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The equation-of-motion method is applied to a random binary alloy represented by a simple tight-binding
Hamiltonian in the split-band limit. The results suggest that Anderson localization occurs well above the
percolation threshold, which was not predicted by previous analytic studies.

I. INTRODUCTION

In this paper we examine the problem of Ander-
son localization in a model binary-alloy system.
The simplest Hamiltonian which may be applied to
this problem is that of Anderson,1 with diagonal el-
ements taking two values, +36, at randomly distri-
buted A and B sites. We shall be dealing only with
the limit of infinite 5, with attention focused on the
A subband only. This will consist of states con-
fined to the A sites and the Hamiltonian therefore
takes the simple form

Hy,= Z

A atoms only
i,j nearest
neighbors

V]ij|. (1.1)

The B atoms are thus formally removed from
the problem. There is a critical concentration x,
of A atoms, below which they form only finite clus-
ters. This is the well-known “percolation thresh-
old.”? For x< x, all states of the A subband are
(trivially) localized. Above x,, there is an infi-
nitely connected network of A atoras but this still
may not sustain extended eigenstates. Hence a
second critical concentration, x/, is expected, at
which extended states first appear. The available
estimates®* of x; fall below x,, which is clearly
unacceptable.

We have applied the equation-of-motion method,
as developed by Weaire and Williams,® to this
problem, and have arrived at estimates of x/ which
fall well above the percolation threshold.

Before presenting the calculations we shall give
a brief discussion of the special type of localized
states described by Kirkpatrick and Eggarter?®
These are peculiar to the case considered here
and complicate, at least in principle, the interpre-
tation of the results.

II. KIRKPATRICK-EGGARTER STATES
“AND THE PROBLEM OF DEGENERACY
In addition to the states which are confined to a

finite cluster and those which are (exponentially)
localized by disorder on an infinite cluster, one
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can have sharply localized states of the type illus-
trated in Fig. 1, whenever there are favorable con-
figurations of B sites surrounding an A cluster.
These particular examples are states at E=0 and
+V, but it is easy to see that such states can oc-
cur anywherve within the band (see also Hede and
Tong"). It seems therefore that one must have lo-
calized and extended states coexisting in the same
range of energy in this system, which is not
thought to be possible for more general Hamilton-
ians.

These “hopscotch” states can be degenerate,
which is not usually possible in a disordered sys-
tem. In the adaptation of the equation-of-motion
method to the localization problem,’ it was as-
sumed that there was no such degeneracy, so it is
necessary to consider how it affects the results.

It was previously shown® ® that band averages of
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FIG. 1. Sketches of Kirkpatrick-Eggarter~type localized
states in two dimensions. (a) A possible local configura-
tion of A atoms is shown which is not isolated but sup-
ports a localized eigenstate, whose wave function is
shown in (b). In (c) and (d) wave functions of larger lo-
calized eigenstates are shown.

6635 © 1978 The American Physical Society



6636 VIPIN SRIVASTAVA

the inverse participation number (the mean fourth
power of the modulus of a wave function) could be
calculated in terms of time averages of a randomly
specified wave function. Specifically

o=3 T @ -2, (2.1)

gives the average inverse participation number in
terms of the average squared probabilities associ-
ated with sites i. Angular brackets, ), denote
the time averaging.

It should first be noted that for a degenerate set
of states the average inverse participation number
is not invariant with respect to the choice of basis
states for the set. In those cases, such as that of
isolated atoms (giving degenerate states at E =0)
for which nonoverlapping basis states can be cho-
sen, the method gives the average inverse
participation nuiaber of this particular set. Degen-
erate states not satisfying this condition will be
comparatively rare, so they are perhaps not wor-
thy of a detailed analysis. In fact, it can be shown
that in general the method yields

C,®;+2¢,0,+3c,@5+.. ., (2.2)

where there is a fraction ¢, of nondegenerate
states and @, is their average inverse participa-
tion number, a fraction c, of doubly degenerate
states, etc. Here “average” includes the average

AND D. WEAIRE 18

with respect to choice of basis states.

This suffices to show all that is really neces-
sary for the interpretation of results, namely that
localization is diagnosed by this method as the de-
parture of ® from zero [or, more precisely, from

o@a/m].
II. STATES LOCALIZED ON ONE OR TWO ATOMS

We are working in the extreme split band limit
(6= °°) and x is the concentration of A atoms,
hence x is also the total number of states per
atom in the A subband. In the case of a square lat-
tice xy* is the contribution of isolated A atoms to
this total, where y=1 - x. It follows that

(Plzy‘l. (3.1)

States localized on two atoms are of two types,
namely, those associated with isolated pairs of A
atoms and the Kirkpatrick-Eggarter states. Fol-
lowing Kirkpatrick and Eggarter we obtain the con-
tributions to @ from all such two-site states,

@, = xy*(1 = 9?) + x%y°+ x95. (3.2)
2

Figure 2 shows these contributions as a function of
x in the region of interest.

The single-site states can all be separated in the
sense of Sec. II and so will be correctly included in
our calculation. The same holds for the states on
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FIG. 3. The inverse participation number ¢ averaged over the whole band of eigenenergies, vs x, the concentration
of A atoms, for a square lattice of cell sizes 25 %27, 27 x30, and 43 x35. The lighter curve in (c) is the estimate of
the contribution of singlets and doublets to @ as given in Fig. 2. The hatched area is indicative of the contribution to @

from the states localized by disorder.

isolated pairs of sites that are degenerate at E
=+V. Some of the two-site “hopscotch” states will
not satisfy this condition but the proportion should
be small. Degenerate sets arising from larger
clusters or hopscotch configurations are relatively
rare. Some indication of this is given by the points
shown in Fig. 2 which are numerically calculated
from

e=n"t, (3.3)

where # is the average number of sites per clus-
ter, for randomly generated samples of the sys-
tem. This formula is obtained if we assume that
each cluster of » sites supports = states uniformly
distributed over it. This does not take account of
the hopscotch states yet the agreement of the
points with the solid line (®, + ®,) is good.

IV. RESULTS OF THE EQUATION-
OF-MOTION METHOD

Figure 3 shows the variation of ® [Eq.(2.1)] with
concentration x of A atoms in samples of a square
lattice of size 25 x 27, 27 x 30, and 43 x 35 with
periodic boundary conditions. The dependence of
the results on cell size was not systematic enough
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FIG. 4. Partofacomputer generated random array with
x=0.66. The A sites are shown by dots and the B sites
are omitted. The thick lines denote the nearest neigh-
bor bonding among the sites in a cluster. The clusters
are weakly bonded with each other as indicated by th
thin lines. .
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to enable us to extrapolate usefully to N=c, In
interpreting the results we therefore focus on the
largest system. It is seen that the calculated val-
ues of @ significantly exceed the estimates given
in the previous section, based on single-site and
two-site states. This is especially true above the
percolation threshold x,=0.59.2 We interpret this
as indicating that extended states do not appear un-
til x/ =~0.73, well above the percolation threshold.
How is this to be understood? If we take x=0.66,
which lies in the range in question, the distribu-
tion of A sites is typically as in Fig. 4. Thus, al-
though there is an infinite cluster, it is easily dis-
sected into fairly compact (but irregular) clusters
of about 20 sites which are very weakly connected.
In the case shown, the clusters interact with about
four other clusters, and these interactions are
via only one nearest-neighbor interactions, or oc-
casionally two. If we consider the coupling of ei-
genstates of individual clusters, assuming only
those closest in energy need be included (in the
style of Thouless®) we arrive at the following crude
estimate of the strength of disorder in this trans-
formed version of the problem.

zgzzz

o2 (4.1)

R

where % is the width of distribution of energy lev-
els which are coupled, Z is the number of nearest
neighbors and 7 is the coupling strength. Previous
investigations.® have shown that, in two dimen-
sions, the critical value for Anderson transition is
about 1.5. The estimate (4.1) exceeds this value,
hence we may conclude that states are localized.
The size of the constituent clusters sets the basic
scale of this localization, which is consistent with
our results.

The above argument is quantitatively crude but
provides, we believe, a useful picture of Anderson
localization above the percolation threshold.

We have also performed calculations for a 3d

cubic lattice with cell size 9 X 10 x 11, which gives
rather similar but somewhat noisier results. We
would deduce x~0.47, in comparison with the per-
colation threshold?® x,=0.31.

We have examined the calculations in detail, to
gain a better understanding of the statistical noise
which is evident in Fig. 3. This appears to be as-
sociated with the sudden appearance or disappear-
ance of small isolated clusters at particular values
of x. It could, of course, be removed by a numeri-
cal average over different computer generated
samples, but we have not yet done this.

V. CONCLUSION

Because of the average which is involved in the
definition of the quantity we have calculated, our
conclusion must remain tentative since it is possi-
ble that a small proportion of extended states ap-
pears at a lower value of x than that which we
proposed. More detailed calculations will be nec-
essary in order to rule this out.

Finally we comment on the previous analytical
results of Economou and co-workers.** Using the
so-called F(E) formula they found x.=0.17 and
0.12, respectively, for square and simple cubic
lattices.* Later a modified formula® gave x/=0.42
and 0.25. The approximations involved in the use
of coherent-potential-approximation self-energy*
and coherent-potential-approximation Green’s
function® may be the reasons for such low values
of x/. The coherent-potential approximation is
well known to break down in the split band limit.
Errors arising from the use of the coherent-poten-
tial-approximation Green’s function in the localiza-
tion problem were shown by Srivastava et al.'°
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