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Experimental determination of the Landau Fermi-liquid-theory parameters:
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This paper presents the results of a study made on spin waves in high-purity rubidium foils at cryogenic
temperatures (= 1.4 K). The measurements were made using the microwave-transmission technique at X-
band microwave frequencies and represent an extension of previous measurements in sodium and potassium.
From a comparison of the data with theoretical line-shape formulas based on the Landau Fermi-liquid theory,
we deduce values of the first three Legendre coefficients of the spin-dependent part of the Landau interaction
function. The values are Bo ———0.21+0.05, B, = +0.03+0.08, and B, = —0.09+0.1. The errors are
not independent, and the consequent relationships between the coefficients consistent with our measurements
are presented in detail. A discussion of the particular expemnental ddticulties encountered and their
implications for the analysis is given. %e include an analysis of a simple model that exhibits the essential
features of spin-wave behavior in itinerant interacting electron systems.

I. INTRODUCTION

In this paper we present the extension of preci-
sion conduction-electron spin-wave measurements
to a third metaI, rubidium. We have previously
presented measurements in Na and K (henceforth
f).~ From our measurements we can deduce val-
ues for the Landau Fermi-liquid parameters B„
B„and B,. These parameters describe the effec-
tive many-body interactions between the conduc-
tion electrons. The spin waves are observed by
studying the transmission of microwave power
through thin (=0.2 mm) foils of metal as a function
of magnetic field at cryogenic temperatures. Peaks
in the transmitted field occur whenever a standing-
spin-wave mode is excited in the sample. These
peaks appear split off from the normal g~ 2
conduction-electron spin-resonance (CESR) signal
that exists even in the limit of zero interactions.
In Fig. 1 Ne present a typical. signal seen in Rb.
The spin-wave excitations do not exist in a non-
interacting electron gas, and are the only experi-
mentally observed signals known to us to depend
completely on the existence of many-body inter-
actions. From measurements on the observed
spin waves, we can determine the character of the
many-body interactions.

The paper is organized in the following way. In
Sec. II we discuss the basis of spin-wave theory,
including an analytic investigation of predicted
spin-wave behavior. Section III describes the ex-
perimental techniques and apparatus used in this
work. Section IV discusses the data obtained, in-
cluding the rather complicated method that had to
be used for determining the thickness of the sa,m-
ples. In Sec. V we present the data analysis. Sec-
tion VI compares these measurements with other

work and discusses possible directions for future
research. The Appendix contains an analysis of a
simple, classical, one-dimensional model of an
interacting electron gas that facilitates the visual-
ization of the spin dynamics in a spin wave.

II. THEORY

As a more complete outline of the Landau theory
is presented in I, it will not be repeated. We pre-
sent a, very brief review to lay the groundwork for
the rest of the discussion.

In 1956 Landau' proposed a phenomenologieal
theory to describe the low energy excitations of
interacting Fermi systems. This approach has
since been shown to be exact within the framework
of perturbation theory. Later, Silin extended the
theory to charged systems by taping account of the
long-range Coulomb interactions via Poisson's
equation and the macroscopic charge density. The
books by Pines and Nozieres4 and Platzman and
Wolff' contain good discussions of the theory.

In the Landau Fermi-liquid theory, the interac-
tions between a particle of momentum p and spin
a and another of momentum P' and spin o' are
described by an interaction function f(p, v; p'o').
If the system is not magnetic, has a plane of re-
Qection symmetry, and lacks spin-orbit coupling,
the interaction function can be written as the sum
of two parts, one spin independent and the other
spin dependent.

f(p ~'p', o') =&(p, P')+ &(p, p')o. u'.
If the Fermi surface is spherical and only low-en-
ergy excitations are considered, the magnitudes
of p and p' are both equal to the Fermi momentum
P~. A and B are independent of the interchange of
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Platzman and Wolff ~ (PW) have worked out the
spin-wave theory to order q '. To this order only
BD and B, enter. Their results give an excellent
description of the observed spin-wave behavior
and are more or less analytically tractable and will
be discussed briefly below. Wilson and Fredkin
(WF) have developed the theory to all orders in
q' and for an arbitrary number of B„'s. It is with
their more exact results that the data was com-
pared to extract the values for the Landau para-
meters. Because of its complexity we will not
discuss the WF theory further. Interested readers
are referred to Ref. 8. The Appendix contains
a simple classical model that allows visualization
of the self-consistent spin motion that occurs in
a spin wave.

PW found that to order q' the dispersion relation
is given by
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FEG. 1. Transmitted microwave field vs dc magnetic
field at 4=90 in sample Hb-7. L=0.17+0.0025 mm,
v= 9.1955 GHz, T=1.4 K. (a) A sweep through the .

CESH (n = 0) and first spin wave (n = 1). (b) The sweep
has been expanded, at the same gain, to include the
second spin wave (n =2).

)

p and p' so the only functional dependence is-on the
angle between them. Thus A and B can be expanded
as a series of Legendre polynomials. Including
normalization factors, the expansions are written

A(p, p') = —g A„(2n+1}P„(cos8},
0 n=o

(2)

B(p, p') = —P B„(2n+1}P„(cos6)),
0 ft-0

where v, is the density of states at the Fermi sur-
face. It is the presence of nonzero parameters
8„ that lead to spin waves in the conduction elec-
trons of metals and the interpretation of the spin-
wave spectra allows the measurement of the B„'s.

Rubidium does not come as close as sodium and
potassium to meeting the restrictions leading to
Eq. (2). From de Haas-van Alpen (dHvA) studies'
there is known to be a 1.5%%uo nonsphericity in the
Fermi surface. For Na and K this is less than
0.2%. The spin-orbit coupling is also expected to
be stronger than in Na and K. These points will
become important in light of the experimental re-
sults.

Here T, is the spin relaxation time, 7. is the mo-
mentum collision time, 6 is the angle between the
magnetic field and q, +, is the cyclotron frequency
eH/m*c, m* is the effective mass, ru, =gp, eH/5,
and X, = (B, —Bo)/(1+ B,).

A feeling for the general behavior of the spin-
wave mode can be obtained by looking at graphs
of the dispersion relation. Figure 2 shows graphs
of Im(q} vs Re(q} for three particular L's, with
values of the other parameters appropriate for the
alkali metals. Progress along the curves is para-
metrized by &- &u, . Part (a) shows the case when
6 =0' and the wave is propagating parallel to the
applied magnetic field. The wave will propagate
only when Im(q) is small, which requires a&, ) v
at this angle. The dispersion relation asymptoti-
cally approaches the two orthogonal dotted lines
for large (v —&u, (. It reduces to these lines as the
spin relaxation time T, becomes infinite. The
angle c(/2 depends on v and for small angles is
I/2X, &uov. Thus, damping due to T, is dominant
only near z = co,. As the transmission of micro-
wave power through a finite slab of metal will be
enhanced whenever a standing spin wave exists,
we expect transmission peaks at Re(q) =nv/L,
where I. is the sample thickness. For samples
in which the CESR and spin waves are well re-
solved, the first spin wave occurs at a value of
Re(q) for which the damping is dominated by 7. A

more standard presentation of the dispersion
relation, valid for infinite ~ and T„ is shown in
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FIG. 2. Graph of the real and imaginary parts of q
from the PW dispersion relation at fixed magnetic field.
The curves are parametrized by v —(do. (a) 4=0',
magnetic field perpendicular to the sample; (b) 4
= 4~, the spin wave critical angle; (c) 4= 90', magne-
tic field parallel to the surface. The spin-wave mode
propagates where Im(q) is small. The peaks occur near
Be(q) =ex j/L.

Fig. 3. The points where transmission peaks
occur are marked.

As 6 is changed (by rotating the magnetic field)
the curvature of the dispersion relation in Fig. 3
is reduced, and the position of the spin-wave peaks
move closer to the QESR peak at + (dp This
shift is fundamentally due to the fact that the cyclo-
tron motion of the electrons is becoming important.
This same change is reflected in Fig. 2(a} pri-
marily by a change in scale of the Re(p) and lm(p)
axes. In the alkali metals the values of the para-
metersQp Pg pQ*, etc. are suchthat there exists
an angle, called the critical angle b,„where the
infinite r and T2 dispersion curve is flat (to order
q'), as illustrated in Fig. 3. The same situation
is alternatively shown in Fig. 2(b} for finite 7 and
T,. If X,~,r and &aT, » 1, the rotation from 2(a}
to 2(b) takes place over a small angular region
near 6,. At 6, the transmitted signal is essenti-
ally symmetric, consisting of a main peak and
perhaps some small negative lobes on either side.

As the magnetic field is rotated still. farther to
b, =90, the dispersion relation is represented by
the upper curve in Figs. 3 and 2(c). Now the spin-
wave mode is weakly damped on the other side of

The damping here is again proportional to
I/u&OT but the factor is slightly different than at
6 =O'. In summary, we expect to observe the

0 P.v /L
k

FIG. 3. Schematic spin-wave dispersion relation for
conduction electrons at constant magnetic field. The
relatiori is sketched for three values of &: b, = 0', 4„
and 4= g0'. The first four a11owed wave vectors are
shown. These satisfy the relation qL =n+, where L is
the sample thickness.

spin waves at a higher magnetic field than the
CESR when 6 =0 . As the magnet is rotated, they
move closer to the CESB and eventually at the
critical angle they coalesce with it. As the mag-
netic field is rotated still farther, the spin waves
appear on the low-field side.

In the limit of large X,+ps and large T„where
the spin waves and CESR are well resolved, it
can be shown that the spin waves are Lorentzian
in shape and that the separation of the nth spin
wave from the CESR is given by

be&„=Re(iD*nmv /L )

and its width by

5u„= Im(i D "n'w '/L ) .

(4)

&~„(&) t'2m(I +a,) &~'

h.v„(90') ( gm*X, j (6)

where "g" is the electronic g value.
The critical angle occurs when A~„(b,,) =0. Thus

Note that the spacing of the nth spin-wave peak
from the CESR is proportional to n2/L2. In practi-
cal cases Ru„~ I/r there is a simple relation be-
tween the separation at an arbitrary angle 6 and
that at a =90'.
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cos'a, = Lm*gX, /2m(1+ B,)P.
In the framework of the PW calculation, the ex-

perimental determination of Bp and B, requires
the measurement of the first spin-wave spacing
at two values of h. Then supplying the other para-
meters from different sources allows solution for
the two unknowns. Note that measuring more than
one spin-wave peak at the same value of 6 adds
no new information since the same combination of
Bo and B, enter in determining the positions of
all of them. The PW theory, however, is accurate
only to order q'. The WF calculation shows that
to order q' the parameter B, enters, and that for
each successive power of q' in the expansion, an-
other Landau parameter becomes important. For
samples of the thickness (and thus q vectors) used
in these experiments, the q' expansion is adequate
for describing the first spin-wave peak, as will be
discussed later. Thus B, and B, can be determined
by measuring the first spin-wave separation at two
values of h. With Bo and B, known, measurement
of the second spin-wave peak at some 6 then al-
lows the fitting of B, assuming B, and higher co-
efficients are not yet important (or are zero).

The two angles at which we have decided to
make accurate measurements are 6, and b =90'.
Background signals at other angles, such as that
shown in Fig. 12, dictate this choice. In Na and K
this baseline could be suppressed by going to
thicker samples because the spin waves are at-
tenuated less rapidly than the backgr'ound signals.
In Rb this could not be done because the signals we
used for sample thickness determination (Sec. IV
8 2) would also have been attenuated. At b =90'
the CESR and spin waves occur in the gap between
the fundamental and first subharmonic of the cy-
clotron waves. (See Fig. 8 and the following paper. )
This situation exists only for a small angular
region around 6 =90'. By the time 6 =70, which
is about the spin-wave critical angle, the back-
ground is becoming a problem.

The value of the critical angle and the separation
of the spin waves from CESR at b, = 90, along with
the linewidths of the observed peaks, constitute a
set of data. Because ~, depends only on the sym-
metry of the dispersion curve, it is independent of
sample thickness. However, at 6=90', the strong
dependence of spin-wave location on sample thick-
ness requires very accurate thickness determina-
tion in order to deduce accurate values for the
Landau parameters.

III. EXPERIMENTAL TECHNIQUE

A. Sample preparation

The experimental techniques are basically the
sam'e as in I. We include only what is special to

Rb, or necessary for a logical presentation.
The rubidium samples were made from materi-

al purified in this laboratory by heating very pure
RbC1 with calcium in a quartz vacuum system. '
The Rb vapor given off traveled through several
sets of baffles with a carefully controlled tem-
perature gradient to trap impurities. The materi-
al was finally collected on a cold finger. When
sufficient material was deposited, the cold finger
was slightly heated. The rubidium melted and
dropped into quartz ampules that were pulled off
the system under vacuum. The ampules were
refrigerated and stored for several years before
use in these experiments. Comparison with pre-
liminary experiments done at the time of purifi-
cation indicate no gross deterioration of the ma-
terial during storage.

To make a sample, an ampule was opened in a
helium atmosphere dry box and the material
transferred to an extruding device. Many samples
could be made from one ampule. Motion of a
piston forced the Rb through a slit in the end of
the extruder. The dimensions of the slit were
chosen to make a ribbon slightly thicker than the
desired sample thickness. This ribbon was
sandwiched between two microwave cavities,
forming, a common wall between them. A care-
fully made shim between the cavities was used to
define the final sample thickness and assure par-
allelism of the sample surfaces. The samples
were polycrystaline.

The cavity-sample assembly was removed from
the dry box, fastened to the waveguide of the
spectrometer, and plunged quickly into liquid
nitrogen. It cooled rapidly to 250 K before the
liquid boiled below the cavities. It further cooled
to 100 K in about 1 h. Finally, liquid helium was
added and the sample cooled to 4 K in 5-10 min.
After one run the sample was allowed to sit for
24 h at 77 K to see if an annealing period would
improve the momentum scattering and spin relax-
ation times. There was no difference between the
signals before and after this annealing.

B. Cavities

Two sets of microwave cavities were used in
'this work. One set had both cavities tunable and
contained no dielectric other than the ambient
atmosphere. In these cavities the sample was
pressed between two thin (0.14 mm) glass plates
which made flat mirror surfaces on the Rb. The
backs of these cavities could be removed and the
thickness of the sample package directly measured
at room temperature and 77 K, as described be-
low.

The fact that the sample was bonded tightly to
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FIG. 4. CESR and first spin wave in sample Rb-6.
The material is from the same ampule as that used for
samples Rb-5 and Rb-7. This sample was pressed be-
tween glass plates in the tunable cavities. In contrast,
the higher resolution signal in Fig. 1 was obtained with
a sample {Rb-7) pressed betweenparaffin inthe Lucalox-
filled cavities.

glass introduced some serious problems in Rb. On

cooling, the sample bulk contraction is much
larger than that of the glass to which it was bonded,
and thus the sample is strained at low temperature.
Further, direct measurements indicate that the
constraints resulted in a thickness contraction
(the only dimension free to move) of about 2.5
times that expected based on the bulk (uncon-
strained) thermal contraction coefficients. This
is discussed more fully below. This condition
resulted in a broadening of both the CESR and the
spin waves and made it impossible to get useful
spin-wave data with these cavities. Figure 4
shows this signal.

Rb from the same ampule produced much better
signals when run in the second set of cavities.
Only one cavity of this set is tunable, and both
contain the dielectric Lucalox. The Lucalox does
not completely fill the cavity and the remaining
volume is filled with a thin layer of parafin
(~0.05 mm) flush to the brass flanges of the cav-
ities. Thus for these cavities the sample was
pressed between wax rather than glass, and we
surmise it was not as constrained. These cavities
give better signals (compare Figs. 1 and 4), but
it is not possible to directly measure the sample
thickness.

Because thickness is such an important para-
meter in these measurements, a great deal of ef-
fort was expended to determine it. The final pro-
cedure involved using the tunable cavities to ob-
serve several thickness-dependent signals not
related to the spin waves, and then comparing
them to the same signals in the Lucalox cavities.
This allowed determination of the relative sample
thickness of the Lucalox cavity samples and is
discussed in Sec. IV B2. The absolute thickness
of the tunable cavity samples was measured with
the instrument described next.

C. Absolute sample thickness

The thickness of the Rb in glass sandwiches
could be directly measured in the tunable cavities

I I I l I

I l
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/
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FIG. 5. Schematic representation of the device gsed
tc measure sample thickness. {i)Microwave cavity;
(2) Sample; (3) Probe; (4) Ball bearing; (5) Armature;
(6) Trim capacitor; (7) Brass Base Plate; (8) Removable
cavity holder. Sliding the probes back allows removal
of this holder with the cavities. It can be replaced by
a holder containing calibration standards that are located
very cloye to the same position as the sample.

with the device schematically shown in Fig. 5.
Details will be published elsewhere. " It basically
consists of a pair of linear variable differential
transformers (LVDT) with the armatures mounted
on carefully built kinematic suspensions. Long
probes reach in and touch the glass surfaces of
the sample package. Measurements can be made
at 77 K by immersing the entire device in liquid
nitrogen. Operation at low temperatures requires
a dry atmosphere to prevent condensation of
atmospheric moisture into the nitrogen, so the
apparatus is operated in a simple dry box. Pri-
mary calibration at room temperature is with
machinist gage blocks, whose thicknesses are
known to +0.02 p, m. Low-temperature calibration
is done using quartz plates previously calibrated
at room temperature, since quartz does not
change thickness significantly on cooling. Because
this is a contacting measurement, dust and very
small particles are the major sources of error.
With sufficient care, the thickness can be deter-
mined to +0.25 gm.

D. Spectrometer

Figure 6 shows a block diagram of the micro-
wave transmission spectrometer used in these ex-
periments. Details will be published separately.
Microwave power from a stable oscillator is chop-
ped at an audio frequency and coupled into the
transmitting microwave cavity. A precision at-
tenuator is used to set the power level. The cav-
ities are located in a Dewar system in the gap of
an electromagnet. Use of various cryogenic liq-
uids and a feedback temperature control system
allow operation from room temperature to 1.4 K.
Microwave power that is transmitted through the
sample enters the receiving cavity and goes to a
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b =0' and the CESR antisymmetrized. This angle
was chosen because the spin wave is typically
farthest from the CESR at this position and is
least likely to interfere. Proper phase for anti-
symmetrization could be set to +1'. It was as-
sumed (as supported by separate experiments
using narrow signals in lithium) that the effective
phase of the spectrometer does not change with
magnet angle. Changing helium levels in the
Dewar caused continuous phase drift, so phase
was checked before and after important measure-
ments.

SAMPLE

Block Diagram of Transmission ESR

FIG. 6. Block diagram of the microwave trans-
mission spectrometer. TC and RC are, respectively,
the transmitting and receiving cavities.

super heterodyne detector. A maser preamplifi-
er" is available to boost the transmitted power
and reduce the effective noise from the balanced
mixer, from 2500 K to on the order of 100 K.

Coherent, unmodulated power is added to the
transmitted power before amplification. This pro-
duces a strong i.f. carrier that biases the detector
crystal and also provides a reference field with
which to compare the transmitted field. The phase
of this reference field can be adjusted by a pre-
cision phase shifter and the amplitude is set by a
precision attentuator. The output of the i.f. am-
plifier is finally detected by a lock-in amplifier.
Because of the low signal levels it is very impor-
tant to avoid microwave leaks that might swamp
the signal. Typically there is 160-dB isolation be-
tween the transmitter and receiver.

The externally applied magnetic field is horizon-
tal and it ca,n be rotated relative to the sample
either manually or with a variable speed motorized
drive. " The modes in the microwave cavities are
arranged so the rf magnetic field is perpendicular
to the dc field at all magnet orientations. Angular
displacements of the dc field can be electronic-
ally ' measured to 0.01'. Absolute orientation of
the field relative to the sample can be determined
by looking at the symmetry of some angularly de-
pendent signal like that shown in Fig. 10. The
point where the field is parallel to the sample sur-
face can be determined to +0.05' in this way.

.There is no absolute phase standard in trans-
mission experiments, so phase must be measured
relative to some signal. In this work phase was
defined relative to the CESR signal at 6 =0' (mag-
netic field perpendicular to the sample). Before
any measurement was made that required know-
ledge of the phase, the magnet was rotated to

IV. DATA

A. Basic analysis technique

-0.50

—0.25

Bo

—0.20

-0. I5
—O. l 0

8(

+O. I

FIG. 7. Analysis of simulated data using the I'W
theory. The Bo vs B~ relations consistent with the
data are shown at the three angles where data is nor-
mally taken. AQ three lines intersect at one point,
which gives back the values of Bo and B~ used origin-
ally to generate the simulated data. The dotted lines
show the effect of analyzing the same data using a
thickness 1% thicker than that used originally to gener-
ate it.

Figure 7 shows the analysis of a set of simulated
data. It demonstrates the ability of spin-wave
measurements to determine the Landau para-
meters and shows the sensitivity of the Landau-
parameter measurements to uncertainties in
sample thickness. The data, consisting of the
critical angle, the separation of the CESR and
first spin wave at 6=90' and b, =0, and the line-
widths of the CESR and first spin wave were ob-
tained from a set of line shapes generated using
Eq. (3), evaluated with values of the various para-
meters representative of the alkali metals.

The curves in the B, vs B, plane shown in Fig. '7
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were determined in the following way. At 6 =90'
Rnd Bj 0 1 for example VRlue s of Bo Rnd

which resulted in a spin-wave line shape with the
correct separation and linewidth were found by
iteration. T, is chosen to give the correct CESR
linewidth and has little effect on the spin-wave
peak. The same was done for B,= 0 and B,=+0.1.
B, and B, values from any point on this curve will
fit the h, =90 data. The value of T needed to fit
the linewidth varies slightly along the curve. Table
IV shows the results of this procedure for the real
samples. This was repeated at 6 =O'. The inter-
section of the curves gives the values of Bo and Bg
that were used to originally generate the data. To
determine the Bo vs B, relation consistent with
the critical angle, we found the value of Bo that
for a given B, (and ~ from the b, =90' analysis for
that B,) gave a line shape that was symmetric
about the CESR field.

It is important to note that the angle of intersec-
tion of these curves is small. Any experimental
uncertainty can be visualized as a broadening of
the individual lines and thus the intersection will
not be a point, but occur over some elongated
region approximately parallel to the lines. Al-
though the individual uncertainty in Bo and B~ will
be large, the area of the 8, vs B, plane consistent
with the spin-wave data will be small.

The dotted lines in the figure show the result of
analyzing the simulated data using a thickness 1%
thicker than that used to generate it. Bo Rnd By
are very sensitive to this small change. Note
that the lines intersect on the original line based
on the critical-angle data. This demonstrates-the
independence of the critical angle from sample
thickness.

In view of this extreme sensitivity to sample
thickness, it is important that thickness be deter-
mined accurately. We have previously mentioned
that the signals observed using the cavities in
which it was possible to directly measure the
thickness are of low quality. For the Lucalox
filled cavities, which give the better signals, it
was necessary to use indirect methods to deter mine
the thickness of the samples. This is discussed
below in two parts, the first dealing with absolute
measurements of the thickness of the samples
bonded to glass windows; and the second with the
method of determining the thickness of samples in
the Lucalox filled cavities relative to those that
were directly measured.

package in the double tunable cavities allowed the
direct measurement of the thermal contraction of
the Rb between room temperatures and VV K. The
results, compared with the free bulk contraction,
are presented in Table I. This gives an indication
of the strain in the samples. The deformations
appear to be elastic because several temperature
cycles repeat the same results. The measured
contractions apply to samples about 1 cm square
with about a 0.2-mm thickness of alkali metal.
Including the errors in measuring the glass window
thickness, the sample thickness could be deter-
mined to 1%, with an additional 1'fq nonuniformity
in any one sample possible.

The sample thicknesses used were measured at
VV K. If the same enhancement of thermal con-
traction seen between room temperature and 77 K
continues to 1 K, the samples would be an addition-
al 0.8% thinner. We have standardized the data
analysis of Sec. V to the VV-K thickness since we
do not know whether this additional contraction
really occurs. Enough information is presented
in Sec. V to recalculate the Landau parameters
with this reduced thickness if desired.

TABLE I. Thermal contractions of free and constrained
alkali-metal samples.

Bulk contraction' {%)
to 77K

Measured contractions (%)
to 77K

Z. Relative thickness determination

Three different signals were used to compare
the thicknesses of the samples. Two of them, the
cyclotron waves and some strongly angularly de-
pendent oscillations, were found to agree and give
consistent results. The third, the Gantmakher-
Kaner oscillations, gave erratic results, never
in agreement with the others. Table II summarizes
the thickness ~determinations. More detailed infor-
mation on each of these signals is presented in the
following paper.

g. CycloA on &eaves. Figure 8 shows the trans-
mission through a slab of rubidium at 6 = 90' be-
tween 4 and 6.5 kQ. All the alkalis are similar.
Above 8 kG there is no detectable transmission.
This signal that starts at the cyclotron field H, is
the fundamental of the cyclotron waves. The sub-
harmonics start at the fields H, /2, H, /3, etc. No
rigorous line-shape formula for the transmission
exists, although the dispersion relation has been

B. Sample thickness

1. Absolute measurement

The ability to very accurately measure the thick-
mess at one point of the glass-alkali-glass sample

Na

K
Rb

' Reference 29.

1.31
1.82
1.84

3.4 + 0.4
4.3 + 0.3
5 +03
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Table II. Absolute and relative thicknesses of the samples.

Direct measurement

(mm), 77 K
Angular

wiggles Plasma waves Gantmakher-Kaner
Inferred thickness

(mm), 77 K

L6

L8

L6/Ls

L7/L,

L, /L,

L5/L8

L 7/L6

L7/Ls

L5

L7

0.173 + 0.002

0.179 + 0.002

0.965 0.977

1.085

0.905

0.884

0.984

0.960

1.096

0.884

0.970

0.975

0.875

0.85

0.1575 + 0.0025

0.1700 + 0.0025

carefully investigated, including many-body ef-
fects. ' ' The situation is dealt with more fully
in the following paper. "

Figure 9 shows a plot of the zero crossings of
this signal i.n Rb as a function of magnetic field.
The slight deviation from linearity at low field is
expected (as well as deviations at the high-field
end). For the present purposes, we have empiri-
cally found that the slope of this linear region is
proportional to sample thickness. By changing
temperature it is found that the slope is indepen-
dent of uT over the range of variation encountered
in the samples in this work. It also turns out to
give consistent scaling when compared with the
angular signals of Fig. 9(b).

b. Angular signals. If the field is swept higher
in Fig. 8 there is no detectable transmission from
8 to 20 ko, which is the highest field available in
our experiments. However, if the magnetic field
is held at a constant magnitude (greater than 10 kG
at X-band frequencies) and rotated away from b,
= 90', several previously unreported transmission
modes are found. They are characterized by dif-
ferent angular dependences at constant field, and

A
V

FIG. 8. Signal identified as the main harmonic of the
plasma waves in sample Rb-7. The numbers of the
zero crossings correspond to those of Fig. 9.

l2—

rrr
r

~
0

I

CO

6—
N

I

6
H (I(G j

FIG. 9. Number of the zero crossing vs magnetic
field for the plasma waves of Fig. 8. An increase of 1
corresponds to a phase change of m in the transmitted
signal. Note the slight deviations from linearity at low
field. Experimentally we find this slope is insensitive to
changes in ~7' over the range encountered in samples in
these experiments. Sample Rb-7, thickness =—0.17 mm,
@=9.2 GHz.

field dependences at constant angle. So far they
have been observed in Na, K, and Rb. A more
complete description is in the following paper, but
as one mode was used for the sample thickness
determinations, its relevant features will be des-
cribed.

Figure 10 shows the transmission through a Rb
sample as a function of angle 8 between the mag-
netic field and the sample surface for two con-
stant values of the magnetic field. Note that the
peaks are larger at the higher field, but are in
the same locations. This is true for any field. If
the angle is held constant and the field swept, the
transmission slowly increases in magnitude (with
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ce 4
4J

times are short enough so no geometrically induced
signal anomalies were observed.

e. Spin-suave data. In Fig. 1 we presented a
typical spin wave signal from one of the two Rb
samples run in the Lucalox cavities on which ac-
curate data were taken. The relevant measure-
ments on these signals are summarized in Table
III. In addition, two samples were run whose
thicknesses could be directly measured. The
thickness information on the samples is summar-
ized in Table II. In Sec. V we will discuss the
analysis of this data to extract the Landau para-
meters.

V. ANALYSIS

H(k GI

FIG. 13. Peak number of the Gantmakher-Kaner os-
cillations vs magnetic field. The inset shows the signal
and numbering scheme. Note the slight deviation from
linearity at low field. Sample Rb-5, L = 0.17 mm, v
= 9.2 GHz.

Analysis of the Rb data presents some problems
not found in Na and K. To lay the groundwork for
this analysis we will first compare the behavior of
the PW and WF calculations and examine how well
the theoretical calculations reproduce the behavior
of real spin-wave signals as a function of i.

Figure 13 is a graph of the peak number of these
oscillations versus magnetic field in Rb. Note that
the low-field points deviate slightly from a straight
line drawn through those at the highest field. The
slope also turns out to depend slightly on spectro-
meter phase. These deviations may be due to the
tail left over from the big peak at cyclotron re-
sonance. Using values for k~ from dHvA mea-
surements' and the measured sample thicknesses,
the above equation is not obeyed within experimen-
tal uncertainty in Rb. What is more important,
the signal does not give consistent results when
used for determining the relative thicknesses,
(see Table II) and for this reason was not used.
The following article contains more information
about this signal.

Sample geometry, Sample size can have
measurable effect on spin resonance line-shapes
when relaxation times are long enough so the
characteristic attenuation length of the transmis-
sion mode is comparable or larger than the di-
mensions of the cavity. "'4 In Hb the relaxation

A. Comparison of PVf and WF

As previously stated, the PW and WF calcula-
tions are equivalent to order q', but while the PW
formulation has a relatively sim'pie analytic form,
the WF formulation is very complicated, especially
at angles away from 6 =0' and 6 = 90'. We have
made comparisons between the theories, as dis-
cussed below, which indicate that given the un-
certainties in the data it is not worthwhile to
program the WF calculation for angles other than
0' and 90'. We will only use the WF calculation
to fit the second spin wave at 6 = 90' in order to
extract a value for B,. The rest of the analysis
uses the PW q' approximation.

In Fig. 14 we compare the PW and WF analysis
of the same simulated data that was used to gener-
ate Fig. 7. Sample thickness approximates that of
the actual samples. Note that at 4 = 90', which is
where we have accurate data in Rb, the 80 vs
relations are essentially the same. Thus we can
use the PW calculation in analyzing the first spin-
wave data at 6=90 .

TABLE III. Experimental spin-wave data.

Sample
Temperature

(K)
Thickness

(rnm)

6=90'
Linewidth

(G)

First
spin-wave

separation Relative

amplitude

6= 90'
Second spin-

wave

separation (G) (deg)
Frequency

(GHz)

1.4

1.4

2.15

0.1575 + 0.0025

0.1700 + 0.0025

0.1700 + 0.0025

18.8

13.6

16.3

-21.88 + 0.2
—19.86+ 0.2
—18.61 + 0.2

-0.19

-0.22

-0.19

-76.7+ 1

67.8 + 0.5 9.189645

68.0 + 0.5 9.19552

9.2216
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FIG. 14. Comparison of the WF and PW analysis of
the same simulated data used to generate Fig. 7. Note
that at &=90, the two calculations are much closer
than at &=0'.
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Although direct comparison of the two theories
utilizing calculations of the full line shapes is
very difficult at other angles, it is straightforward
to compare the two dispersion relations in the
limit of infinite v and T,. Figure 15 shows the
dispersion relations as a function of angle for sev-

FIG. 16. Ratio of the separation of the first spin-wave
peak at arbitrary 4 to that at 4=90 in sample Rb-7.
The solid line is Eq. {7)normalized to fit the observed
critical angle. A = [2m{1+B~)/gm+Xf]
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LaJ
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eral angles near the critical angle. Note that for
small q they agree, whi1. e at larger q the pres-
ence of the higher-order terms in the complete
calculation contributes significantly. For the
samples used in these experiments, q corre-
sponding to the first spin-wave peak is =180 cm '.
For this value of q it appears that the angle that
could most reasonably be called the critical angle

l~
Ol
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I

Ol
C)

0.25—

I I I I
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SP IN-NAVE LINENIDTH (GAUSS)
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I00
q-(cm ')
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FIG. 15. Comparison of the infinite +7 and T2 disper-
sion relations of PW and WF as a function of angle near
the critical angle. Note that terms higher than order
q2 are beginning to be important by q = 100 cm ~.

FIG. 17. Comparison of experimental measurements
and computer calculations for the 4= 90 first spin-
wave separation from CESH vs its linevridth. The data
is from sample Na-16, L =0.17 mm, v=9.2 GHz, and
covers the range 1.4-12 K. The sizes of the square
boxes represent the experimental errors. The analysis
used Bo=—0.215, B&=-0.005 and adjusts I to fit the
low-temperature data using the WF theory. The same
L is used in the PW analysis. Note that neither PW
nor WF follows the experimental curve, although the
PW calculation would come closer if the thickness were
changed to match theory and experiment at low tempera-
ture. The theoretical curves for two values of 7'2 indi-
cate that the effect of the CESR on the spin-wave separa-
tion is only important at relatively low co~.
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TABLF .'V. Analysis of 6 = 90' first spin-wave data.

Sample
Temperature

(K)
Thickness

(mm) B, Bo
10 T

(sec) Amplitude
Phase shift

(deg)

1.4

1.4

2.15

0.1550

0.1600

0.1675

0.1725

0.1675

0.1725

-0.1

0
+0.1

-0.1

0
+0.1

-0.1

0
+0.1

-0.1

0
+0.1

-0.1

0
+0, 1

-0.1

0
+0.1

-0.3013
-0.2266
-0.1533
-0.3097
-0.2377
-0.1665
-0.3061
-0.2345
-0.1622
-0.3144
-0.2435
-0.1728
-0.3013
-0,2266
-0.1533
-0.3104
-0.2377
-0.1657

2.05
1.92
1.81
2.05
1.88
1.77
2.70
2.44
2.28
2.65
2.43
2.27
1.99
1.90
1.79
2.01
1.83
1.72

-0.17
-0.17
-0.17
-0.17
-0.17
-0.17
-0.23
-0.23
-0.23
-0.23
-0.23
-0.23
-0.18
-0.18
-0.18
-0.18
-0.18
-0.18

.-0.67
-0.55
-0.47
-0.76
-0.64
-0.54
-0.76
-0.64
-0.54
-0.86
-0.72
-0.62
-0.74
-0.60
-0.50
-0.84
-0.70
-0.59

Rb-7 ond Rb -5, 1.4'K

6=90' Rb-5 I 4'K and
Rb-7 2. 15'K

-0.25

Bo

—0. 2

-O. l 5
—O. I

I

0

BI

+ O. l

FIG. 18. Bp vs B~ relations based on the &= 90 first
spin wave and the critical angle in samples'Hb-5 and
Hb-7. The two lines for each measurement represent
the extremes due to uncertainties in the sample thick-
ness (at &=90') or the determinations of 4, . The
critical angle data from both samples yield essentially
the same curves and so the two samples are not differ-
entiated. The 1.4-K, 4=90 relations of Rb-5 are the
same as the 2.15-K relations of Db-7, so again they are
not differentiated. The large shaded area shows the
values of Bp and &g we quote in our results.

for the PW theory is 72.54', while that for the WF
theory is on the order of 73 . Because our ability
to experimentally determine the critical angle is
limited by background signals to +0.5, this is not

a significant deviation. However, it should be kept
in mind that the use of the q' approximation at the
critical angle is a possible source of systematic
error in the analysis because of the finite +~ and

T, in actual samples.
The measured critical angle, as defined by the

angle at which the transmission is symmetric when
phase is set by our convention, (symmetrize the
b, =O' CESR) does depend slightly on vT. Com-
puter simulations (and analytical calculations)
show the deviation of the critical angle from its
value at infinite &uT is proportional to l/(&ur)'. The
measured critical angles on samples with differ-
ent cov's are consistent with this dependence.

Figure 16 shows the separation of the first spin
wave from CESR in Bb as a function of the angle

The solid line is the prediction of the PW cal-
culation, Eq. (6), at infinite &uz, normalized to
fit the observed critical angle. The data follow
the theory very well, indicating that no dramatic
deviations between the q' and complete calcula-
tions are expected. The large uncertainties in the
measurements between 6 =0' and the critical angle
are due to the background signals.

B. Dependence on relaxation times

The position of the spin-wave peaks may depend
on the relaxation times v and T,. If T, is long
enough so that the CESR and first spin-wave peak
are well resolved, it will have no influence other
than determining the linewidth of, the CESR peak.
However, the value of v does influence the spin-
wave peak position as well as its width. In the
data analysis 7 is primarily determined by fitting
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the linewidth of the first spin wave. Figure 17
compares the experimentally implied 7' depen-
dence of the first spin-wave separation and line-
width at 6 =90, in sodium to the behavior of the
PW and WF theories as a function of 7 via a
graph of the separation versus linewidth of the
first spin wave. The size of the boxes through
which the upper curve is drawn indicate the ex-
perimental uncertainty in the measurements. Ex-
perimentally, progress along this curve was con-
trolled by sweeping temperature from 1.4 to 12 K.
Over this temperature range in sodium the ob-
served CESR linewidth at 6 = 90' is actually nar-
gozging' as T increases due to decrease of geo-
metrically induced spurious broadening. ' Con-
sequently it is not contributing any interference.

An important feature of the spin-wave behavior
is that at high ~7 the location of the spin wave be-
comes insensitive to the spin-wave linewidth. As
wr decreases, the spin-wave peak begins to shift.
The data for rubidium falls in the co~ region,
where the position is somewhat sensitive to ev.

The other two curves show the analogous re-
sults for calculations using both the PW and WF
formulations. The curves were made using B,

0.215, B-,= 0.005 (R-ef. 1) and adjusting L so
the WF calculation fits the data at the lowest tem-
perature. This procedure was used because the
data was taken in the Lucalox-filled cavities to
achieve highest ~7, and consequently the thickness
could not be directly measured. The &v needed
to fit the data at the lowest temperature was =60.
The PW curve was generated using )he same values
of the parameters as in the WF calculation, so
the difference between the curves show the dif-
ference between the q' and full theories.

Neither curve follows the experiment exactly
although the slope of the PW line more closely
approximates the slope of the data. The dis-
crepancies between the WF calculations and the
data do not make significant differences in the
analysis as long as +7. is greater than 15 or so.
This was the situation for the Na and K. If para-
meters are chosen to make the PW theory fit the
data at high &v, then there is no significant co7

dependence of the deduced Landau parameters
down to ~v = 12, although there is a slight dif-
ference between the PW and WF results. In Rb,
the situation is not so simple. As will be seen,
there is a significant ~T dependence to the results
and this will contribute some uncertainties to our
conclusions. These problems could result from
approximations in the Landau theory as applied to
spin waves (neglect of spin orbit coupling, as-
sumption of a spherical Fermi surface) or more
mundane difficulties in generating a sufficiently
accurate theoretical line-shape formula that in-

eludes all the complicated aspects of transmission
resonance.

TABLE V. Analysis of critical angle data.

Sample
Temperature

(K) Bl Bp

1.4

1.4

67.3

68.3

67.5

-0.1

0
+0.1

-0.1

0
+0.1

-0.1

0
+0.1

-0.2945
-0.2350
-0.1780
-0.2875
-0.2275
-0.1680
-0.2948 .

-0.2350
-0.1775

C. Landau parameters

0 ~"d

The analysis for the Landau parameters follows
the procedure described in Sec. IV A. Table IV
presents the results of calculations used to gen-
erate the Bp vs By relations determined by the
spin-wave data at b =90'. Results for the two
Lucalox cavity samples on which we have accurate
data are shown. These Bp vs B, relations, which
correspond to the extremes of the thickness mea-
surement uncertainties, are graphed on dashed
lines in Fig. 18. The values of the parameters
used in the analysis were k~ =0.695&10',' and
m*/m = 1.23.""The thicknesses are those from.
Table II. T was obtained by fitting the spin-wave
linewidth. The amplitude is normalized to the
CESR signal. As described previously, the phase
of the spectrometer was defined relative to that
of the CESR at 6 =O'. The data analysis was done
using the analogous procedure on the computer.
The phase shifts of Eq. (3) necess'ary to antisym-
metrize the CESR at 6 = 0' are shown in Table IV.
These small phase shifts imply very little inter-
ference between the CESR and first spin wave.

At this point it is apparent that there is a prob-
lem with these results. The Bp vs By relations
deduced from different samples with differing
values of 7 and I., etc. should be essentially the
same at a given A. . They should at least intersect
at the values of B, and B, that are correct for the
material. This does not happen. Figure 18 shows
that the B, vs B, relations deduced from sample 7
at the two temperatures (with different 7's and
T, 's) differ significantly. The 7 dependence of the
spin waves deviates more strongly from the theo-
ry in Rb than the previously discussed Na. The
higher temperature data of sample 7 corresponds
to about the same 7 (Table lv) as the 1.4-K data
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of sample 5. The Bo vs B, relations deduced from
these data are the same, even though the thick-
nesses are different. This indicates that the in-
direct thickness determining procedure is prob-
ably working well. In both of these samples, T

and T, are impurity limited at 1.4 K.
Table V gives the pairs of Bp and B, values

consistent with the measured critical angle in
both samples. The solid lines in Fig. 18 are plots
of these B, vs B, relations. The two lines rep-
resent the extremes of the uncertainties in the
measurement. The curves for both samples are
essentially the same and are not differentiated.

The large cross-hatched region in Fig. 18 in-
dicates the possible Bo and B~ values consistent
with our measurements. This large region is
partially due to the apparent v dependence of the
analysis. In Table VI we present the sensitivity
of the analysis for B, and B, to small changes in
the other parameters. The calculations are done

n=l

0 I

C3
C)
II

CL
CA
4J

—10—
'

CO

O

-20—

l0 gauss

n =2

o Bp=-O. I

0 B-„.= 0
~ By=+0. l

T = I O'K

n=0

FIG. 19. Fit of the WF theory to the second spin wave
as a. function of B2 in Rb-7. Bp Bf and v have been
chosen to fit the first spin-wave position and linewidth
when B2=0. T2 is determined from the CESR width.
A slight dependence of the first spin wave on B2 can be
seeri. The param'eters for the fit are Bp= —0.1832, B&
=0.085, L=0.1725 mm, v=9.19552 GHz, T2=0.676
&& 10 sec, 7'=2.39 ~ 10 sec.

Angle Variation (at constant B& ) Comments

aa,—= -0.0011/deg
Bp

Bo—= 0
M,

BBo

97

Making Q more negative
increases B lobe on low-
field side of CESR.

= +0 &i
Ea(m.g ))I,

Equation (7) shows only
m "/m enters.

= 0

TABLE VI. Effect of parameter variations on Bo, B, analysis. for B~ =0 and for a thickness approximating those
of the actual samples. For example, they can be
used to adjust the B, vs B, relations of Fig. 18
to get a feel for the effect of using a different
value for m*/m.

2. 82

Figure 19 shows a fit to the first and second
spin wave of sample 7 using WF theory. The am-
plitude has been normalized to the CESR, which
is not shown. T, was determined from the CESR
linewidth. Values of L„T, B„and B, used for
this figure are those from the one corner of the error
parallelogram formed by the 1.4' data of sample 7
in Fig. 18. The general fit is excellent. The re-

( aa,
(8 (I"/m)p k

a L=.1675mm

0 L=. 1725mm

o &Bo
kF = +0.34

kF /k Bk

-0.1— t3

()

I

0 +0.1 ~,
0 S aBO

M/S 3S

aB, ( 2 X 10 3/deg
Bp

S is the separation in
gauss of the first spin
wave from CESR and
is negative.

+ 0.05—
FIG. 20. Relation between B2 and B& consistent with

the second spin wave in Rb-7. The choice of a Bp and
B~ from Fig. 18 implies the B2 for that B~ given by
this figure.
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TABLE VII. Effect of parameter variations on first and

second spin-wave separation at 6 = 90'.

Variation (at constant B,) Comments

BS = -120
aB,

S(BO, B, , . . .) is the separation
in gauss of the first spin wave
from CESR and is negative.

aF
aB,

= —1.5

= -400
BBO

G(BO Bl, ~ . .) is the separation

in gauss of the second spin wave
from CESR and is negative.

BG = -25
BB&

( aG

~(~( '/ )p~k

suits are shown for three values of B„and a
slight dependence on B, is evident. Figure 20
shows the values of B, that fit the second spin-
wave position for Bo, B„v, and L values from all,

four corners of the error parallelogram of the
lowest temperature data from sample 7.

The error bars in Fig. 20 have two compo-
nents, one due to the uncertainty in the measure-
ments of the second spin-wave position and the
relative insensitivity of the fit to B„and the other
due to the uncertainty in measurements of the
first spin-wave position (approximately 1%}. This
1% uncertainty is not a dominant error source for
the B, and B, measurements, but since the second
spin wave is much more sensitive to Bo than to
B, (Table VII}, it results in a significant contribu-
tion to the error in the dete'rmination of B,. Table
VII shows the sensitivities of the positions of the
first and second spin waves to Bo and B, (at con-
stant B,}as well as the effect of changing m*/m
on the separation of the second spin wave.

From Fig. 20 it would appear that B, is most
probably negative. If it is taken tloseto zero, B„
must be large and positive. Changing m*/m to
1.20 and following this consistently through the
analysis for Bo and B„and then B„would result
in B, values about 0.015 more positive. If the
sample thickness is reduced to compensate for the
possible contraction between 77 and 1.4 K, the
probable values of B, move more negative. In

sodium and potassium the possible values for B,
were symmetric around zero.

In conclusion, the values of the Landau para-
meters consistent with the observed spin waves
in Rb are Bp= 0'21+0 05 By=+0 03+0 08, and

B,=-0.09+0.1. The errors are not independent,

Bo

-0.2—

-O. I—

—O. I

I

0
Bi

I

. +O. l

FIG. 21. Allowed regions of the 80 vs Bq plane con-
sistent with the spin waves in the three alkali metals
in which precision spin-wave measurements have been
made. The region quoted for Rb is the shaded area
shown in Fig. 18.

as shown in Figs. 18 and 20. Additionally, there
may be systematic errors in these results. We
have discussed at length three of the major pos-
sible sources: the indirect sample, thickness
determinations, the use of the PW rather than WF
analysis at h„and the apparent v dependence of
the b, = 90' analysis.

VI. DISCUSSION

The only other experimental Landau-parameter
determinations in Rb with which we are familiar
is the dHvA measurement of Knecht, Randles, and
Shoenbergs and, more recently, that by Knecht.
Knecht determined B,= -0.295 + 0.012. Considering
the complexity of our measurements, we regard
this as quite satisfactory agreement. In compari-
son, we note that although the dHvA and spin-wave
results virtually coincide for K, the difference
for Na is comparable to that for Rb.

The dHvA and spin wave measurements are com-
plementary. A more accurate measurement of B,
from dHvA data, or some other source, can re-
sult in a more accurate value of B, using the
relation in Fig. 18, as the spin waves determine
the relation between B, and B, more accurately
than they determine either of them individually.
We believe that given the uncertainties in our
work, as previously discussed, it is best to use
the BO-B, relation as determined from the critical-
angle data. Following such a selection for a value
of B„abetter value of B, can be obtained via
Fig. 20.

If one regards the correct value of Bo to be
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closer to the dHvA result, we would find from
Fig. 18 that B,=-0.1. From Fig. 20 we see this
would imply a large (negative} value for B,. How

ever, since the B,-B, relation is sensitive to the
details of the line-shape fitting, and as the dHvA
value is outside of that used to determine Fig. 20,
this conclusion must be regarded with appropriate
caution. On the other hand, the value of B„being
deduced from the critical-angle relationship, can
be regarded with more confidence.

In Fig. 21 we present the values of Bo and B,
consistent with the spin-wave observations in the
three alkali metals for which precision measure-
ments have been made. For Na and K the results
agree well wjth theoretical calculations of Rice."
For Rb, in particular, we can compare with the
recent calcuiatiop of the electronic susceptibility
by MacDonald and Vosko. Using m*/m =1.23
+ 0.02, and our. Bo= -0.21 + 0.05, we obtain for the
ratio of the true susceptibility compared to the
free-electron value y/y, = (m*/m }/(1+B,) = 1.56
+0.1. Depending upon the details of the calcula-
tional methods, MacDonald and Vosko obtain
values ranging from 1.73 to 1.98." We are not
qualified to comment on any significance to this
difference, but do note that their corresponding
results for Na and K agree very well with those
deduced from the spin-wave values. Perhaps
further theoretical efforts will resolve the matter.

The obvious way to improve the spin-wave mea-
surements in the future would be to change the
sample fabrication techniques. It would be neces-
sary to work with strain-free single-crystal
samples. Such samples could perhaps be made
using an ion mill to machine flat parallel sur-
faces on single crystals clampled in holders at
the edges. The samples could be thinned around
the periphery to relieve the strains induced on
cooling. A noneontacting method of thickness
measurement would have to be used. The mechan-
ical and chemical properties of the alkalis would
make fabrication of these samples very difficult,
but possible, should the effort be worthwhile.

We have observed spin waves in cesium similar
in character to those in the other alkalis, but the
apparent g value of the CESR shifts from run to
run, probably due to strain in the samples. Thus
Cs appears to be more strain sensitive than Rb
(the strain in Rb seems to manifest itself most
obviously in broadened linewidths for the CESR
and spin waves). This coupled with the larger
deviations from isotropy makes it not worthwhile
to attempt precision spin-wave measurements in
Cs until one is committed to making strain-free
single-crystal samples. It would be interesting
to study the pressure dependence of the signals in
Cs as part of a complete program to measure its

spin properties. Because of its less spherical
Fermi surface and greater spin-orbit coupling, it
is possible that the spin-wave behavior in Cs
might exhibit significant deviations from the PW
and WF theories.
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APPENDIX

The essential features of the spin-wave collec-
tive mode can be seen in the following one-dimen-
sional classical model. It corresponds to the 6
=0' three-dimensional case where the spin-wave
mode propagates parallel to the applied magnetic
field and the electrons travel freely in spiral
orbits along the field. The model consists of
classical particles distributed uniformly along the
z axis, half moving with velocity v and half with
velocity -v. They correspond to the electrons at
the Fermi surface of a real metal. Each particle
contains a bar magnet of moment p. fixed parallel
to its axis of rotation. The ratio of the magnetic
moment to angular momentum is y. With no inter-
actions between the moments, the system is as-
sumed to have a static susceptibility X,. To com-
plete th6 model we introduce a velocity-dependent
short-range interaction between pairs of particles
that has the form of the magnetic part of the Landau
interaction function,

V) V~E])= Z —Zy + 2 g Z ~ —Z) p]' p,

(A1)

The first term corresponds to the Po (cose) term
and the second to the P, (cosa) term in Eq. (2}.
When the wavelengths of the excitations under
consideration are much greater than the spacing
between the particles, we may define two macro-
scopic magnetizations M, (z) and M (z). I'or the
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moment we will suppress the time dependence.
M, is the magnetization due to those moments
moving in the +z direction, and M is due to those
moving the other way. In terms of the magnetiza-
tion distribution, the effect of the interactions can
be described by a molecular field approximation.
If the wave length of any excitation is much longer
than the range of the forces described by f and g,
the effective field felt by the two magnetization
distributions in the presence of an externally ap-
plied field H0 is

a, +(~)=H, [M, (z)+M (~)]B,

T [M+(z}—M (z)]Bi,
where

Bo = z —z' dz'

95M 8$„
Bt y ' azsly, s5M=yS„xH [1+(B,—B )g]- v'

(A5)

After Fourier transforming, this system of equa-
tions has a solution if

ii' =
(ohio

—oo)4& o( I +P) oo]l—i ',
where p =(B,—Bo)y Thi.s dispersion relation has
two roots. One starts near co = u„and in this
region

M is the total magnetizations and X„ is the mag-
netization current. The equations can be line-
arized by writing M, = & M~+ 5M, =

& XHO+ 5M, and

assuming that the deviations for equilibrium, 6M„
are small. 5M, to lowest order are in the x-y
plane only. The equations become

and

I3, = g z -z' dz'.
2= GOO —4l

(~'/~o)(1+ Boxo)/(Bi —Bo)XO

z -z' 'dz'

ji = g z —z z —z dz

They will be left out in all that follows.
If we define M XHD . /OH g the static suscep-

tibility is given by y =Xo/(I+Boyo). Thus it is
evident that in this model Boxo (and similarly
Bixo) correspond to B, and B, in a real electron
system.

In terms of the effective field, the equations of
motion for the two magnetization distributions are

8 M, BM+' =yM, xH~+ —v

(AS)
8M

Bt
=yM xH,& +v

Substituting for H,z, and H~, adding and sub-
tracting these two equations, and defining M,
+M =M, and v(M, —M }=X„,we get

BM - - sf„yMx Ho8t Bz (A4)

8$„ 2 8M
et N 0=y iixHo —2vy(BO —B)M xM —v0 1 + gz

H, will be taken in the z direction.
If the wavelength of a disturbance is on the order

of the range of the interactions, additional terms
appear which in the v- 0 limit lead to the spin
waves found in insulators. To next order in this
model they depend on the parameters

This has the same dependence on v, uo and
(1+B,}/(1+B,) as the PW dispersion relation for
a =0'. [See Eq. (S}.] PW contains some other
factors of 1+B, and 1+B, due to modifications of
the orbital motion of the electrons that have not
been included in this model. It is clear that this
spin wave is analogous to that in the conduction
electrons of a real metal.

To order q' the other branch of this dispersion
relation also exists in the spin-wave theory for
real metals (see Ref. 5 for details). It is char-
acterized by small M and large S„so in practice
it is not possible to couple to it.

For the normal spin-wave branch (A7), the quan-
tities 5M, and 5M are always parallel to each
other at each point. Their relative magnitudes
depend on the value of q. This situation is'shown
in Fig 22(a). N. ote that because the magnitudes
of 5M, and 6M are different (to first order the z
components are equal) the full vectors M, and M
are not parallel and can exert a torque propor-
tional to M, xM on each other because of the in-
teractions.

Because the total magnetization is rotating with
angular frequency e in a reference frame station-
ary with respect to the z axis, the transvex'se com-
ponents of the individual moments, 6p., and 5p. ,
must be rotating at frequencies Doppler shifted
from co by +qv so they can contribute properly to
the macroscopic magnetization. This is repre-
sented in Fig. 22(b).

The way these individual motions contribute to
a coherent spin wave is shown in Fig. 23. Part
(a) shows a snapshot of the transverse component
of the magnetization at a time t. The tips of the
magnetization vectors form a helix as a function of
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FIG. 22. (a) Magnetization vectors M and M at
some point on the s axis. To first order, the s com-
ponents of M+ and M are equal, but the x-y com-
ponents&M+ and. 6M are not. &M and 6M are parallel
and are rotating at angular frequency'. The individual
moments p, contributing to M+ and M at this particular
location change continuous ly. (b) x-y components ~ p, + and

6 p, of the individual moments p+ and p . Again, to
lowest order the moments are aligned with the z axis.
61Lt,, and 6p, are moving in opposite directions and

rotating at different angular frequencies, shifted by
+qv from . The two 6p shown are meant to be physi-
cally at the same location and thus they are drawn
parallel. They have been separated for clarity. i5 M
at the location of these moments is parallel to them.

z, as shown by the solid line. The transverse
components of the individual moments are shown

at three points. The short thick arrows are
moving with velocity +v, while the long thin ar-
rows are moving with -v. Note that at any z,
5p, , and 6p. are parallel, in accord with the dis-
cussion above. As time proceeds the three pairs
of arrows shown separate. Each arrow rotates
as it moves so it is always parallel to the arrow
moving in the opposite direction with which it
momentarily coincides. To see this in detail look
at the two solid-head arrows in part (a) of the
figure. They are moving in opposite directions so
after some time At their z coordinates will coin-
cide. Part (b) shows only these two arrows a time
At/2 after (a). Both arrows have rotated different
amounts since they are precessing at different

FIG. 23. (a) Snapshot of the spatial distribution of
magnetization in a spin wave. The helical line shows the
location of the tips of the vector 6 M as a function of z.
Every quarter wavelength the short arrows i5 p+ and
6 p are shown. Two arrows have solid heads and
their motion wiQ be followed through parts (b) and (c)
of the figure. (b) Two solid head arrows at time 4t/2
after the snapshot in (a). All others have been omitted
for clarity. Their separation is half that in (a), and
because of the different angular frequencies, they have
rotated different amounts. (c) Two solid head arrows
at the time when their spatial locations coincide. Note
that they are parallel. All the arrows that have not been
shown are undergoing this same motion. Again the heli-
cal line shows the locations of the tips of the vectors &M

as a function of g

rates (&u, = e v qv). For the figure qv/v = &. Part
(c) shows that they are parallel when their spatial
locations coincide. Also shown is the full outline
of the transverse magnetization at this time. This
spin wave is moving to positive z with phase velo-
city greater than the particle velocity u.

It is possible to derive (A6) using only the solu-
tion of the Bloch equations for a single spin in a
static magnetic field. This helps bring out the
essential physics involved in a spin wave. In the
limit of infinite relaxation time, the Bloch equa-
tions say that the response 5p, of a moment to a
driving field H, at frequency w is:

6V = re.H, /(~, —~) . (A8)

p o is the z component of the m oment and &, is the
free precession frequency of the moment in the
effective static field. 6p, and H, are parallel and
are in the x-y plane.

In the present case, H, for the (+) moving spins
is due to the x-y components of M, and con-
versely for the negatively moving particles. The
driving frequency felt by the plus moving spins is
just the rotation frequency of the negative moving
spins Doppler shifted by 2qv because of their
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relative motion. The sign of the Doppler shift
changes when considering the negative moving
particles. Equation (A2} shows that to first order,
a moment p,, feels an effective z component of
the magnetic field equal to Ho[1 + (B,—B,}x/2] and.
the appropriate H, =(B,—B,)6M R.equiring that
the situation is self-consistent, i.e., (A8) is
satisfied simultaneously for both sets of spins,
leads to the dispersion relation (A6). Thus the
fundamental picture of a spin wave shows that one
group of spins is driven by the other, and it re-
turns the favor; The situation is not totally sym-
metric (unless q =0) since one distribution is being
driven closer to its resonance frequency than the
other (depending on the sign of q), and thus its
response per unit driving field is greater. In the
self-consistent situation, its greater response is
sufficient to excite enough 5M in the other distri-
bution to keep itself going.

Damping of the spin wave can come from two

sources. First, spin relaxation will cause the
spin wave to die out. However, it is also clear
from Fig. 23 that the internal motion in the spin
wave is very well ordered and anything that dis-
rupts this order will contribute to the damping.
Importantly, momentum scattering will keep a
particle from traveling properly and taking its
correct place in the wave, thus disrupting the
order. The graphs of Fig. 3 demonstrate this in
a real case. Only in the region near Re(q} = 0 is
the damping [proportional to Im(q}] due to spin
relaxation dominant. Recall that the dotted line
asymptotes show the dispersion relation in the
limit of infinite spin relaxation time. When Re(q)
is small, an electron can go anywhere and still
have the proper phase to contribute to the collec-
tive motion. As Re(q} increases, momentum scat-
tering is more effective in dephasing the electron
magnetization and quickly becomes the dominant
damping mechanism.
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