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The model we propose is an extension of Cheveau's approach to the hcp structure, This model satisfies the
requirement of translational invariance as suggested by Lax, and is in equilibrium without recourse to
external forces. In this, the short-range part is taken to be the first two terms in a Taylor's expansion of the
potential energy. The first three nearest neighbors have been considered in obtaining the expressions for this
contribution to the matrix elements. The long-range interaction has been accounted for on the lines of Krebs.
Phonon dispersion relations along symmetry directions and the 8-T curve have been plotted for magnesium
and beryllium and compared with the available experimental results.

I. INTRODUCTION

The lattice vibrations of metallic crystals have
been studied both theoretically And experimentally by
many workers over the past several years. ' The
influence of the conduction electrons on the lattice
vibrations was taken into account by de Launay'
for the first time, who constructed a phenomenolo-
gical model which includes explicitly the effect of
a compressible but shear-free electron gas. The
electron-gas models of Bhatia, ' and Sharma and
Joshi4 have been successfully used in studying
phonon dispersion relations, specific heats, and
the Debye-Wailer factor of a number of cubic met-
als. Gupta and Dayal, '~ Sharan and Bajpai,"'
and Verma and Upadhyay" " incorporated phenom-
enologically the effect of conduction electrons on
the lattice vibrations of hcp metals. Gupta and
Dayal'~ extended Sharma and Joshi approach for
studying the lattice dynamics of the hcp structure.
They calculated the average strain set up in the
atomic sphere owing to the thermal wave. In the
case of metals whose axial ratio c/a is much
greater than one, the replacement of the Wigner-
Seitz polyhedron by an ellipsoid should be a better
approximation. In view of this fact Sharan and
Bajpai" modified the long-range matrix element
of Gupta and Dayal. Later, derma and Upadhyayio'"
pointed out that the expression for the long-range
part proposed by Sharan and Bajpai was incorrect.
These authors suggested the correct expression.

These models suffer from three types of short-
comings. First, they violate the symmetry proper-
ties of a lattice in the sense that the secular equa-
tions in these theories are not invariant" with re-
spect to a translation equal to a reciprocal-lattice
vector, because of the nonperiodic contribution of
the electron gas to the elements of the dynamical

matrix. Second, in these models the long-range
matrix elements for the ions belonging to the non-
basal planes were arbitrarily equated to zero.
This is not true. In a physical model, ions belong-
ing to the nonbasal planes contribute significantly
to the matrix elements for the long-range part.
Thirdly, all these models treat the electronic bulk
modulus as a parameter. In some cases, e.g.,
in beryllium and yttrium, this is found to be neg-
ative. It seems to be unrealistic. Although the
model of Krebs" satisfies the symmetry require-
ments, it suffers from a serious drawback of in-
ternal equilibrium. The derivative of the screened
Coulomb interaction energy is not zero as it is for
the short-range term. This necessitates an exter-
nal force to be applied to maintain the system in
equilibrium. Cheveau, ' therefore, proposed a
model for the cubic structure which not only sat-
isfies the requirements of translational invariance
but is also in equilibrium without recourse to ex-
ternal forces.

In view of the shortcomings inherent in the earl-
ier models and the ideas put forward by Cheveau
for the cubic metals, we thought it worthwhile to
develop a model which is possibly free from these
shortcomings.

II. PRESENT MODEL

In the present paper we have extended Cheveau's
approach to the hexagonal close-packed structure.
It is assumed that the forces on an ion may be re-
garded as arising from (a) a short-range (SR) cen-
tral interaction Q( ~r ~) between the ions, which is
significant between the first, second, and third
nearest neighbors, and (b) a long-range interaction
(LR) steming from certain energies due to the
presence of conduction electrons and their inier-
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action with the ions.
Let the displacements of the central ion and its

first-nearest-neighbor ions from their normal
positions be S, and S, . Then the total potential
energy, when expanded in a Taylor series, is
given by

o = P -( ) r~ „(s,„„-iiJ+ —
/
5, „-ii, ['

11 d Id/
2 Z dr t dr lm~ ~ LAN 0 ~

mS, =-(V~ P)+F(0) .

Here F(o) is the force exerted (on the ion at the
origin) by the screened Coulomb interaction. The
secular equation determining the angular frequen-
cies of the normal modes of vibration in a crys-
tal can be written as

(2)

r, „represents the position coordinates of neigh-
boring atoms in equilibrium. The higher terms in
the expansion of the Taylor series have been ne-
glected. l, m, n represent the direction cosines of
the line joining the central ion and a nearest neigh-
bor. r, is the nearest-neighbor distance. The
summation in Eq. (1) extends over the first three
nearest neighbors of the central ion at the origin.
In this case the first dirivative of the potential en-
ergy (dP/dr) is not equated to zero. This is
because our potential &P(~r ~) does not represent the
entire potential determining the equilibrium dis-
tance r, .

The equation of motion of the ion at the origin
is, therefore,

A. Short-range matrix elements

The expressions [A,&(q)]BR and [B,&(q)]RR have
been estimated in view of Eq. (1). We have consid-
ered interaction between the central ion and its
first three nearest neighbors. A unit cell of the
hexagonal close-packed lattice contains two ions
in it and its structure may be looked upon as being
composed of two interpenetrating simple hexagonal
lattices. Each ion of this lattice has six nearest
neighbors at distances (—,'c'+ —,'a')'~', six second
neighbors at distances a, and six third neighbors
at distances (~aa'+-4c')'~'. Let a, and p, corre-
spond to the expressions

t'& t'g 1- yegg

of Eq. (1) for the first nearest neighbor. u„P,
and u„P, are the similar terms for the second
and third nearest neighbors, respectively. We have
given in the appendix the expressions for
[A (q)]'" and [B, (q)]"

8. Long-range matrix elements

This part arises from the Coulomb interaction
between the ions of the lattice. The interaction is
modified by the presence of conduction electrons,
which give rise to screening. If the mutual separ-
ation between the two ions is

~

r ~, then the expres-'
sion for the screened Coulomb potential is of the
form

e(~r~)-
Ir I

where X is the screening parameter defined by

~D(q) - m&1~=0, (3)

( & (q) B(q))Dq =(
~B*(q) ~(q)r

(4)

where A(q) and B(q) are 3 x 3 submatrices and
B*(q) is the complex conjugate of B(q). In the
present approach the elements of the dynamical
matrix A,z(q) and B,&(q) are expressed as the sum
of two coupling coefficients:

where m is the mass of the ion in the lattice and
I is the unitary matrix of the order 6 x 6. The dy-
namical matrix D(q) is written as

X =o' — k~

where r, is the interelectronic spacing, k~ the
Fermi wave vector, and o is a parameter. Ac-
cording to Thomas and Fermi" the value of o
is 0.814 whereas according to Pines" it is 0.353.
a, is the Bohr radius. Using the above expression
for Q(~ r ) the following expressions for the long-
range part of the matrix element have been ob-
tained:

[„(-)]LR „g (q+B~(q+gb
lq+g I'+~'

(q) [Q (@]SR+ Q (q)]LR

),(q) =[ ),(q)]'"+ [ (q)]"".

Superscripts SR and LR represent short-range
and long- range interactions, respectively.

gag&[1+ cos(g 'r&2)]
Ig I +x2

(-)j g ~ 9 + li jul +ii i g(;.,). „)[q+g I2+X2

(6)
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Here A is a parameter, which depends upon the
structure of the lattice. Its value is obtained in the
long wavelength limit (q-0}. For hcp structure
A2 is (v 3/4)a2cK, X2. Where K, is the bulk modulus
of the electron gas and (v 3/4)a c is the atomic
volume. The summation in Eqs. (6} and (7) ex-
tends over the reciprocal lattice vectors g. r»
is the vector distance between the two ions in
the unit cell.

Applying many-body perturbation theory, Langer
and Vosko" were able to show that the screening
parameter was a function of electron wave number
k. In view of the ideas put forward by these auth-
ors the modified screening parameter is given by

V2 = X2f(t),

where

f(t) =0.5+ ln
1-g' 1+g

4

t= ~q+g )/2n, .
It was shown by Woll and Kohn'8 that if electron

wave functions were treated to be Bloch type, then
the free-electron expression included a function
G2(2). Incorporating all these ideas in Eqs. (6) and

(7), we write finally

[g (q]z.a g ~ (q+g)l(q+gbG (2' )
~ q+ g ~'+ ~'f(t, )

g pic*,g.}[}+ cos(}}.r„}])
Ig ~'+&'f(t )

(8)

[ft (@]La ~ g (q+g)&(q+ghG (& )
4j 2

~ q+ g [2+ y2f(t ) 12

where

G(2') = 3(suu -2; cosr)/x2

can write the secular determinant as

p(}1 s
g

= Q [De (q) ]s~ } (10)

where p is the electron density.
The easiest way to obtain the elastic constants

expressed as a function of force constants is to
put j 0 in the dispersion relations. The acoustic
modes in this region are linear. Therefore

where S is the velocity of sound such that

S =v'c'/p . (12)

C„—2K,=, [-2(u, + u2) + (X, +X2)],
3c

(15)

2K, =
3
—2[3(n, + u2) + y'(4X, +X,)],1 c 9

3 a' ' ' 16

(16)

Here c' is the elastic constant of the crystal. In
the hexagonal-close-packed metals the determin-
ant in Eq. (11) cannot be factorized everywhere
and it is impossible to obtain all the five elastic
constants. %e have, therefore, obtained them
using the standard long-wavelength procedure.
By comparing Eq. (10}with the equation for the
amplitude of the elastic waves, ' we get the follow-
ing expressions for the elastic constants in terms
of the atomic force constants and the bulk modulus
of the electron gas:

C„-2K, = 3(X, +SP, +4X,) +4(n, +3a, +4a, )
1

2

3(X1 —2X,)'
6( u, + n2) +3(X, +X,)

1
C» —2K, = ~ (X, +SP2+4X2)-4(n, +Su, +4a,)

3(X, —2X,)'
6(n, + e,}+3(X, +X',)

&44 = —,[2(u, + u2) + (X, +X,)],

C. Elastic constants

2 3
C« = [u, +Sa2+4u2+ —y'(X, +X,)],f 3c

where

X, = P,/(1 -' +)y,

X, = p2/{1+1}}y2),

(18)

In the long-wavelength limit (q-0}, the waves
are effectively propagating as in a continuous med-
ium. The long wavelength is obtained by expanding
D,z(q) in powers of q. The lowest nonvanishing
terms are of the order of q2 and in this limit we

y=C/a.

It is evident that the two expressions as given by
Eqs. (17) and (18) have been obtained for the elastic
constant &«. In order that these may satisfy the
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TABLE I. Input data for fixing the force constants.

Metal

Elastic constant C,.;
(Ion dyn/cm2)

Cf 2 Cfs C33

K~

C44 (10 dyn/cDl )

Lattice parameters r,

Experimental
frequency

m (10f2 Hz)
(amu) Z, [TA(ll)) at M

Be 29.23 2.67 1.40 33.64 11.00
Mg 5.943 2.560 2.140 6.164 1.642

11.8967
1.6346

2.2856
3.2094

3.5832 0.9891 1.94 9.012
5.2105 1.4049 1.3704 24.312

11.5
3.71

condition for the lattice to be in equilibrium, the
two values for C,4 must be equal. This condition
gives the following relationship

1
o., + n, = s (2 y' —2)( n, + o.,) . (19)

D. Bulk modulus of the electron gas

As it has already been mentioned earlier, the
bulk moduli of the electron gas for beryllium and
magnesium have been calculated using the Virial
theorem. " The required expression is given by

2

r, dr, r, dr, (20)

E' = E'g + E „+E'q
y

where,

P2 3n 1/3
E' n

5 2m* 8n

e'n'"

(21)

(22)

(22)

and

e, = -12.8527+ 0.5224r, + 1.6931r,' —0.7928r,

+ o.1628r,' -0.0134rs ~ (24)

and where m* is the total effective mass and n is
the density of the electron gas.

where ~ is a constant whose value is 17.922 & 10".
r, is the radius parameter and & is the total
ground-state energy consisting of kinetic (e~), ex-
change (e,„) and correlation (e,) terms. Thus the
total energy is given by" "

III. RESULTS

The values of electronic bulk modulus for Mg
and Be as calculated from the expression (20) are
given in Table I. The value of o is taken to be 0.55
for Mg and 0.353 for Be.

The elastic constants have been me'asured by
Smith and Arbogast and Gold ' in the case of
beryllium and Slutsky and Garland" in the case of
magnesium. Since the number of force constants
j.s six, one additional condition is necessary to fix
these force constants. For this purpose we have
selected one known frequency (Z, [TA(([)])at the
boundary of the Brillouin zone from the neutron
dispersion data. The input data for fixing the force
constants have been given in Table I. The calcu-
lated force constants for these metals are given in
Table II. In the present paper all the elastic con-
stants except C44 for beryllium are due to Smith
and ArbogastÃ The value 11.00&& 10"dyn/cm' for
C,4 in the case of beryllium is found to give the
best fit with the neutron-scattering data. The same
value for C44 has been reported by Gold."

The force constants have been used to calculate
the phonon dispersion relations along [0001],
[0110], and [1120] symmetry directions, which
have been plotted in Figs. 1 and 3 along with the
experimental points. For the computation of vi-
bration spectra, the Brillouin zone is divided into
a mesh of 1000 points, which reduce to 84 non-
equivalent points (including the orig&n). All these
points lie within the „th part of the Brillouin zone.
When proper weightage is assigned to all these
points we get 6000 frequencies. For the purpose
of specific-heat computation with the help of
Blackman's sampling technique, the frequency

TABLE II. Force constants (dyn/cm).

Metal Xf —P f/(1 + 73 g2/g2) X2=p3/(1+ 3 c2/a2)

5981
340

4521
317

8069
1241

-971.6
966.2

-4418.3
3139.4

-8613.4
380.9
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FIG. 1. Dispersi. on curves for beryllium along [0001],. [01TO] and [1120] directions. Experimental points have
also been shown for. comparison.

spectrum is divided in steps of hp=1.0 THz in the
case of beryllium and b v= 0.1 THz in the case of
magnesium. At very low temperatures, mesh be-
comes too coarse for accurate evaluation of spec-
ific heats on account of the dominant effect of the
low-frequency end of the spectrum. The procedure
gives very few frequencies ~in this region. The the-
oretical 8-7 curves are shown in Figs. 2 and 4
along with the experimental points.

IV. DISCUSSION

A. Beryllium

The phonon dispersion relations using inelastic
scattering of slow neutrons have been measured by
Schmunk eI; al. '7 and Schmunk. The theoretical
calculations on the phonon dispersion relations of
Be have been made by Gupta and Daya1. ,' Sharan
and Bajpai, and Upadhyay and Verma' using
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FIG. 2. . 8-T curve for beryllium. Experimental points are shown for comparison.



6724 S. K, NIISHRA AND S. S. KUSHWAHA 18

rg 4

0
A3

r5+
Cn-

0.5 I.O
K 7

1.0
A

FIG. 3. Dispersion curves for magnesium. Experimental points have been plotted for comparison.

phenomenological models. The calculated results
on the present model at the points My My M3,
M,', A„andi"3' are44%, 29%, 7 S%%uo, 13.94'fo,

3.6%, and 6.8% lower, respectively, while at the
points M, , A„and I'6, they are 6.4%, 0.$/0, and
5.2%%uo higher than the experimental ones. In the
[1120] direction the T~(LO) branch deviates con-

siderably from the experimental phonon curve.
The overall agreement between the present calcu-
lations and the experimental measurements on
phonon dispersion relations for beryllium is better
than those given by earlier workers who made the
calculations only along [0001] and [0110] direc-
tions. Gupta and Dayal' and Sharan and Bajpai'

380-
THKORF T I CA L

a EXPERIMENTAL

3eo-

320— 0

300 I

20 40
I

60 iOO I20
l

l4Q

FIG. 4. O-T curve for magnesium. Experimental points have been shown for comparison.
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have not calculated phonon frequencies corres-
ponding to, TA(i) and TO(J.) modes along the [0110]
direction. At some points their calculated results
are 8%%ua-12% higher than the observed frequencies.
Upadhyay and Verma, "however, obtained good
agreement between calculated and experimental
frequencies. This is not surprising because an ex-
tensive fitting of the measured phonon frequencies
was made by these authors. The theoretical re-
sults as given by these models are riot shown in
our figures.

The earliest measurements on the specific heats
of beryllium from room temperature down to 10 K
are due to Cristescu and Simon" and Hj.ll and
Smith. " There are three values available for y,
(electronic-specific-heat coefficient). The first
(y, = 5.4&& 10 ' cal/g-atom K') is due to Hill and
Smith, "the second (y, = 4.4&& 10 ' cal/g-atom K')
is due to Gmelin, "and the third (y, = 4.05&& 10 '
cal-g-atom K') is due to Ahlers. The lattice con-
tribution to the specific heat is calculated by sub-
tracting the electronic specific heat y,T from the
experimental C„. In Fig. 3, the calculated O-T
curve is shown along with the experimental 8 val-
ues as obtained from the lattice specific heat of
Hill and Smith. " Earlier such calculations were
also done by Gupta and Dayal' and Rajput and
Kushwaha. " Our results show slightly better
agreement with the experimental data than those of
these authors.

B. Magnesium

The earlier measurements on the phonon disper-
sion relations for magnesium are due to Collins'4
and Iyengar et al." Subsequently the neutron in-
elastic-scattering measurements on the phonon
frequencies for all the modes along [0001], [0110],
and [1120] directions were performed by Pynn and
Squires. " The theoretical calculations on the pho-
non dispersion relations for Mg have also been
made by Gupta and Dayal, ' Sharan and Bajpai, ' and
Upadhyay and Verma. " In all the cases, reason-
ably good agreements between the calculated and
experimental phonon frequencies was obtained. As
in the case of Be these authors have not made cal-
culations along the [1120] symmetric direction.
We have calculated phonon frequencies along the
[1120] direction in addition to the common [0001]
and [0110] directions. Our results compare very
well with the observed frequencies.

The atomic specific heat in the case of magnesi-
um at various temperature ranges has been mea-
sured by various workers. " 4' For the calcula-
tion of experimental lattice specific heat we have
taken the C„values of Craig et at, ."and the elec-
tronic specific-heat coefficient y, from the work

of Martin" (y, =2.927X10 ' cal/g-atomK'). The
specific heat of Mg has also Oeen calculated by
Gupta and Dayal' and Rajput and Kushwaha. " The
discrepancies between theoretical and experiment-
al values for both the cases were within 3%-4%%ua.

Our results for 0™-Tvalues show reasonably good
agreement with the experimental values. Our the-
oretical results are almost comparable with the
theoretical results of the earlier authors.

Recently Bertoni et a/. "- have emphasized the
role of unpaired three-body forces in the theory of
lattice dynamics of hcp metals. In the present
model such forces have been introduced phenome-
nologically by considering terms like (1/r)(dQ/dr)
in the Taylor expansion for potential energy of the
crystal. The results on Debye characteristic tem-
perature are also in fairly good agreement with
the experimental results for both the metals. As
mentioned earlier, the present model is free from
most of the shortcomings of the earlier phenome-
nological models, and it is also microscopically
sound in the sense that it explains the measured
phonon dispersion relations satisfactorily. Be-
sides this, it also explains the measured elastic
constants.
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APPENDIX

A~/ =6(n, + n, )+3(X,+X,)+ n, (6 —4C,C, —2C2,)

+pm(3 -2C„-C,C,),
A 82 = 6 (n, + n, ) + 3(X,+X,) + n, (6 —4C,C, - 2C2,)

+ 3p, (1 —C,C,),
A', ", = 6(n, + n, ) + ~8 y'(4X, +X,)

+ n, (6 —4C,C2 —2C„),
A8„" = v3 P,S,S, ,
ASR

13

A»=023

BP = -C, [n,(2D +4C,D*,)+ n, (2D*, +4C,D,)

+3X,C,D*, +3X2C„D,],
&Ba= —C [n (2D +4C,Df)+n~(2Df+4C2iD2)

+X,(C,Df + 2D, ) +X,(C„D,+ 2' )],
a'„" = -C, [n,(2D, +4C, D*,)+n, (2D++4C„D,)

+-', y'X, (2C,D *, +D,) +&y'X,(2C„D,+D *,)],
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882 =is 3CS(X~S ~D*, —X2S2~D2),

Bs„"=3yS, (X,S,D*, +2X,S„D,),
gs,"=i~3yS, [(C,D*, D-,) X,- ,X,-(C„D,-D*,)],

S,= sin~aq, S,= sin-,' &3aq„S,= sinacq, ,

C»= cosa q, S»= sinaq„y= c/a,

D„=exp(iaq, n j2&3), i = 4-1,

where

1 1 I 1
C1 cos pQQ'1p C cos p v 3 QQ2p C3 cos 2cg3

x=]+3 2 0 2 ]+~y2

D~ is the complex conjugate of D„.
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