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We calculate the conductivity tensor for a metal with an isotropic Fermi surface, including scattering and
allowing arbitrary frequency, wave number, and uniform stati" magnetic field (within the limits of Landau s
theory). We discuss the present state of the theory of excitation of- cyclotron waves, and explain its
importance to the analysis of observations. We show that, although the Poynting vector for a cyclotron wave
is antiparallel to the group velocity and to the damping direction, inclusion of quasiparticle energy flow leads
to a net energy flow in the expected direction.

I. INTRODUCTION

We shall describe an effective method for calcu-
lating the complex conductivitytensor o(q, &o, H} for
an isotropic charged Fermi liquid in a uniform
static magnetic field. The calculation includes
quasipa, rticle scattering, an arbitrary wave vector
and frequency (provided only that q «&~ and
&o «cz/5, so that Landau's theory applies; for the
same reason we require that S(d, «Q~T, where co,
is the cyclotron frequency eH/m*c}, and a finite
number L of Fermi-liquid parameters A, (L can
be as large as one likes). The conductivity can be
used to calculate the complex dispersion relation,
&o = A(q), for electromagnetic waves: Form the
permittivity tensor, e(q, &o, H) = 1+ (4wi/&o)v(q, &, H)
and determine ar so that the equations q'E —q q~~E

= (&o'/c')7 E have a solution. E is the electric
field of the corresponding wave.

This program was carried out for cyclotron
waves (q H=0, &acne, ) many years ago by Platz-
man et al. ,"' omitting quasiparticle scattering,
with special emphasis on the effect of electron
correlations (the parameters A, of Landau's theo-
ry} on the dispersion relation for v~q/ar«1. They
compared their theoretical results with experi-
mental data on the reflection of microwaves from
alkali-metal foils, and so estimated A, and A, in
sodium and potassium. Microwave-transmission
data' were analyzed using the results of the pres-
ent computational method, "' which is really the
same as that used for analysis of spin-wave data
in the alkali metals. ""' We are now giving a de-
tailed presentation of our method to complement
the preceding paper. '

The inclusion of scattering, with moderate val-
ues of &ov' (-10-20) modifies the cyclotron-wave
dispersion relation most significantly at the ends
of the finite-frequency intervals for which the
waves exist at all in the absence of scattering. ' '&'

With no scattering, cyclotron waves are evane-
scent for (o & (1+A,)&o„and the wave number ap-
proaches zero as &o approaches (I+A, )&o,. (In this
discussion we are focusing our attention on waves
near the fundamental cyclotron resonance at co = m„.
a similar story applies for the waves near any
harmonic ~ =n~„except that different I andau
parameters A, are relevant. ) In the presence of
scattering, there is no sharp cutoff for wave pro-
pagation. For real co, the complex wave number

q varies smoothly as w is increased through
(I+A, )(o„with Imq growing rapidly and exceeding
Req somewhere near (I+A, )&o,. For moderateval-
ues of &ov', 6z ~q ~

/co is never small enough for a
series solution to be valid. At the low-frequency
end, co~, of the no-scattering pass band, nothing
remarkable at all happens to the complex wave
number. As e is lowered, Imq gradually increa-
ses and eventually, well below ~1, for moderate
(os, Imq ri es rapidly and exceeds Req. In other
words, for finite vT the cyclotron wave band is
significantly extended on the low-frequency (high-
field) side. For no scattering and &u & &u~, there are
several possible wave numbers. With scattering,
these branches of the dispersion relation also ex-
tend to or & co~. As a computational check, one can
make &or very large (&100) and recover the no-
scattering results as closely as desired.

The modification of the cyclotron-wave disper-
sion relation by scattering implies serious diffi-
culties in the interpretation of data when mv' is not
very high. We could hope thai the magnetic field
dependence of the transmitted signal is predomin-
antly given by a propagation factor exp(iqL), where
L is the sample thickness (or perhaps by (sinqI. ) '
to account for multiple passes of the waves through
the sample, but ImqL» 1 in practice, so we can
ignore this refinement). This hope is in vain. It
is true that the oscillations of the signal are re-
lated to those of e' Reqr. , but the relationis indirect.
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Even more troublesome, the first few oscillations
near the threshold (0= (I+A,}(0 occur where ReqL
«1, so they come entirely from the phase varia-
tion with magnetic field of the prefactor of e"~.
This means that serious analysis of data for mod-
erate or& cannot be done using only the dispersion
relation or even, presumably, the conductivity
a'(q, (0, H) which applies in an infinite medium. It
is essential to solve a boundary value problem.
This we have not been able to do. In desperation,
several formulas for the prefactor of e"~ were
generated by intuition and wishful thinking, and
their application is described in the immediately
preceding paper.

The first attempt was the equivalent current
sheet method, ' which gave poor results. For or-
ientation, not for actual computation, we point out
that for no scattering and A, =0, the current sheet
method gives a prefactor, for the ordinary wave

(E,f parallel to H, ), (Bg»/Bq) '()(: (&o, —(0)'~' for ((),
near ~.

The second attempt was an impedance matching
argument. The cyclotron wave impedance, rela-
tive to the vacuum, is E/H = (()/cq. At the surface
of the sample where the cyclotron wave is gener-
ated, K is equal to the applied microwave cavity
field, which is relatively independent of Hd„so the
electric field which is detected is H((d/cq)e"~.
This gives a prefactor (omitting factors which are
field independent) q ', a guess which works quite
well. To contrast this with the current sheet
method, note that, for no scattering and A, =0,
q '(x:(((),—(()) ' 2for (d near &(). The phase variation
of q

' with field does seem to account for the sig-
nal oscillations near threshold.

The third attempt, least rational but most suc-
cessful, was to compare the first two attempts
and notice that for weak scattering and near thres-
hold, q

' is proportional to Bo'„/Bq. Accordingly,
the expression (Bo'»/Bq)e"~ for the transmitted
signal was tried, and explaining its success' re-
mains a theoretical challenge.

In Sec. II we derive our algorithm for calcula-
. tion of the conductivity tensor. Although the pre-

ceding discussion has dealt with the case q H = 0,
we shall not make any such restrictions hereafter.
In Sec. III we discuss energy transport for elec-
tromagnetic waves in the presence of spatial dis-
persion (dependence of &r on q). The issue is that
for waves propagating in the + g direction we .must
have Imq&0. For cyclotron waves, this implies
that the group velocity d(()/dq&0, which is fine,
but Req &0, so that the real part of the wave im-
pedance is negative and both the phase velocity and
the Poynting vector are directed antiparallel to the
direction of wave propagation. We show that ener-
gy is transported in the proper direction, with vel-

o.city equal to the group velocity, so there is no
paradox, but energy transport is predominantly
by the quasiparticle system with back flow in the
electromagentic field.

d'0'so k'k' 4 k' -4 k . 2

The right-hand side is the collision term; to($ k')
is the equilibrium scattering rate for scattering on
the Fermi surface (smeared by ksT) from k to k'.
The self-consistent field, for ~k

~

= k~, is

Il&(k, r, t)= f d'o'A(l k'Wr(k', r, t), (3)

where A(k k') is related to the usual. Landau para-
meters by

~ k ) = (2I+ I) I + P (k ~

4m
(4)

We. make a similar expansion of go(k 'k'),

w(5 f')= —$(R + )w,P), ((i k'),

assume that everything depends on r and t as exp
[i(q r —(dt)], and we have

A ~ e A

(nr +iv~q ~ k —i(())@(k)- vzk && H ~ ~q-f(k)0 F 8R

ev~E ~ 5 —-i(()
~)

d'k' [+(k ~ k')

+ —a) (k ' k')]4(k') ~ (6)

If, for the moment, we pretend that the right-
hand side of (6) is known, we can solve (6) easily
by noticing that the characteristics are just the
particle orbits in% space in the dc field H, which
are known. (They are circles on the Fermi sphere
in planes perpendicular to H, traced out with con-

II. CALCULATION OF THE CONDUCTIVITY

A. Formal solution of the kinetic equation

The Landau kinetic equation is simply the Boltz-
mann equation with a self-consistent field Bc(k, r,
t}, and this is most simply written as an equation
for q)'(k, r, t), defined in terms of the quasiparticle
distribution f(k, r, t) by

f(k, r, t) = q(e~ —e,—Ba(k, r, t))

+ 5(e~ —c,)4'(k, r, t),
where g(x) is the unit step function, e~ is the qua-
siparticle energy, and e~ is the Fermi energy.
The kinetic equation is

8 e A—(4' —Bc)+vzk ' —4 — v~k &&—H ~ ~4+ ev~E ~ k
~t " 8r c 8k
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stant angular velocity (v,.) In particular, we con-
sider the equation

(m, +iveq k-i(o)e(k)

vt„k—x H ~ 4(k) = -iruY, „(i), (7)

(Im iK(q = 0) if m') =
c

where v, =eH/m*c, m*=ke/ve. From (10) we find
that

where Y,„(k) is a standard spherical harmonic"
(we choose the x, axis along H), and write the so-
lution of (7) in the form

S E,
eo, —ev, i(u-/(I+A, )+ im(o,

I

and then from (12),

(15)

e(k) = pe,.Y, (k) .
lcm

(9)

4(k) = g Y,,„,(k)(I'm
l 8

~ NI8

The matrix K is defined by (7) and (8).
We now write the solution of (6), our actual kin-

etic equation, in the form

Vjp
4& ~ (ev, —cu, —i+I(1+A,)+imago, )

'

Substituting (13) for S„ leads to the usual formula
for o.

In the Sec. II c we calculate the matrix K exactly.
Therefore, the only approximation we have made,
other than the use of Landau kinetic theory, is the
neglect of A. , and 8', for l-L.

The 4, then satisfy the equations

Em K l'm' 5. . .~ E
g m8

+go Mgs'1A '
1+~)8

(1O)

C. Calculation of the K matrix

We must solve (7) in order to find (Im IKi Pm').
This task has already been accomplished, "' but we
do it here to save the reader the trouble of trans-
lating notation. We choose coordinates so that H

=He„q =q(sinks, +cos&Re), introduce standard po-
lar coordinates 8, p on the sphere, and note that
x, ~ k x (8/Bk) = 8/sy. Define

where

5 = —
fdic kFi (k).

B. Calculation of the conductivity

The electric current density is expressed most
simply in terms of 4(k) because of the renormal-
ization of the current vertex:

X(8) = (v~q/(o, ) sin(3 sin8,

Y(8) = (&o + in&, —veq cos& cos8)/&o, .
Then (V) becomes

.84
Y(8)4' -X(8) scyo4 i +=—Y, (8, p),

C

whose periodic solution ls

(17)

(18)

where v~ is the density of states at the Fermi en-
ergy. The vectors S are

0„=+(T~)'i'(iev~/&e)(k, +i%,),
S, = (~s)"'(i ev~/(e}x-, .

The scheme for calculating the conductivity is to
truncate the equations (10) by setting A, and io,
equal to zero for /~L, solve the L'&&L' system of
linear algebraic equations (10) for @,„, and then
use (12) to express J in terms of 4, . In practice,
for the interesting cases q parallel or perpendicu-
lar to H selection rules operate to reduce the dim-
ension of the truncated system (10) substantially.

At a test case for our scheme, let us calculate
o when q= 0. From (i) and (8) we find directly that

y(8 q7) d@, Y (8 y C )e'er(elo'
CO

xexp(iX(8)[sin(y —4 ) -sing]} .
(20)

If (20) is substituted into
2t

(I'm' ~K elm) = dp I d8sin8Y', *, , (8, cp)%(8, p),
0 ~0

(21)
we have the first equation of Appendix A of Ref. 6.
We can, therefore, borrow the results derived
there, and we have, with C, (8) = Y,„(8,y)e ' ' and
m& (m&) the greater (lesser) of m and m',

278 Qj(I' 'iKif~)=(-)"'
(d

x d8 sin8C, „(8)C.. .(8)
0

r&e)-m&(X(8»~ t Y&e)-m&P'(8»
sins Y(8)

(22)
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The skeptical reader can check that in the limit
q-O, so that X-O, (22) gives us the simple re-
sult (14). In case X or F is independent of e (4 = 0
or & = s/2), the integral (22) can be carried out
analytically. '

m. ENERGY FLON' IN SYSTEMS WITH SPATIAL
DISPERSION

When we are asked to solve an initial value prob-
lem for the electromagnetic field in a medium with
permittivity e(q, &o) = 1+ (4wi/&o)o(q, &o), we find the
dispersion relation ~ = Q(q) for waves in the med-
ium, decompose the initial field into plane-wave
components with real wave vectors q, give each
component a phase exp'[-iA(q)t], and add up the
pieces. Because of dissipative processes, each
component is damped (assuming that the medium
was in thermal equilibrium before the initial field
was introduced), so ImA(q) &0. The procedure for
solution of a boundary value problem is different.
Consider a semi-infinite sample occupying the
regionxy~0 The field is given atm, =0, and in
practical cases is monochromatic with real fre-
quency v. We suppose the excitation to be inde-
pendent of x, and x, (normal incidence) for simpli-
city. In the medium, far from the boundary, a
wave is propagated with wave number q:E~ e ~"&.

The wave number q is a solution of A(qx, ) = &u with
real v determined by the signal generator, and q
is complex with Imq&0.

If the damping of the wave is weak, we have

~
ImQ(q)

~

«
~
ReQ(q)

~

for real q. [We are writing
A(q) as an abbreviation for Q (q%,).] We can solve
A(q) =((), &o real, by first choosing real q, such
that ReA(q, ) = (0, and then writing q=q, +5q, with

/
5q

/
«f q. f

so that

(0 = Q(q, + 5q) = Q(q, ) + 5q
dQ(q)

dq

5q = -ImQ(q, )
dQ(q)

dq

If we neglect Im[dQ(q)/dq], we have

Imq = -ImA(qo)/v~(qo),

where v = Re(dQ/dq) is the group velocity of the
wave. We know that ImQ(q, ) &0 for a stable med-
ium, and we want Imq & 0, so we must have e &0,
which is sensible.

When this standard program is carried out for
cyclotron waves with co near nv„we find that we
must choose Req&0. The wave impedance is E/H
= (d/cq, which has a negative real part. This
makes it clear that we cannot possibly identify the
cyclotron wave impedance with the surface impe-
dance of the sample, even though that identifica-

eEp—Im(&uE* ~ s ~ E )+ Re E*~ ~

2m at et

+ V ~ —Re(%,*xH)-- 0.
2g

The first term is the power dissipation per unit
volume. If this is negligible, so that & is approx-
imately Hermitian, we have

80
+V 8=0, (23)

with energy density

1 ~ 8Q)gU= —(E* ~ E +H; H, )8~

and energy flow

(24)

The form (24) of U is standard, " and the second
term in (25) describes energy flow in the medium.

We can relate U and S, defined by (24) and (25),
to the group velocity v = 8A/Sq. By Faraday's law,
H, = (c/&o)q x E„and therefore

tion is fairly successful in fitting microwave trans-
mission data. Moreover, the x, component of the
(time averaged) Poynting vector is, for

E = E, exp[i(qx, —(dt)]+ Fo exp[-i(qx, —(dt)],

(c'q/2v~) ~E,
~

&0,

so the Poynting vector cannot describe the energy
flow associated with the wave.

The paradox is resolved by imitating the dis-
cussion of electromagnetic wave energy in a dis-
persive medium. " Let the envelope E, vary slow-
ly in time and space. From Maxwell's equations,

1 eD 8HE ~ +If ~ +V ~ —ExH=O,
4g et et 4m

neglecting magnetic phenomena (actually magnetic
phenomena cannot be distinguished from electric
phenomena macroscopically when spatial dispers-
ion is admitted). We have"

80 8

et
= exp i(q x —(of)(-i&a+ —}et

8 8
xe(q —i- &@+i—) ~ E + c.c.p ~ ~

= *pf(q'*- () (-' (, ) E,

cur& 8Ep 8& 8Ep+ ' -CO
8& et 8«e~,

so, averaging in time and space,
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1 ~ &oC

4%(0 SQ)

2

S = (2E(~) ' Eoq —q ' Eo*E—q E,RO*)
4&(0

(26)

(3o)

or

Scalar multiplication of (29) by (c'/4m')E, *, and
use of (26)-(28), yields

U6&u-5~6@=0

Q) ~ 8$E+ ~ ~ E~
4m eq~

If we vary q, u, and E, in such a way as to always
have

(27)

q'E, —q q E, = (&o'/c')7 ~ E, ,

we find

(28)

(1/c')5((o~e) ~ E, —(2E, q —q Eo 1 —q Eo) ~ 6q

= q'6E, —q q ~ 5E, —((o'/c')'K ~ 5E, . (29)

ew

8$ U' (31)

Inclusion of the energy flow in the medium, Eq.
(25), is just what is needed to avoid any paradox
about the direction of wave propogation in a medi-
um with spatial dispersion, even when the phase
and group velocities are in opposite directions.
The direction of wave damping, the direction of
wave packet propagation, and the direction of en-
ergy flow for a plane wave all coincide.
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