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Motles for transnnssion of microwaves through alkali metals at cryogenic temperatures
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We present experimental results for three different modes of magnetic-field-dependent microwave
transmission through thin foils of pure alkali metals at cryogenic temperatures. The first of these modes
occurs when the magnetic field is parallel to the surface, and results in propagation windows above the field
for cyclotron resonance H, and its subharmonics. The mode is identified as the transmission analog of
cyclotron waves as observed in reflection. The data are compared with extensive computer simulations in an
effort to deduce values for the coefficients of the momentum part of the Landau correlation function. Results
are presented for Na, K, and Rb, and compared with other values. The second mode contains two series,
each characterized by a rapid oscillatory dependence of the transmitted field on the angle between the
applied dc magnetic field and the sample surface. They occur when the dc field is much greater than H, . We
identify one of these series with a model dependent upon the simple time of flight for electrons along the field
lines. The other appears to be more complicated and we suggest warrants theoretical attention. The third
mode, for the dc field normal to the sample, is identified as the Gantmakher-Kaner oscillations at microwave
frequencies. Attention is focused on the behavior of this mode near H, and for fields much greater than H, .
The signal-to-noise ratio available experimentally for observation of all of the modes discussed is very high.
Consequently it is suggested that if any electronic properties of interest of. the alkali metals can be
theoretically identified with an observed mode, they could be further measured and analyzed.

I. INTRODUCTION

As is well known, the propagation of microwaves
(=10 GHz) through thin foils of normal metals at
room temperature is exponentially attenuated, and
essentially unaffected by available magnetic fields.
The characteristic attenuation length is given by
the normal skin effect, &=c/(2xo'ur p)' '.' For pure
metals the electronic mean free path ~ and elec-
trical conductivity c increase at low tempera-
tures, and for a given frequency a temperature
will eventually be reached where && ~. Below
this temperature the transmission of the micro-
waves must be described in terms of a nonlocal
conductivity, and this regime is termed the ano-
malous skin effect. ' When the temperature is
lowered still further, the electronic colbsion
time ~ may continue to increase such that the con-
dition ~,v'&1 will be realized for values of applied
magnetic fields which are readily available. in the
laboratory (here ~, is the cyclotron resonance
frequency). When ur, r»1 one finds that the spec-
trum of the magnetic-field-dependent transmitted
microwaves can be remarkably rich, encompass-
ing many different modes. In this paper we shall
present experimental results, and an analysis,
of three modes of magnetic-field-dependent micro-
wave transmission through thin foils of pure alkali
metals at cryogenic temperatures. The first of
these modes has previously been studied via re-
flection spectroscopy, principally by Walsh and
collaborators, and are termed cyclotron waves. "
The second is a mode which we believe has not

yet been reported in the literature, which we term
"angular oscillations" because of their striking
oscillatory dependence on the orientation of the
applied magnetic field. The third mode relates
to the field-dependent transmission when the dc
field is oriented perpendicular to the sample
surface. We identify these signals as the high-
frequency Gantmakher-Kaner oscillations (GKO). '

As the Fermi surfaces of Na and K are very
nearly spherical, we might expect that all the
modes observed should be readily described by
the electromagnetic response of a simple, de-
generate, isotropic plasma. This point of view
is probably qualitatively correct, and even rea-
sonably quantitatively accurate, but only up to a
point. The signal-to-noise ratio in these experi-
ments is sufficiently large that it appears to be
worth a detailed examination of the transmission
signals to see if deviations from a simple free-
electron model can be detected. One would like
to be able to attribute these deviations to many-
bo~y effects, and thereby determine the coeffici-
ents pertaining to the Legendre polynomial ex-
pansion of the momentum part of the Landau cor-
relation function. '

As we shall see, there are indeed significant de-
viations from the predictions of a free-electron
model for the cyclotron waves, but there is a need
for a better theoretical understanding of the bound-
ary-value problem before an unambiguous inter-
pretation in terms of many-body effects can be
completed. This situation arises quite generally
because the coupling to these modes is so large
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that the problem must be treated self-consistently.
This is in contrast to the case of coupling to the
spin resonance mode, where the weak coupling al-
lows a very satisfactory theoretical fit to be made
to the observed spin-wave spectra, and coeffici-
ents pertaining to the spin part of the Landau cor-
relation function can be readily deduced. An ex-
ample of this latter type of data and analysis is
in the preceding paper' and in Ref. 8. The effects
of many-body interactions on the field normal sig-
nals are not known to a sufficient degree to war-
rant interpretation in terms of Landau coefficients.
We shall show, however, that it is possible to
utilize the measurements to determine v~ for par-
ticles moving along the magnetic field. Theoretical
expressions for the angular oscillation signals are
not known, even at the free-electron level, and it
is our hope that the publishing of these data may
stimulate work in this area.

Our experimental results for the cyclotron waves
are compared with computations which make ex-
tensive use of the frequency- and wave-vector-
dependent conductivity, o(k, v). The method of
calculating 0 including collisions, an external
magnetic field, and Fermi-liquid effects, is dis-
cussed in the following paper by Fredkin and Wil-
son~ (henceforth called FW).
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FIG. l. Block diagram of the microwave transmission
spectrometer. T. C. and B. C. are, respectively, the
transmitting and receiving cavities.

II. EXPERIMENTAL PROCEDURES

The microwave spectrometer used in these ex-
periments is one originally designed to study trans-
mission electron spin resonance in metals. '0 The
block diagram of the spectrometer is presented in
Fig. 1. The sample forms the common wall be-
tween two microwave cavities which are tuned to
the frequency of the spectrometer (typically be-

tween 9-10 6Hz). Microwave power from a stable
oscillator is amplitude modulated at an audio fre-
quency and then coupled to match into the first, or
transmit cavity (TC) thereby setting up a strong
rf magnetic field at the surface of the sample. Al-
though the rf field is in general strongly attenu-
ated as it passes through the sample, under ap-
propriate experimental circumstances a readily
detectable amount of rf power is radiated from
the far sample surface into the second, or receive
cavity (RC). The receive cavity is in turn coupled
to a sensitive superheterodyne receiver. As is
shown in Fig. 1, some unmodulated power is taken
from the main oscillator and combined with the
modulated power coming from the receive cavity
just prior to the receiver input. This reference
power serves both to optimally bias the i.f. de-
tector crystal, and also to allow tuning the spec-
trometer so as to be sensit, ive to the phase of the
transmitted microwave fields as discussed in the
next section. The phase shifter in the reference
line allows one to adjust the relative phase of the
reference and transmitted fields. The output of
the i.f. detector is fed into a lock-in amplifier
referenced to the audio modulation frequency. A
maser preamplifier (not shown in Fig. 1) is also
available, and when in use lowers the system noise
temperature to ~100 K (during operation at liquid-
helium temperatures). Typically, the input power
is 10 ' W, and the transmission signals may range
from very strong at =10 "W down to those detected
with poor signal to noise at =10 "W.

All of the alkali metal samples were made by
extruding the material through a slit slightly larger
than the desired sample thickness and then squeez-
ing it between thin glass plates for air-filled cav-
ities or carefully prepared parafin coated dielec-
trid-filled cavities. ' The samples were polycry-
stalline and are known to be strained at the opera-
ting temperatures. "

The cavities and sample are in a set of Dewars
which allow the temperature ta be set anywhere
from 1.4 K to room temperature. The Dewars
are in the gap of an electromagnet capable of pro-
ducing dc magnetic fields up to 20 ko. The mag-
netic field can be oriented anywhere in the plane
perpendicular to the rf magnetic field at the sample
surface by rotating the magnet either manually or
with a variable speed motorized drive. We have
instrumented the magnet with an electronic angular
readout that has resolution of better than 0.01'..
Data is usually taken on an x-y recorder with the
output of the lock-in amplifier on the y axis, and
the x axis is either proportional to the magnitude
of the dc field at fixed angle or vice versa.

In the following section there are many examples
of data. The ordinates of the figures (in arbitrary
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FIG. 2. Typical transmitted signals when the dc
fieM is parallel to an alkali sample at cryogenic tem-
peratures. The sample is a 0.0165-cm-thick Na slab
at 1.3 K. The applied frequency is 9.19 GHz. The
series of large broad peaks are the cyclotron wave
modes. The CESR and associated spin waves are lo-
cated between the fundamental and first subharxvonic
cyclotron wave modes as indicated. (Note: The gain was
decreased by 22 dB above 4 kG. ) (a) The reference
phase is continuously and rapidly rotated during the
sweep. The envelope of the rectified signal is propor-
tional to the modulus of the transmitted microwave
field. (b) The reference phase is held constant as the
fieM is swept. The phase of the spectrometer has been
set at a value which yields a symmetric CESR signal.
(The CESR signal is severely time-constant limited for
the sweep rates used and therefore appears comparable
to the first spin wave. )

TABLE I. Values of m "/m for. the alkali metals.

m~/m

Na

K

Rb

1.24 + 0.02

1.217+ 0.002 '
1.22 + 0.02 '

As the reference field is much larger than the max-
imum transmitted field, the i.f. output is only sen-
sitj.ve to that component of the transmitted field
which is in phase with the reference field. The
quantity called signal is the output of the lock-in
detector when tuned to the modulation frequency
and is proportional to that component of the trans-
mitted field which is in phase with a given refer-
ence fieM. Primary data are the dependence of the
signal on either the magnitude or orientation of the
dc magnetic field. Examples of such typical sig-
nals are Figs. 2(b) and 16(a), respectively.

In general, the variatioas in the signal as the dc
field is swept reflects changes in both the ampli-
tude and phase of the transmitted microwave field.
The rapid oscillations of the signal above 4 kG as
displayed in Fig. 2(b) correspond to successive
changes in the phase by 2m. The milder variation
of the overall envelope of the mode from 4 to 7 kG
reflects the field dependence of the amplitude. By
arranging to rotate the reference phase faster than
'the natural period of the signal oscillations, we
obtain signals as displayed in Fig. 2(a), where the
field dependence of the signal modulus, i.e. , the
rectified envelope, is more clearly visualized.

The procedure just described for obtaining the
signal modulus, is not always practical (for ex-
ample, if there were appreciable leakage of micro-
waves into the receiver). " An alternate procedure
is to take one set of signal data for a particular
value of the phase, and another set with the refer-
ence phase shifted by 90'. All that is required in
this method is to be able to define the baseline, or
zero of the fiel.d-dependent part of the signal. The
modulus of these signals can then be computed as
the 'square root of the sum of the squares. Ex-
amples of such computer manipulation of the sig-
nal data are presented in Sec. IIIA, for exaimple
(see Figs. 6 and 8). The initial phase is in princi-
ple arbitrary, but in practice we always use that

units) are labeled either "signal" or "signal mod-
ulus. " We now -define what is meant by these two
terms. As was mentioned earlier, unmodulated
reference power (or field) is added to the modulated
power (or field) coming out of the receive cavity
(which is in turn proportional to the field transmit-
ted through the sample). The total field serves to
bias the i.f. detector crystal into its linear range.

'C. C. Grimes and A. F. Kip, Phys. Rev. 132, 1991 (1963),
W. M. Walsh, Jr., L. W. Rupp, Jr. , P. H. Schmidt, and R. N.

Castellano, Bull. Am. Phys. Soc. 18, 336 (1973).
'A value deduced from an analysis of turning points in

cyclotron waves resulted in m "/m = 1.210 + 0.006, Ref. 24.
d B.Knecht, J. Low Temp. Phys. 21, 619 (1975).
'A value of 1,20 + 0.02 has alsobeen reportedby C. C.

Grimes, G. Adams, and P. H. Schmidt, Bull. Am. Phys,
Soc. 12, Paper HG6 (1962).
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which antisymmetrizes the conduction-electron
spin resonance (CESR).

All the types of data discussed in this paper
were taken on three alkali metals: Na, K, and
Rb. In general, the best data were obtained at
the lowest temperature, =j..4 K, and for the pur-
est material as characterized by the resistivity
ratio. " In Table I we present values of m*/m
used in our calculations.

III. DATA AND ANALYSIS

A. Cyclotron waves

When the magnetic field is oriented parallel to
the surface of the sample several sets of oscilla-
tions are observed in the signal. These are il-
lustrated in Fig. 2. As can be seen, there are
field- dependent propagation "windows" starting
at H„H,/2, H, /3, . . . , where H, is the field cor-
responding to cyclotron resonance. The conduc-
tion-electron spin resonance and associated spin-
wave signals occur in the gap between the tail of
the cyclotron wave window corresponding to H, /2
and the onset of that at H, . As can further be seen
in Fig. 2, the main harmonic which starts at H,
reaches a peak at =5 kG and then dies out. We find
no detectable field-dependent signal beyond =8 kG,
and we believe this corresponds to a sufficiently
high attenuation of the transmitted field that we re-
gard any power emanating from the receive cavity
at higher fields to be due to spurious leakage. How-
ever, if at any value up to =10 kG the magnetic
field is rotated a few degrees away from field par-
allel, there is a dominant transmitted signal which
we believe is a continuation of the cyclotron modes.
Above 10 kG the nature of the transmission away
from field parallel is quite different, an'd it is these
signals that we have termed angular oscillations,
and which are discussed in Sec. IIIB.

The cyclotron waves in metals were first iden-
tified byWalsh and Platzman. " They reported
the observation of additional oscillations on the
high-field side of Azbel-Kaner cyclotron reson-
ance signals in pure potassium slabs. Subsequent
detailed measurements have been interpreted by
assuming that the oscillations correspond to dis-
crete values of wave vector, given by kL =no.
They were able to analyze data taken at several
frequencies in terms of a universal dispersion
relation calculated for these modes assuming in-
finite ~v'. Small, but significant deviations at the
onset, or small k-vector end, of the relation
were then interpreted as being due to many-body
effects. ' Their best values of the Landau param-
eters for K, which they denote by A„(often called
E„in the literature) are: 4, =-0.022 +0.002,
A„~2(0.003.'

kR
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(b)

Fundamental

0.5 I,O
/

1,5 2.0

FIG. 3. Infinite uv, free-electron dispersion rela-
tions for the cyclotron waves when the rf electric field
is parallel to the dc magnetic field. R is the cyclotron
radius at cyclotron resonance. (a}Fundamental. (b) First
subharmonic.

After it was realized that the oscillatory strong
signals seen in transmission below and above the
region of spin resonance were also due to the cyc-
lotron waves, we were motivated to attempt a sim-
ilar analysis. Considerable advantages might be
expected; the signal-to-noise ratio is significantly
better in transmission then reflection, the Azbel-
Kaner response is completely attenuated so the
oscillations of interest are on a straight baseline,
and the method of excitation and detection are un-
ambiguously defined. (The latter point is in con-
trast to the way the reflection experiments had to
be performed, in-practice, to obtain adequate sig-
nals. ") It was soon realized that this direct ap-
proach was not applicable for reasons which will
be discussed in detail, and as a consequence it
was felt that quantitative measurements would
only be possible if there was an appropriate theo-
retical formulation of the boundary value problem
so as to allow precise comparisons of the total
line shape. Our efforts to interpret the observed
spectra in terms of proposed solutions to the bound-
ary value problems constitute the thrust of the rest
of this section. Some theoretical aspects of the
boundary value problems and the formulas used
by us as possible solutions are discussed in the
following paper. '

In Fig. 3 we present the infinite-ev' free-elec-
tron dispersion relations for the fundamental cyclo-
tron mode and the first subharmonic when the rf
electric field is parallel to the dc field. " All the
data and analysis in this article are for this condi-
tion (the ordinary wave) although we have also ob-
served the analogous cyclotron waves in transmis-
sion for the other polarization (the extraordinary
wave). Note that the dispersion relations become
multivalued at higher ur, /tu. Thus, one may ex-
pect some complications in terms of multiple ex-
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citations beyond e,/u-1. 7 for the main mode, and

~,/u&=0. 6 for the first subharmonic. Dunifer
et a/. "have identified anomalies in the reflection
spectra with the turning points. In Fig. 3 the or-
dinate is made dimensionless by scaling with 8,
the cyclotron radius at cyclotron resonance.

A detailed discussion of the calculation of the
dielectric tensor appropriate for the cyclotron
waves is presented by Platzman and Wolff. '- There
is also a discussion of the boundary value problem
in a metal. For reasons next discussed, it was
necessary in our work to be able to include the
effects of a finite 7' and to try to incorporate true
line-shape solutions. The effects of a finite (d~

on cyclotron-wave propagation in metals at long
wavelengths, and calculation of the dispersion
curves (without Fermi-liquid effects) have been
discussed by Fransden and Gordon. " In what fol-
lows we analyze our data incorporating dispersion
curves which include both finite (dw and Fermi-
liquid effects. All the dispersion relations and re-
lated formulas used for comparison with our data
as presented in the rest of this section were cal-
culated according to algorithms provided by FW,
as discussed in the following paper. '

The wave vector 4 =k„+ik,of the dispersion
relations in Figs. 3(a) and 3(b) is pure real and
describes the change in phase of a cyclotron wave
propagating in the s direction (taken as the normal
to the plane of the rf and dc magnetic fields). It
is understood that since T is infinite the imaginary
part of the wave vector, k„is zero, within the
mode "window" from ~,/+=1 to ~1.86. Beyond
either edge of the window k,. increases precipitqus-
ly. The effects of finite Landau coefficients A, and

A, on the infinite uw dispersion relation for the
fundamental mode are illustrated in Fig. 4. It
can be seen that A, primarily shifts the onset of
the window from &u,/~=1, and A, changes the slope
of the linear region of the curve. (For the range
of AB considered in this work, A, and A, have
negligible effect on the dispersion relation. ~) Thus,
it might appear that by simply observing the field
at which there is a sharp onset of transmitted pow-
er one could find the deviation from H„and hence
know A, directly. The trouble with this procedure
in practice is that although +v is reasonably high
for our samples, typically between 15 and 50, it
is not yet high enough. We can observe transmit-
ted power for many samples both below and above
the infinite ~v' window limits. Furthermore, the
signals are essentially exponentially attenuated,
and it is difficult to define an "onset field" to an
accuracy necessary to determine the small de-
viations expected due to the finite A, effects. In
Figs. 5(a) and 5(b) we present the real and imag-
inary parts of the complex dispersion relations for the
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FIG. 5. Heal (a) and imaginary (b) parts of the com-
plex dispersion relation in the region of the fundamental
mode for several values of coo'. We note the following
features. (i) For finite ~v, the real part of k does not
have a sharp onset at co~/co = 1, but is spread out and
can extend well below. (ii) Although the damping (i.e. ,
imaginary part of k) increases rapidly when co~/
&1, one can readily expect transmission in that region
for finite coo. (iii) In the region of the turning point,
~,/v = 1.8, the dispersion relation becomes multivalued
in a complicated manner. Nonetheless, the entire set
of branches is included in our line-shape calculations.

FIG. 4. Infinite ~v' dispersion relation for the cyclo-
tron wave in the vicinity of the fundamental mode for
illustrative values of the Landau coefficients A2 and A3.
A3 is zero unless noted. The curve forA2=0 is the same
as part (a) of Fig. 3. We note that A2 predominantly
shifts the onset of the dispersion relation, ar&d that A3
changes the slope in the linear region.



18 MODES FOR TRANSMISSION OF MICRO%AUES THROUGH ~ ~ ~ 6668

Ifree-electron theory, but with several finite values of
co~. The extension of a finite propagation region
significantly beyond the infinite &v window region
in both directions is evident.

As noted earlier, the many oscillations of the
signal in a typical spectrum such as Fig. 2(b) are
predominantly due to the k„l.evolving through suc-
cessive multiples of 2m. As can be seen in Fig.
5(a), the dispersion relation is quite linear, and
also independent of ~7 for a significant fraction
of the window, say from 1.2 & z,/co & 1.6. As dis-
cussed in Sec. IV 8 2 a of the preceding paper, '
it is found empirically that a plot of the zero cross-
ings of the cyclotron wave signals versus magnetic
field results in a good, straight line relationship
over the major part of the spectrum. (See Fig. 9
of the preceding paper. ) It is also found that the
slope is proportional to the sample thickness and
is independent of &u r (as varied by warming the
sample). Thus, one expects that whatever the pre
cise formula describing the transmitted field h,
may be, a major part must be a term of the form
e'~~. However, an attempt at a quantitative fit of
the modulus of the signal to ~e'~~

~
fails badly.

(See Fig. 6.) Further, since we are interested in
obtaining information about the Landau coefficients,
and as we have noted in Fig. 4, a finite A, mainly
shifts the onset and has very little effect on the
slope in the linear region, we are most interested
in being able to make a qualitative fit between the
experiments and some appropriate theoretical
relation at small 0, i.e. , near the onset.

As discussed in F%, an "honest" calculation of
the boundary value problem, assuming an imposed
current sheet set up by the driving fields, results
in k, being proportional to e''~/k. Although this
expression for h, fits the data much better than
e'~~ alone, there are stiB very substantial devia-
tions (see Fig. 6). We were, therefore, led to try
an alternate formulation as discussed next.

In the course of much agonizing over the appro-
priate formulation of the boundary value problem,
various approaches were suggested to us by Fred-
kin and Wilson. One of these is that k, should be
taken as

where o(k, &o) is the conductivity. The present
justification for our use of this expression is
that it reduces to the "honest" calculation for
small k values, and that as we shall see, it looks
like it fits the overall. data significantly better.
In some cases it fits so well that one is inclined
to believe that when the appropriate derivation
is discovered it will result in an expression very
close to this one. In any event, in Fig. 6 we have
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FIG. 6. Comparison of the signal-modulus data of
the fundamental cyclotron mode for a potassium sample
at 1.4 K (solid curve), with curves calculated for several
theoretical expressions as discussed in the text. I-/R
is the thickness of the sample expressed in units of the
cyclotron radius at cyclotron resonance. The frequency
was 9.74 GHz. All of the theoretical curves are for all
A„=0, 'i.e., free-electron theory. The data curve
represents the result of combining in quadrature two
signals taken with their reference fields 90 apart as
discussed in the definition of signal and signal-modulus
in Sec. II.

presented a comparison of the fundamental signal
modulus for a potassium sample with the computa-
tions for ~k, ~

using Eq. (1), e"~/k, ande"~.
Equation (1) comes closest to fitting the data, ,
except that it appears translated by a small amount.
This suggests we should incorporate a finite A,
which, as we have seen in Fig. 4, predominantly
shifts the dispersion relation. A "best" fit is
obtained by adjusting the variables A, and r in
the manner next described.

To fit the data we first compare the modulus
of the signal for the fundamental with the results
of Eq. (1), calculated for the free-electron theory
and-with a finite value of ~w. Varying ~t' over
the region of interest does not appreciably change
the width, peak position, or nature of the modulus
of the signal, although it does affect the slope of
the leading and trailing edges. Ne chose to focus
our primary fit on the leading edge for the reasons
discussed. As can be seen in Fig. 6, following an
appropriate choice of ~7, the data and calculated
values for Eq. (1) are quite similar, but shifted
by a small amount. Next, one e.stimates a trial
value of A, from the separation of the leading
edges in Fig. 6, and we get the results shown in
Fig. 7. (Actually, the fit shown is the result of
several iterations between A, and an )Although.
the computations for Figs. 6 and 7 were done with
values selected to give the best fit for Eq. (1), we
should emphasize that we have found that it is
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FIG. 7. Comomparison of the signal-modulus data of the
r a p assium sample atfundamental cyclotron mode for a ot

1.4 K (solid curve) with a curve as calculated for Eq.
(1) and incorporating values of A2 and ~~ so as to ve

es i o e leading edge. The frequency was 9.742
GHz.

FIG. 8. Comparison of the signal-modulus data of the
first subharmonic cyclotron mode for a ot
pie at 1.4 K i

e or a p assium sam-
p e at 1.4 K, with curves calculated using Eq. (1) 'thWl

d 3= 0,014. The latter value corresponds to
the best fit to the leading edge. The value of A& in both
cases was that deduced from the analysis, as illustrated-
I,n Fig. 7. The frequency was 9.742 GHz.

not possible to make the other two expressions
fit as closely to the trailing edge of the data,
once the leading edge is fit.

Having obtained values for cov' and A f
ftt o the modulus of the fundamental signal, we
are interested in continuing the process to poss-

i ing e ge, in prac-A, would affect the fit to the trailin d
ice this is not significant, and we instead turn to

looking at the modulus of the first subharmonic
signal. To a first approximation A, shifts the on-
set at the first subharmonic similarl t thy o eway
, shifts the onset for the fundamental. In Fi . 8

we compare the first subharmonic modulus data

A
with the results of Eq. (l) using the same &u7' dan

, values which gave the best fit, as illustrated in
Fig. V. We see that the overall fit is still quite

b
good, but that there could be some improvem trovemen

y incorporating a small A, . The final best fit
corresponding to an A, of +0.014 is also shown in
Fig. 8. To summarize the data-fitting procedure
to this point we may conclude that values for ~7',
A„andA, are obtained from the fundamental and
first subharmonic modulus data.

We may also compare Eq. (1) to the data taken at '

a fixed reference phase, i.e., the signal. To do
this we must identify the appropriate reference
phase angles that correspond to the way the sig-
nal traces are taken. (As was discussed the CESR
signal is antisymmetrized and then two sets of data
are taken, one at that phase, and another 90
moved. ) Neither the real nor the imaginary parts
of Eq. (l) turn out to be close to the appropriate
phases for matching the experimental signal traces
referenced to a CESR symmetric or antisymmetric

signal. We can systematically vary the reference
phase (on the computer) to get a best f td ''

Fi . 9ig. we present a typical result of such a pro-
cedure. For this case the referen hence p ase experi-
mentally corresponds to an antisymmetric CESR
signal, and the phase shift relative to the real
part of Eq. (l), b Q„was 45'. Although the over-
all fit is quite impressive, we do note that the

A SS IUM

=20
= 10.2
= -0.036

DATA

l I t I

0.9 1.0 I. I I.2 I.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

tsc /&

FIG. 9. ComComparison of the signal data (dots) of the
fundamental cyclotron mode fo t
1.4 K with

or a po assium sample at
K with a curve calculated using Eq. (1) and the

values of cov'o co~ and A. 2 as deduced from the signal-modulus
analysis. The frequency was 9.742 GH z, with the ex-
perimental reference phase corresponding to an anti-
symmetric CESR sisigna . The computational reference
phase was varied systematically until a best fit to the
first oscillation was obtained wh' h

' h', w ic, in t is case, is 45'
from the real part of Eq. (1).
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FIG. 10. Comparison of the signal data (dots) of the
first subharmonic cyclotron wave for a, potassium sam-
ple at 1.4 with a curve as calculated using Eq. (1) an
the values of ~&, A2, and A. 3, as deduced from the sig-
nal-modulus analysis. The frequency was 9.742 GHz,
and the experimental reference phase corresponded to an
antisymmetric CESR signal. The computational refer-
ence phase was varied systematically until a best fit to
the first oscillation was obtained, which, in this case, is
117 from the real part of Eq. (1).

I I I l I I

0.9 1.0 1. 1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

~cg

CD

CA

theory and data begin to deviate at the highest
fields. We expect some discrepancies in the mag-
nitude of the peaks, since, as can be seen from
Fig. 7, we do not get a perfect fit to the modulus
at the trailing edge. This seems to be an inherent
failure of Eq. (1). Additionally, as seen in Fig. 9,
th d t and theory are getting noticeably out of

11phase for v, /tu&1. 5. However, we must reca
that the phase change is determined by both A„and
L. We could get a better fit to the data in Fig. 9

Aif either L were decreased by =2%, or if an 3
=—0.05 were introduced. If such a large A., were
used, however, it would change the fit of the first
subharmonic illustrated in Fig. 8. Thus, we seek
another explanation. Aside from the fact that there
could be an error of about 1% in our assigned value
of L, we should point out that since we do not have
a detailed microscopic solution to the boundary
value problem, one has to even be cautious as to
what parameter is ascribed to the correct "thick-
ness" of the sample. It might be that the appro-
priate thickness should not be the physical one,
but rather modified by some appropriate fraction
of the cyclotron radius. Further, the fact that
&Q, is not zero, and varies from sample to sam-
ple, suggests we are missing some additional
term in Eq. (1). At the least, this term contains
a constant phase shift; at the worst, it couM be
field dependent. Evidence that this may be so
comes from the subharmonics. The data taken
with a constant phase reference for the first sub-

I I I

0.9 1.0 I. I 1.2 1,3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

+c~

FIG. 11. (a) Comparison of the signal-modulus data
of the fundamental cyclotron mode for a sodium samp e
at 1.4 K with a curve as calculated using Eq. (1) and
where ~7 and A2 have been chosen to give a best fit to
the leading edge. The frequency was 9.2 GHz. (b) Com-
parison of the signal data of the fundamental cyclotron
mode for the same sample as (a), with a curve cal-
culated using Eq. (1) and the values of &v and A2 as
chosen by the fit of (a). The experimental reference

The computational reference phase was varied systema-.
tically until a best fit to the first oscillation was obtained.
which in this case is -118' from the real p'art of Eq.
(1)

harmonic can also be compared with Eq. 1 and
this is presented in Fig. 3.0. The best fit now re-
quires 4+ =117 . We have no current explanationC

for this additional field dependence of the phase.
T pical data illustrating the analogous final fit

for a Na sample are presented in Figs. 11 and
ypica

for the fundamental and first subharmonic, re-
spectively. We again note the development of a
hase difference between the data and theory atp ase i

higher values of &u,/~. In Fig. 13 we presen yp-t t
1 data and computational fit for the fundamental

cyclotron mode for a Rb sample. As noted in e
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. . FIG. 12. (a) Comparison of the signal-modulus data
of the first subharmonic cyclotron mode for a sodium
sample at 1.& K with a curve calculated using Eq. (1)
u7 and A2 were chosen from the signal-modulus fit ef
Fig. 11 (a), andA& is chosen to give the best fit to the
leading edge. The frequency was 9.2 GHz. (b) Compari-
son of the signal data for the first subharmonic cyclo-
tron mode for the same sample as (a), with a curve cal-
culated using Eq, (1) and values of A2 and A& as deduced
from the signal-modulus analysis. The experimental
reference phase corresponded to an antigymmetric CESR
signal. The computational reference phase was varied
systematically until a best fit for the first oscillation
was obtained, which in this case, is -99' from the real
part of Eq. (1).

figure, we have used an L/R value of 14.9 corre-
sponding to our best estimate of the physical thick-
ness of the sample. As is seen in Fig. 13(b), the
theory and data are very significantly out of phase
at higher &u,/e values. In Fig. 14 we present the
same data compared with the calculations when
L/R has been set at 13.8 in order to obtain a good
fit. We do not believe a change of this magnitude
can be attributed to either an error in the thick-
ness measurement (corresponding to =7%) or a
very large A, (=0.2), but it does illustrate the

I

9 I.O I. I 1.2 l.3 I.4 .I.5
ft)t; /fi)

I I I I

0.
I & I

1.6 1.7 l.8 l.9 2.0

need for determining these parameters independ-
ently and as accurately as possible, as well as
the need for further refinement in Eq. (1), at least
insofar as phase is concerned. Unfortunately, the
signal-to-noise ratio at the first subharmonic was
not sufficiently high for the Rb samples to warrant
an attempt at data fitting.

FIG. 13. (a) Comparison of the signal-modulus of the
fundamental cyclotron mode for a rubidium sample at
1.4 K with a curve as calculated using Eq. (1) and where
w& and A2 have been chosen to give a best fit to the
leading edge. The frequency was 9.2 GHz. (Due to the
process of reconstructing the signal modulus from the
two phase signal data, the curves are not perfectly nor-
malized at the maximum amplitude. This does not
appreciably change theresults for the data fit.) (b) Com-
parison of the signal data of a fundamental cyclotron
mode for the same sample as (a), with a curve calcu-
lated using Rq. (1) and the values of ~7' and A2 as chosen
in &a). The( . experimental reference phase corresponded
to an antisymmetric CESR signal. The computational
reference phase was varied systematically until a best
fit to the first oscillation was obtained, which, in this
ease, was —1' from the real part of Eq. (1), Note the
appreciable deviation in phase between theory and ex-
periment at higher values ~, /v.
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FIG. 14. Comparison between the signal data for the
same conditions as Fig. 13 with a curve calculated as
in Fig. 13{b), but with the L/R value set at 13.8. Note

that by making this change (from the experimental
value of 14.9) we achieve a significantly better fit to
the data at the higher values of cv, /~ As discussed in
the text, it is not believed that the thickness measure-
ment is in error, but that these data indicate that the
correct description of the cyclotron waves in rubidium

may be more complicated than t'.iat for potassium or
sodium.

FIG. 15. Canonical illustration of the quality of fit
possible between theory and experiment for the funda-
mental cyclotron-wave signal in a potassium sample.
This sample is at 1.4 K, and the applied frequency
9.731 GHz. A2 and v' are the primary adjustable para-
meters. The experimental reference phase corres-
ponded to an antisymmetric CESR signal. The com-
putational reference phase was varied systematically
until a best fit to the first oscillation was obtained, which
in this case is 18' from the real part of Eq. (1).

In order to illustrate why the authors feel there
must be a great deal of significance to Eq. (1), de-
spite the evidence for deviations just discussed
we present the data and theoretical fit of Fig. 15.

While it is admittedly our cononical example of
a best fit, when one considers the quality of this
fit in terms of the complex dispersion curve, mod-
ified by the A, coefficient and ~w as the only ad-

TABLE II. Results of cyclotron-wave analysis.

Harmonic
F: fundainental

Sample S: first subharmonic
Frequency

(GHz) L/R
Present work

A2 A3 Other work

Potassium
V 9.7 10.2 20 —0.036

A2 = -0.022+ 0.002
IA„I(0.002
n)2,

V

Z

Sodium
P

Z2
H
ZY

Rubidium

5

7

S
F
S

S
F
F
F

9.7
9.7
9.7

9.2

9.2
9.2
9.2
9.2

9.2
9.2

10.2 20
31.5 47 —0.025
31.5 47

11.2 20 —0,04

11.2 20
4.4 15 -0.04

12.5 9 —0.05
14.6 25 -0.037

13.8 10 —0.026
14.9 15 —0,026

+0.014

+0.015

+0.007

Az —=-0.05 + 0.02
IA, 1(0.02

'W. M. Walsh J~ L. W. Ru
(1973).

L. W. Rupp, Jr. , P. H. Schmidt, and R. N. Castellano Bull. Am. Ph . S . 18, 336m. ys. oc.

b Reference 4, page 250.
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justable parameters, one cannot help feeling that
there must be a physical justification for Eq. (1).

How reliable then are these A„coefficients? We
remind the reader that it is the signal modulus data
that was used to fit the A„.Hence if the hQ, term
arises from a multiplicative factor, it will not
matter. We suggest that further refinements in
the data-fitting procedures are not warranted given
the present state of the theory. Our results for
the A~ and A, coefficients are summarized in
Table II, where they can be compared with those
of Walsh et al. For Na and K, where the Fermi
surfaces are known to be very spherical, we be-
lieve the A, coefficients are meaningful. We note
that there appears to be good agreement with the
values obtained by Walsh and co-workers via re-
flection spectroscopy, '" although, as we men-
tioned earlier, we do not understand why their
procedure of fitting the infinite e7 dispersion re-
lation should be justified. The A, are sufficiently
close to zero, compared to the relevant errors,
that one cannot draw any conclusions other than
that they are smaller than A2.

There are at least two potential sources of sys-
tematic error in these determinations of the A,
coefficients. The first is quite simple. We are
basically measuring the deviations from the field
at cyclotron resonance. However, this field is
only known with an accuracy to which m* is known.
We have used the values of m* as listed in 'Table

I, but any change in these values changes A, cor-
respondingly. The second consideration is the po-
tential effects of anisotropy of the Fermi surface.
Freedman and Fredkin have considered this ques-
tion" and have shown that simple cubic distortion
would result in deviations of the onset for these
modes, and hence might mask the true many-body
contributions. The Fermi surfaces for Na and K
are sufficiently spherical that this effect is probab-
ly not important, but the situation for Rb is un-
certain.

B. Angular oscillations

Figure 16(a) shows the transmission signal for
a 0.018-cm-thick sample of Na as a function of
magnet angle for a constant field strength of 13
kG at 9.155 GHz. The data are taken at 1.4 K.
8 is the angle between the magnetic field and the

sample surface. Beyond B=40' there is some
transmission all the way to 8=90', but it does
not have a comparable angular dependence and ap-
pears qualitatively different. We note that the
angular dependence separates into two character-
istic sets of oscillations, one between 0 and 10,
and the other between 10 and 40'. We refer to
these as type A and B, respectively. The oscilla-
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CHANGE
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cK 0

CA
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IO
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-=' ~vvvv" {c
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H (kGj

tions in Fig. 16(a) are due to an angular depen-
dence of the phase. 'Their modulus would corre-
spond to the rectified envelope.

The two angular modes show different behav-
ior when the magnetic field is swept while its
orientation is held constant. In Fig. 16(b) we pre-
sent the signal when the magnetic field is swept-
while oriented at 8 = 4.9", which corr espogds to the
center of the A mode. These are again phase os-
cillations with the amplitude dependence given by
the (rectified) envelope. In one sample of very

FIG. 16. {a) Transmission signal for a 0.017-cm-
thick sodium sample as a function of 8, the angle be-
tween the dc magnetic field and the surface. The field
was held constant at 13 ko. The temperature was 1.4
K, and the applied frequency 9.155 0Hz. The gain was
decreased 22 dB for angles greater than =9'. There is
clearly a qualitative difference to the set of oscillations
below 10' as compared to those above. %'e have termed
these two sets the A and B modes, respectively. (b) The
magnetic field dependence of the signal for 8= 4.9',
corresponding to the center of the A-mode oscillations.
The rapid oscillations are attributed to a phase de-
pendence on the magnetic field. The amplitude depen-
dence is given by the rectified envelope. (c) The mag-
netic field dependence of the signal for 8=26.9', corres-
ponding to the center of the B-mode oscillations. The
signal corresponds to a slowly decaying set of phase
oscillations riding on a background that increases with
field.
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readout system was not available at the time the
highest-purity K samples were being run. (We find
agreement to only 4%, but that is within the esti-
mated error. )

The situation for Rb appears to be different.
While the data plotted in Fig. 18 support the 1/sine
dependence of Eq. (2), the thickness calculated
from the slope is about 6% thinner than that mea-
sured directly. As will be discussed in Sec. III C,
the GEO in Rb also do not agree with the theoret-
ical expressions as closely as they do in Na and
K, and we have seen a comparable disagreement
in the fit to the cyclotron data of Sec. IIIA, i.e. ,
Fig. 13(b). These may be due to effects of strain
or the larger nonsphericity of the Rb Fermi sur-
face." Alternatively, since we know the thickness
one can look upon these data as a measurement of
some appropriate average Fermi velocity in Rb.

We have observed similar angular oscillations in
aluminum, and since all of the other modes dis-
cussed, plus the spin waves, have been observed
in Cs, expect that they are present there as well.

The type-A signals can only be detected in our
highest ~v' samples. In Fig. 19 we plot the phase
dependence of the signal as a function of ~ for sev-
eral values of the magnetic field. The data are
from a sample of Na with an ev'=60, as determined
by fitting the linewidth of the first spin wave. One

should not attempt to infer the phase dependence
as a function of magnetic field from Fig. 19, as
each curve has been drawn with an arbitrary ad-
ditive constant for ease of presentation. The pro-
gress along any one curve gives the phase shift as
a function of angle. The inset to Fig. 19 is a typi-
cal high-resolution angular sweep at constant field.

In Fig. 20 we present the relative phase of the
transmission signals for the type-A mode as a
function of the magnetic field for several magnet
angles. The relative positions of the curves are
meaningful but the absolute phase is correct only
up to an arbitrary additive constant. Figure 19
can be used to interpolate for angles between these
shown. The lines begin and end where the signal
is just detectable above the noise, although at the
smaller angles our field limit of 20 ko kept us
from seeing the high-field end of the mode.

We have not been able to identify the type-A
signals with any theoretical model. The data in
Fig. 19 were suggestive of a Doppler-shifted cy-
clotron mode (DSCM)," since the phase changes

20m
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FIG. 19. Relative phase of the type-A mode oscilla-
tions as a function of 8, the angle of the magnetic field
relative to the surface of the sample, for several values
of the field. The progress along any one curve gives the
phase shift as a function of angle. One should not at-
tempt to infer the phase dependence as a function of mag-
netic field from these data, as each curve has been
drawn with an arbitrary additive constant for ease of
presentation. The inset is a typical high-resolution
angular sweep at constant field. The data are for a
sodium sample 0.017 cm thick at 1.4 K. The frequency
was 9.2 GHz.

H {kGj

FIG. 20. Relative phase of the signal for the type-A.
mode oscillations as a function of magnetic field for
several magnet angles 8. The relative positions of the
curves are meaningful, but the absolute phase is ar-
bitrary. The data of Fig. 19 can be used to interpolate
for angles between those shown. The lines begin and
end where the signal is either just detectable, or where
we reached the limit of our magnet (20 kG). The sam-
ple was sodium 0.017 cm thick at 1.4 K. The frequency
was 9.2 GHz.
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faster at smaller inclinations, but we do not find
a good 1/8 dependence. Additionally, as illustrat-
ed in Fig. 20, the onset of these signals moves to
higher field with decreasing e (whereas the DSCM
mode should move to lower field). As mentioned
earlier, in our best K sample there was interfer-
ence between the two modes at the highest field
and small angles. This might be indicative of the
low-field edge of the DSCM mode, but since our
magnetic field was limited to 20 ko we could not
verify this possibility by following the signals to
still higher fields.

(a) ~ ~"DATA

THEORY

~ ome&

I

!

~ ~

I I I I I I I I

2

C. Field normal transmission

~ When the magnetic field is oriented normal to
the surface of our alkali samples, there is a rather

simple characteristic set of signals. Aside from
the conduction electron spin resonance (and spin
waves) there appears to be only two major fea-
tures of the transmission signal; One of these is
a very strong, broad resonance centered very
close to the cyclotron resonance field. The other
is a series of uniformly spaced oscillations in the
amplitude, but not phase, of the transmitted field.
The oscillations extend down to zero field where
the observed signal is simply the tail of the ano-
malous skin effect. We identify the oscillatory
signal with the well known GKO, and the strong
peak as a consequence of one circularly polarized
component undergoing a resonance near the cyclo-
tron condition. We discuss these signals in some
detail as they are potentially useful for an indepen-
dent determination of the Fermi velocity, and be-
cause we believe there may be some confusion in
the literature concerning the interpretation of such
transmission signals at microwave frequencies.
Analogous signals for copper interpreted in a
somewhat different aspect than the analysis which
follows has been reported. "

The data points in Figures 21(a) and 21(b) show the
transmission signal and modulus, respectively,
for a K sample as the field is swept from zero to
8 kG. Figures 22(a) and 22(b) show the extension
of these data to 20 ko. The modulus data points
represent the result of calculating the square root
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FIG. 21. (a) Transmission signal for a potassium
sample when the dc magnetic field is oriented normal
to the surface, as a function of the magnitude of the dc
field (1—8 kG). The temperature is 1.4 K, the sample
thickness 0.012 cm, applied frequency 9.2 GHz. The
theoretical curve represents the results of a best fit to
the formula of Eq. (3) with the parameters m*/m =1.2,
cue=16.7, and co70=1.59. The reference phase was ad-
justed to yield an antisymmetric big peak signal, as
shown, which corresponds to a symmetric CESB signal
within .a few degrees. (b) Comparison of the signal-
modulus data with the computation using Eq. (3) for the
same set of parameters as in (a). The curves were
normalized at the maximum of the big peak.
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FIG. 22. Continuation onto higher fields (up to 20 kG)
for the data and theory as presented in Fig. 21. These
values of magnetic field are sufficiently far from that
for cyclotron resonance that one sees basically normal
Gantmakher- Kaner osc i Qations.
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of the sum of the squares of the signals seen at
two phases 90' apart. As we shall discuss in de-
tail later, it is important to observe in Fig. 22(b)
that the values of magnetic field for which there is
a near zero modulus are the same for which there
is a zero crossing in the signal. Changing the ref-
erence phase by 90' does not interchange peaks and
zeros, so that, in brief, the oscillations are not
caused by phase changes of h, relative to the ref-
erence field, but rather a true variation of the
amplitude of ht. In our X-band experiments we
have also observed similar data as in Figs. 21 and
22 for Na, Rb, and Cs. The big peak has been ab-
sent in two Cs samples, although the GKO were
present.

The detailed behavior of the signal at the big
peak near &d,/«i=i is still not understood, although
a large amount of theoretical work has been done. '4

Phillips et a/. have reported measurements for K
at 116 GHz, wherein they observe a strong peak
and additional structure near cyclotron resonance.
The interpretation of this structure in terms of
many-body effects is still uncertain. "

Although no satisfactory theoretical formula-
tions exist which accurately reproduce our data,
we do find it possible to achieve a very satisfac-
tory fit with a semiempirical formula suggested
to us by Wilson. " The solid line in Figs. 21 and
22 shows a fit to our data using the formula

-+e -(L/vy&) (&-fcoT )
t

[1 ~r (1 ~ /~)]2e-(i(a~/au&(LIB)

[1—i &er(1 —&u, /&u) ]'

(3)

L is the sample thickness, v~ the Fermi velocity,
«~ the applied microwave frequency, &u, =eH/m*c,
m~ is the effectiv'e mass, R is the cyclotron rad-
ius at cyclotron resonance (= v~/&v), r is the bulk

momentum scattering time, and ~, is an assumed
different (shorter) scattering time characteristic
of a thin layer at each surface. The amplitude fac-
tor A includes the'phase shift terms due to the
surface impedance which are all presumed to be
independent of dc field. In reality, Eq. (3) is an

asymptotic approximation to a more complete
formula that can also contain the Landau A„pa=
rameters, but the full formula fits less well than
this approximation, and in light of the theoretical
difficulties, it is not worth pursuing these details.
The fit in Figs. 21 and 22 were done by adjusting
r to match the width of the big peak at &d,/v —= 1
and adjusting ro to match the amplitude of the mod-

ulus of the observed signal at ~,/&u = 5. The fit
in Fig. 21(a) could have been made even better
with a slight phase adjustment. We note several
important features about these data.

(i) The main peak occurs very close to the field
for cyclotron resonance. Values of m*/m deduced
from the center of this peak for Na and K are con-
sistently 1 or 2/0 higher than the cyclotron masses
listed in Table I. A similar discrepancy was ob-
served by workers at 116 GHz." If there were a
reliable theory to interpret the data, we note that
the center of this peak could be found with an ac-
curacy about one order higher than is available
for defining cyclotron resonance values of m*.
The value of m*/m we obtained for Rb is 1.23.

(ii) As can be seen in Figs. 21(b) and 22(b),
there are periodic values of the field for which
there is zero transmitted power. Equation (3)
simplifies considerably if we examine its beha-
vior far away from the big peak. For &u,/&d» 1,
we have

(r /r)2e-LI vive
(((sl /v~+e cos(~p/v ) (4)

Here p is the adjustable phase introduced by the
reference phase shifter. For &u,/&d «1, Eq. (3)
reduces to a similar expression except that the
prefactor (r,/v')' is replaced by a complex func-
tion of 7' and 7;. The phase of this prefactor does
not alter the field locations for the zeros or max-
ima of the transmitted field, but it may reverse
the sign of the &o,/~ «1 peaks as compared to the
zero-field extrapolation of Eq. (4). Thus, within
the framework of Eq. (3), the only "phase shift"
that should occur as one crosses the big peak is
either 0 or m, depending on the nature of the relax-
ation times.

(iii) From an examination of Eq. (4) we shall
see that in principle it is possible to determine
both v~ and k~ independently from the GKO. Note
that all the field dependence in Eq. (4) is in the
cos(&u,L/vz) term, and since &u, ~ 1/m*, the spacing
m field of the GEO peaks (or zeros) allows a deter-
mination of k~ =m v~ providing L is known. Alter-
natively, one may turn this backwards and for the
alkalis where k~ i,s well known, determine I . The
practical aspects of determining the thickness this
way for the alkalis will be discussed later.

We now come to the question of determining v~.
We illustrate the method by describing a procedure
that can be followed. We first note that under con-
ditions where Eq. (4) is applicable it is possible to
adjust y such that the signal is zero for all values
of Ne dc field. (i.e. , if the spectrometer mea-
sures the real part of Eq. (4) then the condition
is &dL/vz+p=w/2, 3w/2, . . . .) In our samples
with high values of ~w we find we can do this by
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simply sweeping the field near 20 kG while chang-
ing the phase shifter in the reference arm until
a good null phase is found. (In some samples we
find there is no phase which gives a true zero
of transmission, although there is typically one
for minimum transmission. We attribute this to
interference with the high-field tail of the big
peak. Alternatively, it could be due to a varia-
tion in sample thickness. ) Returning to the pos-
sibility of determining v~, we note that if one
were to change the thickness of the sample and
determine the new value of p which gave a null,
one could calculate it from v~ = &uAL/&P.

An alternative procedure would be to change the
spectrometer frequency by some amount &(d. One
would then also need a phase reference for the
spectrometer itself, but this could simply be the
CESR signal. We have not done this because the
tuning range of our spectrometer is only -10%,
and for a typical sample +I,/vz-10. Thus there
would only be a phase change of one radian, and
a high signal-to-noise ratio would be necessary
to yield an accurate determination of v~. The
phase can be followed much further by the first
method of changing thickness, but we have not
tried to do precision measurements at this time
because there does not seem to be much need for
an independent measurement of v~ in the alkabs.
In concluding this topic we wish to emphasize that
for the alkalis, when /ineax excitation and detec-
tion axe used, phase extrapolations to zero field
would not be meaningful insofar as v„determina-
tions are concerned, since the signal is always
a local maximum (or minimum) at zero field, in-
dependent of the reference phase. "

We have attempted to use the field dependence
of the GKO to determine the thickness of samples
for reasons discussed in the preceding paper. '
Figure 23 shows a plot of the peak location of the
GKO versus the applied magnetic field for a Rb
sample. There is a slight deviation from linear-
ity at the lower field where the effect of the big
peak is still important. At higher fields (where
we also find a phase that gives a zero transmitted
field) the line is satisfactorily linear. We have
compared the values of the sample thickness de-
duced from the slopes of lines such as in Fig. 23
with the measured sample thickness for Na, K, and
Rb. Initially, using samples of Na and K we
thought there was a discrepancy, but this was re-
solved when it was realized that the packaging be-
tween glass plates resulted in the integrated ther-
mal contraction being typically 4% rather than the
bulk value of 1.5%. For both Na and K the thick-
nesses deduced by the GKO do agree with the
thicknesses as corrected for the true thermal con-
traction to within the experimental errors of +1%.

FIG. 23. Peak number of the GEO vs magnetic field
for a G.017-cm rubidium sample at 1.4 K, and a fre-
quency of 9.2 GHE'. The inset shows the signal and
numbering scheme. Note the slight deviation from lin-
earity at low field, presumably the result of the tail
of the resonance at co~/co= l.

The situation for Rb appears to be different. The
GEO do not yield the same thickness as that de-
termined directly, nor do they give results which
even scale consistently with those of either the
cyclotron waves or the type-B angular oscilla-
tions. ' This discrepancy may be due to either
strain effects, the increasing importance of non-
sphericity of the Fermi surface, or possible
other mechanisms.

IV. CONCLUSIONS

In addition to the data presented, we have studied
all the modes, at least qualitatively, as a function
of temperature. If there were interest in the scat-
tering mechanisms, the amplitude could be studied
quantitatively as a function of temperature and
thickness. Because of the need to determine the
thickness of Rb samples, as discussed in Ref. 7,
we have checked the dependence of the periodicity
of the oscillations observed in the signal for the
cyclotron waves, the type-B signals, and the GKO.
We have concluded that the periodicity of the first
two, as discussed in the text, is a reliable indica-
tor of sample thickness to an accuracy of better
than 1% for the three alkalis. This was not true
for the GKO.

We have indicated the process whereby we have
deduced the A., and A., coefficients from the cyclo-
tron waves making use of finite (dr dispersion re-
lations and a phenomenological expression for the
transmitted microwave field. ' Surprisingly, our
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results (where comparable) are in agreement with
those of Walsh et al.", " Since their values were
deduced by fitting to an infinite ~7' dispersion re-
lation, we had anticipated that there would be ap-
preciable discrepancies, as it is clear that the
inclusion of finite ~7' effects is essential for the
interpretation of transmission measurements.
Perhaps the interpretation of reflection data is
less affected by finite ~w, although the proof of
such a conjecture and indeed, a justification of
our own data analysis must await a more rigorous
solution of the boundary value problem. The ex-
tension of these measurements to Cs, or to ad-
ditional subharmonics for K and Na, is possible,
although tedious, and it would require some new.

theoretical insight'to justify the considerable ef-
fort involved.

As noted, the signal-to-noise ratio of the GEO
at the center of the strong peak is sufficient that
the center can be located to at least 0.1%. If this
data could be better interpreted in terms of the
properties of the system, perhaps a significantly
more precise value for m* could be deduced.

We have reported our observations of a new
mode, containing two series, each characteri. zed
by a rapid oscillatory dependence of the transmit-
ted field on the angle between the applied dc mag-
netic field and the sample surface. We tentatively
identify one of these series wi th a model depen-
dent upon the time of flight for electrons along the
field lines. The other appears to be- more com-
plicated and we suggest that both warrant addition-
al theoretical attention.

Part of our original, motivation for studying these
modes was to be able to better understand their
analogies in metals with more complicated Feimi
surfaces. We have observed numerous wiggles
in the transmitted signals for every pure metal
for which we have searched for CESR. In some
cases, such as Ag, Cu, and Al, we cari identify
parts of the spectrum that bear an obvious re-
semblance to one or more of the modes discussed
here. Other workers have also reported related
measurements, "'"but given the powerful well-
exploited Fermiology tools, such as de Haas-
van Alphen, etc. , we believe it will take new in-
sights to motivate further detailed measurements.
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