9}as required.

APPENDIX 8

The expressions for the symbols &„.. . , Z, used
in writing the reduced Green's-function matrices
are collected here for ready reference:

A, = 8,(0),

A, = 2 x 6'I'8 (1)

A, = 6'~~8 (1)
6i128~(2)

B,=S,(0),

B,= 2v 3[-S,(1)+38,(1)],
B,= 2&3[38,(1) —8,(l) ],
B,= —2~38,(1),

B,= ~v 3S,(2),

B,= 2[8,(2) -S,(2)] v 3A,(2),

B,= &[8,(2}+8,(2)]+ gV 3A,(2),

Be=4@3[—3S,(2)+5S,(2)]-'~A4(2),

C, = S,(0)+S,(4)+ ~ [S,(2)+ S,(V)]

—g [8,(2) + S,(V) ]—V 3[A4(2) +A4(7) ],
C, = -2v 38~(7)+2A,(7),

C, = 2 v 3[-S,(1) —S2(1) —8,(3)+ S,(3)

+ S,(5}+8,(5) ]+2S,(5),

c,= -,'[s,(3) + s,(5)]

+ ~ [S,(l) + Sx(3) —Sx(5}]—~S,(1),
D, =S,(0) -S,(4)+2[S,(2) -8,(V)],

D, = &3[28s(1)+ S,(3)+ S,(5)]+8~(5),

D4= —2S,(1)+ S,(3) + S,(5) —v 386(5),

E,=S,(0) —S,(4)+ —,'[S,(2) -S,(7)]
—-', [S,(2}—S,(7)]—v 3[A,(2) -A,(V)],

E,= —&3[28,(1) —S,(3)+ 8,(5)]+8~(5),

E, = 8,(0)+S,(4)+ g[8,(2)+8,(7}]
—g [S,(2) + S,(V) ] —&3[A,(2) +A,(V)),

E~= 2[S,(1)+S,(3)+S,(5)]
—2[8,(1)+S,(3) -8,(5)]-v 3S,(5),

E,= 2v 3[-38,(1)+ 8,(1)+ S,(3)

+ S2(3) + S,(5) Sm(5) ]—84(5),
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G = S (0) —S (4)+ z[$ (2) —S (7) ]
——[S (2) —S,(7)j v 3[A (2) A (7)],

G, = 2&3$,(7) —2A, (V),

G4 = —2S,(1)+ $,(3) + S,(5) + &3$,(5),

H = S (0) + $,(4) + 2[$,(2) +S,(7)],
H = 2[S,(l)+S,(3)+S,(5)],

I2 = 4( 5 [$,(2) + $,(7)] —3[$.(2) + $2(7) ])
+ [S,(0)+ S,(4)]+—,'v 3[A,(2)+A,(7)],

I,= —,'[S,(2) + S,(2) + S,(7) + $,(V) ]
——,'v 3[A,(2) +A,(V)],

I,= &3S,(7) —3A,(7),

I,= -4[$,(1)+$,(3)]+ 4[$,(1)+$,(3)]

+ 2 [S,(5) + 3S,(5) ] —W3$,(5),

I,= 4 ~8[$,(1) —$,(1) —$,(3) —S,(3)]

+ g~3[s,(5) —s.(5}1-s (5).

I,= Ws[s,(i)+ —,'s, (3)],
I,= —,'[s,(1) s,(1)+ s,(3)],

J,= [S,(0)+ S,(4)]

+ -,'(5[$,(2}+$,(7) ]- 3[$,(2) + $,(7) ]}'

+ —,'v 3[A,(2) +A,(7)],

J,= ~3$,(7)+A,(7},
J,= —'[-S,(1) + S,(3) + 3$,(1)+ S,(3)],
J6= gv 3f[$,(l) —S,(3)j+ 3[-S,(1)+ $~(3)]],

J,= 2v 3[S,(1}+S,(3) + 2S,(5) —S,(1)]+$4(5),

J,= -2$,(3)+$,(1)+$,(5)+~3$~(5),

K4= —S,(0) —$,(V) + S,(2) + $,(4),

K, = ps, (3),

Z, = 2W3$,(1) —,'V 3S,(3),

K, = —v 3$,(1)+ 2S8(5),

K, = —$,(1) —S,(3)+ 2S,(5),

L = -&2$,(4) + 2 '~'(5[$,(2) —S,(V)]

3[s,(2) s,(v)j

+ 2v 3[A~(2) -A~(7}]),
I.,= v 2[A,(v) &3$,(v)],

L,= 2 '~' x 3[S,(2) + $,(2) —S,(V) —S,(7)]
2 '~' x v 3[A4(2) -A~(7)],

L4 = &2([$,(1)+ S,(5)] —2 S,(3) + W3$,(5)).

L5 = —0 2 [$~(1)+ S3(3) —2SS(5)j,

M, = ~2[$,(0) —S,(2) + S,(4) —S,(7)],
M, = —W2[3A, (7) + v 3S6(7)],
M4= Ls~

M, =&6[$,(1) -S,(3)],

N, = 2 ~~'(-3[8,(2) —$,(V)]+5[$,(2) —S,(7)]

+2&3[$,(0) —S (4)+A (2) -A (7)]).
N = 3 x 2 ~'[2$,(1)+ S,(3)],
N, = —2 '~'~3$, (3) + 6'~~[$,(l) —$,(5)]+v 2S6(5),

0,= $,(0)+ a [$,(6)+S,(8)]
—z[$ (2)+ S (6)+S (8)]+2S (2),

04=A~(2) +A~(8),

P,= $,(0) + g [S,(6) —S,(8)]

+-,'[$,(2) —$,(6) + S,(8) ]- -,'S,(2),

@2=$3(o)-$,(8) -2[s,(2) -$,(6)],

R, = —zs, (0) —Hs, (6) —S,(8)

+ 3 [$,(2) —S,(6) + S,(8)] —5S,(2)]

+ 2~3[A,(2) +A,(8)],
R, =~2v 3$,(0)+go 3[S,(6) —S,(8)+3[S2(2)

—$,(6) + $,(8) —5$,(2)]
+ g [A4(2) +A4(8) ],

S,= —pv 3S,(0)

—-'v 3fS,(6) + S,(8) —3[$,(2) + S,(6) + S,(8)]
+ 5$,(2))+ g [A,(2) +A,(8)],

S,= —a S,(0) —Q&$,(6) + $,(8)

—3[S,(2) + S,(6)+ S,(8)]
+ 5S,(2)] —2v 3[A,(2) +A,(8)],

T~ = S,(0) + S,(8) + 2 [S,(2) + S,(6)],
U, = ~2[8$~(0) —S,(2) + 9$~(2)

+ 4$, (6) + 5S,(8) —3$,(8) j

+ 2 x 6' i'[A4(8) +A4(2) ],
U =6'& x [-S,(2) —S,(2)+2S,(6)

—2S,(6) + S,(8) —$,(8)],
+ 2v 2 [5A,(2) -A, (8)],

U, = 6'i'[- S,(2) + 3S,(2) + 3$,(6)

+ 3$,(6) + 4'(8) ] —6v 2A~(2).

U, =v 3[3S,(2) —S,(2)+$,(6)

+ S,(6) —2S,(8) + 2$,(8)]
+ 2 x 6'~'[A, (2) 2A,(8}],
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y, = ~2[8$,(0) 9$,(2) —$,(2) + 4S,(6)

+ 3$,(8) 5S2(8)] 2 x 6'~'[A~(2) +A~(8) ],
V, = 3v 2[-Si(2)+ 3S2(2) -S,(6) —$,(6)

+ 2S,(8}—2S,(8)]
+ 2 x 6'~'[A, (2}—2A,(8}],

V, = 6' ~[-3S,(2) + $,(2) + 3$,(6)

+ 3$,(6}-4$,(8) ]+6v 2A~(2),

W, = v 2[8$,(0) + 8S,(2)+ 4S,(6) —5$,(8) + 3$,(8)]
y 2 x 6' ~~[A4(8) 2A4(2) ],

W, = 6'i'[2$, (2) + 2S,(2) —2$,(6) + 2S,(6)

+$,(8)+S,(8)]

+2& 2[A,(8)+4A4(2)],

I,= ~2[8$,(0) -8S,(2) +4S2(6) —3S,(8) + 5$,(8)]

+ 2 x 6'~~[2A4(2) -A4(8) ],
F,= 2 '@[-$,(0) + $,(2) + S,(6) -$,(8)].
F,=v 3F4.

Z, =2 'i'v 3[ S,(0) -S,(2) yS,(6)+$,(8)],
Z, = —3 '~Z, .
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