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Phonon focusing and phonon conduction in orthorhombic and tetragonal crystals
in the boundary-scattering regime. II
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Striking differences (up to a factor of 100) are predicted in the intensity of phonons propagating
ballistically along difFerent directions in certain orthorhombic and tetragonal crystals. The predicted results
arise from phonon focusing due to elastic anisotropy, due to the fact that in elastically anisotropic crystals
the phonon phase and group velocities are, in general, not collinear. Conditions for the existence of cuspidal
edges in group-velocity surfaces are given in symmetry planes along all directions where the phase and group
velocities are collinear. Approximate amplification factors have been calculated for phonons of each
polarization along symmetry-plane collinear axes. An analytic expression is also given for the nonsymmetry
collinear direction for the longitudinal and one of the transverse modes. Calculations have been performed for
a number of crystals and demonstrate that the phonon-focusing property can cause difFerences in the phonon
transport in the boundary-scattering regime by more than 80%.

I. INTRODUCTION

Thermal energy in dielectric solids is carried
by phonons. At sufficiently low temperatures the
phonons propagate ballistically so that in the ab-
sence of defect or impurity scattering the mean
free path becomes limited by the linear dimensions
of the sample. ' A theory. of the thermal conductiv-
ity applicable to this temperature range was first
developed by Casimir. ' Corrections to Casimir's
theory have been derived for samples of finite
length, ' for samples in which a fraction of the pho-
non are specularly reflected from the end sur-
faces, 4 and for samples in which phonon focusing
is important. "

For superconducting metals in the temperature
range T/T, «1, there are negligible normal-state
electrons to carry heat' so that thermal transport
is dominated by phonon-scattering processes. At
the lowest temperatures where the electronic
scattering of phonons can be insignificant, the
phonon mean free path becomes limited by scatter-
ing from sample boundaries and crystal imperfec-
tions. For a sufficiently defect-free superconduc-
tor, i.e., Aph -f, the thermal conductivity at T/T,
«1 should be determined by the same factors as
in a dielectric crystal. This is indicated in the
most recent measurements on niolium' where at
lowest temperatures Aph -l, and the thermal con-
ductivity was proportional to T', characteristic of
the Casimir result.

Recent heat-pulse measurements'" have shown
striking differences in the intensity of phonons
propagating ballistically in an elastically anisotrop-
ic crystal. These results were shown to arise
from phonon focusing due to the fact that the phase
and group velocities are not collinear except along

certain axes. It is only along these axes that the
energy flow or ray vector is in the same direction
as the wave vector. Because of elastic anisotropy
the angular deviation between the phase and group
velocities varies with the direction of the wave
vector. Phonon focusing occurs when the direction
of the group velocity varies more slowly than in
an elastically isotropic solid. Furthermore, for
certain ratios between the elastic constants, two
or more wave vectors can give rise to the same
group-velocity direction and the group-velocity
surface is said to have cuspidal edges. Conditions
for cuspidal edges have been derived by Mus-
grave, "Naris, "and McCurdy. " Maris" has
pointed out that the presence of cusps increases
the phonon intensity, particularly along the edges
where the direction of the group velocity varies
slowly with wave vector. As a result the energy
flow is enhanced about cuspidal or highly focused
directions and significantly decreased along other
directions.

Subsequent measurements of the thermal conduc-
tivity of silicon and calcium fluoride in the bound-
ary- scattering regime demonstrated anisotropies
of up to 50% for silicon and 40/0 for calcium fluo-
ride." The predictions of Casimir's theory,
generalized to allow for phonon focusing, gave
quantitative agreement with experimental results.
Similar anisotropies in the thermal conductivity
have been predicted for sufficiently defect-free,
superconducting lead and niobium at T/T, «1."

Phonon-focusing effects have also been predicted
in elastically anisotropic hexagonal crystals. "
Subsequent heat-pulse measurements in solid 4He

by Narayanamurti and Dynes" indicated a phonon
intensity approximately 45' to the c axis, consis-
tent with predictions of a cuspidal edge. " Calcu-
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lations of thermal conductivity also show that
effects of focusing can actually reverse the aniso-
tropy one obtains by neglecting the angular devia-
tion between the phase and group velocities. "'"

In this paper phonon-focusing effects are studied
in orthorhombic and tetragonal crystals. Results
derived for the hexagonal lattice" (hereafter re-
ferred as paper I) are generalized to include all
the symmetry planes of the orthorhombic, tetra-
gonal, and cubic lattices. Conditions for phonon
focusing, and for the existence of cuspidal edges
about collinear axes, are given for wave vectors
in symmetry planes. Approximate phonon ampli-
fication factors are calculated for phonons of each
polarlzatlon along high-symmetry collinear axes.
Calculations of phonon focusing are given for a
number of crystals, and calculations of thermal
conductivity are given for one orthorhombic, one
tetragonal, and one cubic crystal. Strong phonon
focusing is predicted to have a dramatic effect
upon the phonon conductivity. For sufficiently de-
fect-free solids, this should be observable in di-
electrics at temperatures which are a small frac-
tion of the Debye temperature, but for supercon-

ductors at temperatures which are a small fraction
of the superconducting transition temperature.

II. THEORY

A. Calculation of phonon phase and group velocities

s'„» =-,'p((a, sin'8»+a, cos'8, ) .

+ J[(a, sin'8„-a, cos'8»)'

+(2a, sin 8, cos 8„)']' 'J ] . (2)

The displacement vector u, giving the direction of
the deformation for wave vecters in symmetry
planes, is given by'0

The solutions for the phonon phase velocities in
the symmetry planes of the orthorhombic, tetra-
gonal, cubic, and hexagonal elastic solids are well
known le-ls For any symmetry plane Of these lat
tices the phonon phase velocities can be expressed
in terms of generalized elastic constants as"

s', =(a, sin'8»+a, cos'8»)/p

u, =(ex n)/[1-(e ~ n)']'~',

a'sin'8 +(Oa, -a )cos'S )[(a iiin'S -'a cos'S )*n(2ai, sinoncoso)')'O)
)

'

7 cos y 2+ co'st,

In these equations, s is the phase velocity, p is
the density, the a; are second-order elastic con-
stants or linear combinations of these constants,
n is a unit vector in the direction of the wave vec-
tor, and e is a unit vector parallel to the g axis.
The angle 8~ gives the angular direction of the
wave vector in a symmetry plane measured with
respect to the g axis. For any symmetry plane
containing the ~ axis, the q axis is chosen parallel
to the [001] direction, but for the (001) symmetry
plane the )) axis is chosen parallel to the [100]
direction. Expressions for the generalized con-
stents a; for each of the symmetry planes of the
orthorhombic, tetragonal, and cubic lattices are
given in Table I." Expressions for the hexagonal
lattice for symmetry planes containing the & axis
are also included in this table. The subscripts
0, 1, 2 on the phase veLocity and the disp1acement
vector refer to the different modes of propagation
which will be designated as the fast, transverse
T„and slow modes, respectively. " The sign pre-
ceding the radical in Eq. (2) is positive for the
fast mode and negative for the slow mode, but is
negative for the fast mode and positive for the
slow mode in Eq. (4). Note that 2ps' =a, + ~a, ~

for
the fast mode, but a, —~a, J for the slow mode when

8»=0, and that 2ps' =a, + la, I for the fast mode,
but a, —~a, ~

for the slow mode when 8» =90' so that
the fast mode is always of higher velocity than the
slow mode. P schematic diagram of ps2 for each
of the different modes in an orthorhombic lattice
is shown in Fig. 1. The ps2 surfaces for a tetra-
gonal crystal are shown in Fig. 2.

Conditions for elastic stability place restrictions
on the constants a;. In order for a solid to be
elastically stable the determinant JC„s~ of the elas-
tic matrix must be positive. This in turn requires
that the sequential principal minors be positive. "
Furthermore, since an identical permutation of
the rows and columns of the determinant ~C s~ can
bring any principal minor to the top left corner,
there are three equivalent sets of conditions for
elastic stability in the orthorhombic lattice.
These are given by inequalities (6). For the ortho-
hombic lattice

C„&0, C„&0, C„&0,
()

& 0, C„&0, Ce&0,

ll 22 12 O ll 33 13 22 33 23 P

(6)
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33( ll 12 12) 23 ll 13 22 12 13 23 '

and for the cubic lattice as

C„&0, C4, &0
and

(14)

C33(Cll+ C») & 2C13 ~

gnce C»& ~C»( it follows that C»& (C»+C»)/2& 0
so that inequalities (9) and (10) can be written as

C„C„&C„(C„+C„)/2 & C,', .
In a similar way, conditions for elastic stability

in the hexagonal lattice can be expressed as

C„o 0, C4~ 0 (12)

C„C„&C„(C„+C„)/2 C,', ,

lm the tetragonal lattice there are only two equiv-
alent sets of conditions for stability. These are
inequalities (9). For the tetragonal lattice

33 0 44 y 66 (6)

C„& iC» [ or C„C„&C,', , (9)

C,', & C„(C„+C„)/2 & C,', .
In hexagonal crystals C« =(C» —C»)/2 so that in-
equality (12) can be written as

11 33 33( ll 66) 13 (16)

which requires C»& C«, whereas Cy]+ C66 in one
known tetragonal crystal, paratellurite.

The above conditions require , & 0, a, & 0, a,
& 0, and a4& 0. Since it is physically more reason-
able, &, will be chosen positive. " Constants a, and
a, are greater than zero for all known materials
with one recently discovered exception, paratell-
urite, a tetragonal piezoelectric crystal. "" In
this material at room temperature C«& C», so
that a3 and a, are negative in the (001) symmetry
plane. As a result the fast mode is quasitrans-
verse and the slow mode quasilongitudinal in the
(001) plane near the

1 100] and [010] directions.
Furthermore, since C«& C», a, & (a3+a3)/2 for
the (010) or (100) symmetry planes so that the

TABLE I. Values of the generalized elastic constants in symmetry planes of orthorhombic,
tetragonal, hexagonal, and cubic crystals.

(010)
Orthorhombic Symmetry Planes

(1oo) (oo1)

a~

a2

a4
a&

ae

av

Cee

C44

C„+C„
Css+ C„
Cgg —C55

Css —C55

C~s+ C55

Cee

Css
C22+ C44

Css+ C44

C22 —C44

Css- C44

C~s+ C44

C44

Css
C&2+ Cse
Cti+ Cee

C22 —Cee
C~~- Cse

C&&+ Cee

(010) or {1OO)

Tetr agonal Symmetry Planes
(11o) (001)

a~

ag

as
a4
a&

ae
a7

Cse

C44

Ci~+ C44

Css+ C44

C~~ —C44

Css- C44

C&s+ C44

—,(C«- C„)
C44

—,(C«+ C„)+C,e+ C44

Css+ C44
1
2(C(~+ C(2)+ Cse- C44

Css - C44

Cps+ C44

C44

C44

Cii+ Ces
Ci~+ Cse

C~~ —Cse

Cgg —Cee

C&2+ Ce

Hexagonal Plane containing
[001) axis

Cubic Symmetry Planes

a~

a2

as
a4
ag

ae
av

Cse-
C44

C((+ C44

Css+ C44

Cii - C44

Cis+ C44

C44

C44
C11+ C44

Ci~+ C44

Cgg —C44

C~~ —C44

C(2+ C44

1
2 (C« —C&2)

C44
1
2 (Cgg+ Cg2)+ 2C44

Cgf + C44
1
—,(C&&+ C1,)

Ci~ —C44

C&~+ C44
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(0

LOOI3

C33

0)

quasitransverse near the q axis, but if a, & 0 the
fast mode is quasitransverse and the slow mode
quasilongitudinal near this axis.

In symmetry planes the components of group
velocity parallel and perpendicular to the g axis,
respectively, can be determined using the rela-
tions"

50103
22

8s. 8s
'(cos8~) 8(sin8~)

'

The direction (9„of the group velocity can then be
determined by the relation

hl003

FIG. 1. ps~ surfaces of orthoxhombic gallium in
symmetry planes. In this material a 5 and a6 & 0 for all
three symmetry planes. Note particularly the interest-
ing character of the phase velocity surface, for exam-
ple, where ps equals C&& inthe [001] direction. This
surface is T& in the (100) plane but T2 in the (010) plane.

tan8„= ~~/'~~.

For the T, mode this expression becomes

tan8„=(a, /a, ) tan 8,

or

cot 8„=(a,/a, }cot 8„,

and for the fast and slow modes

tan8„=(u/v) tan8',

(18)

(20)

yhase velocity of the transverse T, mode exceeds
the phase velocity of the fast mode along the [100]
m4 [010]axes.

From Eg. (4) it can be seen that if a, & 0 the fast
mode is quasilongitudinal and the slow mode quasi-
tra:reverse" near g~, but if a, & 0 the fast mode is
quasitransverse and the slow mode quasilongitud-
ina1 near this direction. Similarly, if a, & 0 the
fest mode is quasilongitudinal and the slow mode

where

a,'tan'6}~ +2a', —a,c,
][(u, tan'8„—&,}'+(2a,tan8, }']'~'( ' (21)

(2a,' —a,a,) tan'8'+a, '
i[(a, tan'8~ —a,)'+(2a, tan8~}']»2~ ' (22)

with the "+"sign used for fast waves and the "-"
sign for slow waves.

For directions nearly perpendicular to the g axis
it is more convenient to use

[-00]J

C33

cot8„=(u'/&') cot 8„ (23)

00)

where u' is u and &' is &, but with a, and a4 inter-
changed, a, and a, interchanged, and with cot6~
replacing tan 8,.

The angular deviation between the group and
phase velocities can be written in the convenient
form""

EO]oj
gs ], Bs2

tan(8„—8~) =— (24)

Ll l0j
FIG. 2. ps surfacesof tetragonal indium in symmetry

planes. In this material a5 and a6& 0 for all three sym-
metry planes. Note in this case, because of the equi-
valence of the I.100] and [010] axes, the phase-velocity
recedes in the {1PO) and (010) planes are the same in the
feel] direction. The abscissa of the T2 surface in the
+el) plane along the [110]axis is ~(Cfi- Cf2) ~

These equations make it possible to calculate the
angle between the phase and group velocities for
each mode along all wave-vector directions in
symmetry planes. In elastically anisotropic cry-
stals the phonon phase and group velocities are
collinear for only certain directions determined
by the symmetry and the kind of anisotropy.

For certain ratios between the elastic constants
it is possible to find values of 8„ for the slow mode
which permit more than one corresponding value
of 8&. In these regions the values of 8~ can be
double or triple valued and the group-velocity sur-
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FIG. 3. Relation between the direction of the wave
vector and the group-velocity vector in the (001}plane
for orthohombic potassium pentaborate using the elastic
constants of Cook and Jaffe. Angles are measured with
respect to the [100] axis. Note the negative slope of the
T2 curve near 82, indicating a cusp about that direction.
Wave vectors in directions 82, 83, and 84 all give rise
to group-velocity vectors in the 82 direction.
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R
O
I-
O
4k
K

l-

O
ld
0

I

O
IK
C9

%AYE-VECTOR 0 IR ECTION, 8~ (deg)

FIG. 4. Relation between the direction of the wave
vector and the group-velocity vector in the (001}plane
of gallium using the elastic constants of Lyall and
Cochran. Angles are measured with respect to the
[100] axis. Note the cuspidal edges in the T& mode about
the [100] and [010] axes.

face is said to have cuspidal edges (see Figs. 3
and 4).

Cuspidal edges can occur not only when the wave
vectors are confined to symmetry planes, but also
for wave vectors on either side of a symmetry
plane. In the orthorhombic lattice there are colli-
near directions, not contained in any symmetry
plane, about which cuspidal edges can occur.
Cuspidal edges occurring for wave vectors confined
to symmetry planes are discussed in See. IID.
Cuspidal edges occurring for wave vectors on
either side of a symmetry plane are discussed in
See. III.

B. Calculations of collinear and pure-mode axes

A collinear axis will be defined as one along
which the phase velocity or wave vector and the
corresponding group velocity or ray vector are col-
linear. It should be emphasized that only along
these axes is the flow of energy in the same direc-
tion as the wave vector. Since collinearity re-
quires 8„=8», Eq. (24) shows that collinear points
in symmetry planes are points where Bs/88» is zero
and thus, are points of tangency to the phase-vel-
ocity surface. A pure-mode axis, however, is one
along which the displacement or polarization vector
and the wave vector are parallel for a pure longi-
tudinal wave or perpendicular for pure transverse
waves. Sjnce the three polarization vectors are
mutually perpendicular for each value of the wave
vector, a pure-mode axis is a direction along which
a pure longitudinal and two pure transverse waves
propagate. Pure-mode axes for a number of cry-
stal symmetries have been given by Brugger. " Al-
though pure modes propagate in general only for
wave vectors parallel to the x, y, and z axes, di-
rections which incidently are also collinear axes
for all modes, pure transverse and pure longi-
tudinal waves also propagate along all longitudinal
(collinear) axes.

The solution for the collinear axes in symmetry
planes can be obtained from Egs. (20)-(22). It is
clear that the transverse T, mode, although a pure
transverse wave, has no collinear axes except for
8~ = 0' and 90' unless a, =a„ in which case this
mode is coBinear for all wave-vector directions in
that symmetry plane. The solution for the collinear
axes for the fast and slow modes in symmetry
planes yieMs the values 8~ = 0' and 90' required by
symmetry, as well as a quadratic equation in
tan'e~, whose roots are

tan"8»= (a, +a,)/(a, +a,)
ol

tan'8, = (a, —a, )/(a, —a,).
The collinear axis e, for the slow mode which in
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general is quasitransverse" near 8, is

tan8, = [(a,+ (a, ()/(a, + (a, ()]'~', (25)

and the collinear axis 8& for the fast mode which is
pure longitudinal at 8& is

tan8, = [(a.—/a, /)/(a. —/a, f)l"'. (26)

Equation (26) thus gives the collinear axis for the
longitudinal mode and the direction along which a
pure longitudinal and two pure transverse waves
propagate.

For nonsymmetry planes solutions for the col-
linear axes can be found using the defining relations

Bss =ls=v =—
Bl '

and

m a„'gb„'g —a„'gb~g —b„„b„'g
l a' 5' —a„'gb„'g-a„" b„'g

Qa + g a a+ a ]/2
ax& xp aug xp xg xp

a„'gb„;—a'„gb„'g- a„„b„'g

(34)

where

a„', = (a, +p)« = C» + C$3 y

a,', = (a, +a, )„=C» + C»,

results for the collinear axis are equivalent to a
change in the signs of some of the terms in Brug-
ger's expression for the longitudinal mode. These
results are

BS
S =Sls =V

Bm ' (27)
b„'g = (as +a7)«C33+ C,3

b;, = (a, +a, )„,= C» + C» .

(36)

BSs =ns =v Bn'

thus the direction cosines of the collinear axes can
be expressed as

1 Bs 1 Bs l Bsl=- —,m=-
p n 0s BE

' s Bm' s Bn' (28)

Brugger" used a method due to Borgnis' to derive
the relations for the collinear axes for the longi-
tudinal mode. Using the notation in this paper, his
results can be expressed as

m a"„,5„,—a„,b„,—b„,b„,
l a"„b,—a b„—a„b„, (29)

- S,- - S,- - - &/2
Ãg Xg gg Xg Xg gP

l a",b„,—a„,b„,—a„b„,
where

a„„=(a, —a, )„„=C» —2C86 —C»,

a„,= (a, —a, )„,= C„—2C„-C,s,

a, = (a, —a,),= C,3 —2C —C,s,

(3o)

(31)

b„,=(a, —a, )„,=C, —2C~4 —C23.

tang~ = m/l

and the angle OI can be found by using

tan8I = I/n cosP&.

For one of the transverse modes, however, the

(33)

The double-letter subscripts designate the planes
in Table I where the values of a„a„and a, are gi-
ven in terms of the second-order elastic constants.
The angle PI of the collinear axis for the fast mode
can be calculated from

The angles P, and 8, of the collinear axis for this
transverse mode can be calculated from Eqs. (32)
and (33) but with Q, replacing P~, and 8, replacing
Of Collinear axes for a number of orthorhombic
materials are tabulated in Table II. The elastic
constants of these materials listed in Table II are
tabulated in Table XVI.

C. Approximate phonon-amplification factor for cusp-free

velocity surfaces about collinear axes in symmetry planes

A cusp-free surface is one for which there is
one and only one wave vector for each group-veloc-
ity direction. " Since an elastically anisotropic or-
thorhombic lattice has no transverse isotropy,
exact analytic expressions cannot be obtained for
the phonon-amplification factor as in the case of
the hexagonal lattice. To find the cusp-free pho-
non-amplification factor for a nonhexagonal lattice
consider first a collinear direction which is the
intersection of two mutually orthogonal symmetry
planes, "and consider all the group-velocity dir-
ections in a solid angle b,Q„subtended by a detec-
tor, all points of which are within a small angle
AO„ from the collinear axis. Each phonon trajec-
tory or group-velocity direction corresponds to a
wave vector in a direction AO„ from the collinear
axis which because of elastic anisotropy is differ-
ent from 4O„both in angular distance from the
collinear axis and in azimuthal angle from a refer-
ence symmetry plane. The phonon-amplif ication
factor A. is defined as the ratio of the solid angle
hQ in wave-vector or 0 space to the correspond-
ing solid angle AQ„ in group-velocity space. If
there are no cuspidal edges in the group-velocity
surface, then each group-velocity has only one
corresponding value of wave vector, and the pho-
non-amplification factor (PAF} in the collinear
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TABLE II. Collinear and pure-mode axes in nonsymmetry planes of orthorhombic crystals.
The collinear axis for the longitudinal mode is also a pure-mode axis. Double-starred values
were found by a numerical search method; other values were found analytically.

Material
Longitudinal
0

Collinear axes
Slower T

Aragonite (CaCO3) ~

BaSO4"
genzophenone '
Gallium (at 4.2 'K)"
Iodic acid (HIO3) '
Iodic acid (DIO3) '
Lithium ammonium tartrate
MgSO4 ' 7H20
5iSO4 7H)Og
Olivine"
Potassium pentaborate ~

Resorcinol '
Rochelle salt"
Sodium ammonium tartrate
Sodium tartrate "
Staurolite
Strontium sulphate
Sulfur"
Terpine monohydrate '
Topaz ~

Uranium (at 4.2 K) ~

ZnSO4 '7HgO

48.55
57.80

85.18
28.47

62.57
39.72
39.24

35.83
33.21
32.21

73QQ 31

44.47
44.16

33.54
35.42

61.52 51.17
50.14 47.61

~ ~ ~

~ ~ ~

83+oJc

48.47**

44.66

39 14+&ac

67

23.41

58.31 33.84 36.98** 31.35*+
67.59 17.60

46.06

47.25

41.42
~ ~ ~

58.82++

48.22
08+g

45.83
58.48*+

42.74
50.18

47.14
~ ~ ~

43.42
~ ~ ~

32.74
~ ~ ~

38 61++

18.76
45 01ojcg

44.47
27 09+g

56.84
41.13

'%. Voigt, Ann. Phys. (Leipz. ) 24, 290 (1907).
b T. Seshagiri Rao, Proc. Indian Acad. Sci. A 33, 251 (1951).' A. A. Chumakov, I. M. Silvestrova, and K. S. Aleksandrov, Kristallografiya 2, 707 (1957)

[Sov. Phys. -Crystallogr. 2, 699 (1957)].
K. R. Lyall and J. F. Cochran, Can. J. Phys. 49, 1075 (1971).' S. Haussuhl, Acta Crystallogr. A 24, 697 (1968).

' K. S. Aleksandrov and T. V. Ryzhova, Kristallografiya 6, 289 (1961) [Sov. Phys. -Crystal-
logr. 6, 228 (1961)].

g K. S. Aleksandrov, T. V. Ryzhova, and A. I. Rostuntseva, Kristallografiya 7, 930 (1962)
[Sov. Phys. -Crystallogr. 7, 753 (1963)].

"R.K. Verma, J. Geophys. Res. 65, 757 (1960).
' W. R. Cook, Jr. and H. Jaffe, Acta Crystallogr. 10, 705 (1957).
' V. A. Koptsik, Kristallografiya 4, 219 (1959) [Sov. Phys. -Crystallogr. 4, 197 (1960)].
" R. V. G. Sundara Rao, Proc. Indian Acad. Sci. A 30, 173 (1949).
' R. F. S. Hearmon, Adv. Phys. 5, 323 (1956).
J. Bhimasenachar and G. Venkata Rao, J. Acoust. Soc. Am. 29, 343 (1957).

"S.Haussuhl, Z. Naturforsch. A 24, 865 (1969).' M. Silvestra, K. S. Aleksandrov, and A. A. Chumakov, Kristallografiya 3, 386 (1958)
[Sov. Phys. -Crystallogr. 3, 388 {1958)].

~ R. F. S. Hearmon, Rev. Mod. Phys. 18, 409 (1946).
~ E. S. Fisher and D. Dever, Phys. Rev. 170, 607 (1968).

direction for an infinitesimal solid angle is

& = ~n, /~v„. (3'l)

The area of the group-velocity space for phonons
arriving at the detector subtending an angle 48„
about the collinear axis is given by

~O„= w(z 8„)'. (38)

In an orthorhombic material, for a circular group-
velocity space, the wave-vector space for a cusp-

free surface is nearly elliptical and its area is
~a, = n(~8, ),(~8,), . (39)

The subscripts a and b refer to mutually orthogon-
al symmetry planes, "and (b.8~)„(b,8~), are the
angles subtended by the quasiellipse's semimajor
and semiminor axes, respectively. The width of
the wave-vector space in a symmetry plane
which corresponds to 48„ is given by

(&8,), = (d8„/d8„),a8„
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or

(Ae, ), =(de, /de„), b 8„. (41)

(010)

When the arrival points of the phonons on the de-
tector surface lie within a circle, the amplification
factor can be written

EQ, w(de, /de„). b, e„(de,/de„), 68„

which simplifies to
(00 I)

&(ea 4a) =(de/de. ).(de/de. )b (42)

Numerically it is more convenient, however, to
use a circular wave-vector space

aa, = ~(we, )' (43)

~n„= v(~e„),(~e„),. (44)

For an infinitesimal detector the resulting ex-
pression for the PAF is independent of whether
AQ„or, conversely, 40~ is chosen circular and,
in fact, is really independent of the exact shape of
the solid angle.

Selection of the appropriate phase-velocity sur-
faces in the mutually orthogonal symmetry planes
is important. Figure 1 shows that the T, surface
in the (100) symmetry plane meets the T, surface in
the (010) symmetry plane along the [001]direction
where ps' = &». To determine the PAF in the [001]
direction for the ps' = C» surface, one must multiply
the (de„/de„), of the T, mode in the (010) plane by
the (de, /de„)» of the T, mode in the (100) plane.

The [001]direction for the tetragonal and the
(100) direct'ons for the cubic lattice have two sets
of orthogonal symmetry planes so that the PAF
defined in the above manner for transverse waves
does not have a unique value. In fact, since the
transverse surfaces involved are neither circles
nor ellipses (see Fig. '1), this condition is irrele-
vant. In this case, the area can be determined by
numerical integration, which yields results that
are in close agreement with those calculated
from the averages of explicit expressions to be
given in Table V.

and calculate the corresponding group-velocity
space 40„. This is far more efficient in computer
time than trying to calculate the wave-vector space
for a circular group-velocity space where a binary
search technique would have to be used for each
point on the boundary of the surface. Examples
of some calculated group-velocity spaces are
plotted in Figs. 5 and 6 for a 1' departure from
the collinear axis and 2' increments in the azimu-
thal angle measured from a reference symmetry
plane. As the figures indicate, most of these
spaces are'nearly ellipses which subtend solid
angles given by

FIG. 5. Group-velocity directions which correspond to
a quarter-circle of wave vectors located one degree from
the [100] axis in gallium. For the counterclockwise ro-
tation of the wave vector, the L, and 7& vectors rotate

. counterclockwise. The T2 vector rotates clockwise
because of the cusp about the [100] axis in the (001)
plane. The origin is the [100] axis and the x and y axes
are the (001) and (010) symmetry planes, respectively.

Along the g axis the derivative de~/de„ for the
T, mode is given as follows:

2 (45)d8„8 -q o Q~

For the other two modes it is
dg, ' a, + la, l

de, e &, a, + (2a,' —a,a,)/I a, l

where the "+"sign is used for the fast mode, the"-"sign for the slow mode, and the magnitude
bars on &, for the case when , & 0. In symmetry
planes in directions perpendicular to the g axis
the results are the same, but with a, and a, inter-
changed, a, and a, interchanged, and a, and a,
interchanged.

Along the collinear axis 8„ for the slow mode"

(00] j

FIG. 6. Group-velocity directions which correspond
to a semicircle of wave vectors located 1' from the
Qp and the 0& axis in the (001) plane of gallium. For
wave vectors around 00, the origin is the [1003 axis and
the x and y axes are the (001) and (010) symmetry planes,
respectively. For wave vectors around g&, the origin
is the [010] axis and the x and y axes are the (001) and
(100) symmetry planes, respectively. Both vectors
rotate counterclockwise.
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(48)

dg» 4(a, +(a,()(a, +(a, ~)(a,a, —a', )
e =a,=e la I](a+la I]+(a +la I)][-,'(a +a](a, -a )+(a —la l)(a, +la I)] )

and along the collinear axis 8&, for the fast mode the same expression applies, but the signs preceding
each ]a, ~

are interchanged. " This result can be rewritten as

4(ls, l
—s.)(l~, l

—s )(+ —~,~.) -1

e~= e„=sz /a, J[( /a, /

—a,) +(/a, f
—a,)][-,'(a, +a,)(a6- a,) +(]a,/+a, )(/a, /

—a,)]

Explicit expressions for the approximate PAF
for orthorhombic, tetragonal, and cubic lattices
are given in Tables III-V. Expressions for some
directions have. been omitted in the tetragonal and
cubic tables since these are easily obtained from
the orthorhombic and tetragonal expressions, re-
spectively.

Consider now the phonon-amplification factor
along the collinear axes in one symmetry plane
only, -for cusp-free group-velocity surfaces. Con-
sider also a circular phonon detector, a distance
& from a phonon source, centered about the col-
linear axis with its boundaries at an angle b8„
of approximately 1' from the collinear axis. The
wave vectors which give rise to the phonons that
strike the circular detector are found to lie in a
solid angle which is almost elliptical (see Fig. 8).
If a and I] are the lengths of the semimajor and
semiminor axes, respectively, of the quasiellipse
surrounding the collinear direction, the PAF can
be written

& = aa, /Sfl„= oaf /v(Da8„)'.

Furthermore, if the distance D from the phonon
source to the detector is unity,

(010)

(OOl3

A =ab/(~8„)'. (49)

%hen & lies in a symmetry plane which contains
the [001) axis and the PAF along 8, is being con-
sidered, then

(50)

and the PAF becomes

(51)
q, =e,=e,

'

The d8~/d8„ factor was given in Eq. (4V), but the
factor a/68„ is most easily determined numerical-
ly and is the same regardless of whether the solid
angle, EQ» or b,Q, is chosen circular. If a circu-
lar wave-vector space is chosen, the factor a/68„
is the ratio of the radius of the wave-vector sur-
face surrounding 8~ = 0, to a semiaxis of the quasi-
ellipse (see Fig. 8) surrounding the collinear axis.

The PAF along the collinear axis 8& can be found
in an analogous manner.

D. Conditions for cuspidal edges in symmetry planes

A cuspidal edge exists for wave vectors in a
symmetry plane if d8],/d8„= 0. As a result, more
than one wave-vector direction in a symmetry
plane can give a group-velocity vector along one
given direction (see Figs. 3 and 4). Cuspidal
edges are always absent in the transverse T, mode
and in the fast mode. This property is stated as
Theorem III and proved in the Appendix.

Conditions for cuspidal edges in the slow mode
about the various collinear axes in symmetry
planes are as follows:

about the g axis:

FIG. 7. Group-velocity directions which correspond
to a qqarter-circle of wave vectors located 1 from the
f100] axis in cubic calcium fluoride. Note that the sur-
faces for the transverse modes are neither circles nor
ellipses. Note also the cusp about the(011) plane in
the T& mode where three different wave vectors give
rise to the same group-velocity direction. For wave
vectors rotated counterclockwise about the [100] axis,
the group-velocity vectors all rotate counterclockwise.
The origin is the [100) axis and the x and y axes are
the (001) and {010)symmetry planes, respectively.

a,'& a,(a, +a,)/2 if a, & 0,

s,'& l~. l(~. -~,)j»«e«;
about the g~ axis:

a,' & a,(a4+ae)/2 if a, &. 0,
but

a,'&~a ~(a4-ae)/2 if a, & 0;

(52)

(53)

(54)

(55)
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TABLE III. Expressions for the phonon-amplification factor for orthorhombic lattices.

Axis Sur face Amplification factor

[100]

[1oo]

ps =Css2

ps =C552

Css Css

C44 C22 —(C12+ Css) /(Cf i — 88)

4
~4

~

33
~ 3

2
CSS C55

44 33 ( i3 + 55) /( ii CSS)

[100]

[o1ol

pS =C„2

pS =Css2

C55+ (Ci3+ C55) /(Cii —C55) Css+ (Ci2+ Css) /(Cii —Css)

(
Css Css

C55 Cii —(Ci2+ Css) /(C22 —Css)

[o1o]

[o1o]

[001]

ps =C442

ps =C222

ps =C552

C44

55 33 ( 23 44) ( 22 44)

C22

C44+ (C23+ C44) /(C22 —C44) Css+ (Ci2+ Css)'/(C» C«)

(
CSS C55

Ss ii — i3+ 55) ( 33 — 55)

[oo1] pS =C442

Css C22 —(C23+ C44)2/(C33 —C44}

[oo1] ps =C33 (
C33 C33

CSS+ (Cf3+ CSS) /(C33 —CSS) C44+ (C23+ C44) /(C33 —C44)

and about the 0, axis:

4(a, +(a, ()(a, +(a,()(a,a, —a„')

& a, a, +a, +a,+a,
x [-,'(a, +a,)(a, —a, ) +(a, —(a, ()(a, + (a, j)] . (56)

Inequalities (52) and (54) have previously been de-
rived by Musgrave" by considering the inverse
phase-velocity surface. Inequality (56) follows
from Theorem II in the Appendix.

If a cuspidal edge occurs in the slow mode about
the q axis, wave vectors at angle 8p can also give
group-velocity vectors parallel to the q axis where
8p is defined by

a,a, —2a,' 2a,a, a,' —a,a,
p

=
a2 a2 a2 az

5 5 3 5
(57)

where the choice in sign must make tan ~p positive.
Similarly, a cuspidal edge about g~ gives wave
vectors at angle 0, with group-velocity vectors
along q~ where cot'6, replaces tan'Op, a4 replaces
a„and a, is interchanged with a, in Eq. (57).

If, however, a cuspidal edge occurs about the
collinear axis O„solving for the other values of
0, giving 6I„= 0, results in a sixth-degree equation
in tano~. This equation is identical for the fast and
slow modes and has no general algebraic solution
unless a, =a4 and a, =as as, for example, in the

tetragonal lattice. In this case the [100]and [010]
directions are equivalent and the collinear axis
for the fast and slow modes is the [110]direction.
Because of the symmetry, the equation can be
factorized into three quadratic equations:

tan'~g, —2tan8„+1 =0

tan'8„—2(a + 5) tan 8» + 1 = 0,
where

7 5 7 3[(a' —a')(a' —a~}j~~'
2 2 2 2

a~ —as a~ a, —a,

giving two pairs of reciprocal roots:

tan 8, , = (a —5) + [(a —5)' —I ]' ~'

(59)

(60)

(61)

or

(a + 5) + [(a + b)2 —1]'~'.

Of course, one pair of these roots will be an ex-
traneous complex conjugate pair for whichever sign
gives (a v&) & 1.

In general, however, the sixth-degree equation
cannot be factored. Although. one root, tang„. can
be extracted, the resulting fifth-degree equation
has no general algebraic solution and one of the
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TABLE V. Expressions for the phonon-amplification factor for cubic lattices. As in the tetragonal case, when there
are two values, their average yields a result which agrees within several percent with that obtained by numerical inte-
gration.

Surface /=0, 90' planes
Amplification factor

Q =-45, 45' planes

(ioo) PS2= C44 (Tf)

(100) PS2=C44 (r2)
a'aa (C a+ Caa)'/(Caa aaa&

' ta'aa+ Caa)+ Oaa ttiaa+ a'aa&'/ ttiaa —Caa I )
Q.oo) pS'=C«(1-)

C44+ (Cf2+ C44) ~"Cff —C44)-
2

Cff
Caa+ (Ca a+ Caa) /(Ca a

—Ca a) )
(ill) PS = 3(Cu+ 4C44+ 2Cgp) (L}

f2
~~

I24nrx

(Cf2+ C44)yz

1m= fCff —C44 —(Cf2+ C44)lt, g (Cff+ Cf2) —(Cf2+ C44)l,
1

ff+ f2)( ff 44) ( f2+ 44)

1
y = ~ ( ff+ f2)+ Cff —C44 —2(Cf2+ C44),

1z = Cff C44+ q Cff(Cff+ Cf2) —C44 —2C44(Cf2+ C44) —(Cf2+ C44)

remaining roots must be obtained numericaQy. It
is most coanvenient to numerically determine a
root, tan8„corresponding to 8„=8, for the fast
mode. The resulting quartic equation c.an be fac-
tored using the method of Descartes or Ferrari, "
giving a pair of positive real roots, tan 8, and
tan84, respectively, and a pair of complex con-
jugate roots. Such a solution has been performed
for a number of crystals and the results are listed
in Tables VI-VIII.

E. Conditions for phonon focusing in symmetry planes about

coNnear, cusp-free axes

A symmetry plane is cusp free if d8„/d8„&0 and
exhibits cusp-free phonon focusing if d8„/d8„& l..
Cusp-free phonon focusing thus occurs for wave
vectors in a symmetry plane about a collinear axis
if ( d/8d )8~ e &1.

Conditions for cusp-free phonon focusing along
g for each mode are as follows:

fast mode: a,'&a,' if a, & 0, (63}

but a,a, &.a,'if a, &0;

slow mode: a, &a,a6 if a, &0,

but a', &a,' if a, &0;

T~ mode: a2 & ai.

(64)

(66)

(66}

(67)

FIG. 8. Group-velocity directions which corres-
pond to circles of wave vectors located 1' froln the 82
and the 86 cusp-free collinear axes in the (001) plane
of orthorhombic gallium. The larger ellipse surrounds
82, the smaller is around 86. The y axis is an orthogonal
nonsymmetry plane. Both rotations are counterclock-
wise.

Similarly, conditions for cusp-free focusing along
q, are as follows:

fast mode: a' & a,'if a & 0,

but a,a6& a,' if a, & 0;

slow mode: a,'&a,a, if a, &0,

but a,'&a' if a, &0;

(68}

(69)

(VO)

(V1}

( t 2)

a7 & asa6~
2

T, mode: a, &a,

For cusp-free focusing of the fast mode along 8&.

(73)
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TABLE VI. Collinear axes and other directions associated with cusps in symmetry planes
of orthorhombic crystals. The axgles 8;, which are defined as in Figs. 3 and 4, are measured

degrees. In the (010) and (100) planes, entries under 80 and 8& indicate cuspidal edges about
directions parallel and perpendicular, respectively, to the [001] axis. In the (001) plane, en-
tries under 80 and 0& indicate cuspidal edges about the [100] and [010] directions, respectively.
In the (010) and (100) planes, entries under 83 and 04 indicate cuspidal edges about directions
having an angle 62 with respect to the [001] axis. In the (001) plane, entries under 83 and 84 in-
dicate cuspidal edges about directions having an aogle &2 with respect to the [100] axis.

Orthorhombic material e,
(010), (100), and (001) planes, respectively

03 04

Aragonite

Barium su1phate

.Benzophenone

Gallium (at 4.2 'K)

Iodic acid

Iodic acid
(deuter ated)

Lithium ammonium
tartrate
monohydr ate

Magnesium sulphate
heptahydr ate

Nickel sulphate
heptahydrate

Olivine

Potassium
pentabor ate

Resorcinol

Rochelle salt

Sodium ammonium
tartrate

~ ~ 0

22.06

19.46

22.68

25.07
~ ~ 0

16.19

24.97
~ ~ 0

16.50

24.60

32.74
. 0 ~ ~

10.99

33.52
21.03
20.18

37.37
~ ~ ~

33.17
~ 0

17.63

68.74

69.39

66.50

64.90
0 ~ ~

64.96
~ ~ ~

66.50

57.00
80.38
73.83

53.99
67.95
67.99

~ ~ ~

48.23
~ ~ ~

58.36

36.18
44.66
51.54

47.42
46.76

40.11
41.46

.45.63

48.27
49.72
46.1.6

48.83
41.26
38.28

48.85
41.26
38.28

44.29
41.12
41.50

44.71
45.80
46.10

44.53
45.66
46.14

42.06
47.43
50.68

36.99
42.23
49.59

46.96
43.95
41.83

48.87
46.91
42.73

48.47
45.73
42.15

7.28

~ ~ ~

10.77
~ ~ ~

8.55

~ ~ ~

~ ~ ~

~ ~ ~

12.34

~ ~ ~

~ ~ ~

~ ~ ~

5.82

19.38

11.47
~ ~ ~

13.44
0 ~ ~

65.81

81.86
~ ~ ~

72.44

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

76.28

~ .
'~"'0

~ ~ ~

' ~ ~ ~ .

~ ~ ~

68.57
~ ~ ~'

80.76

84.22
~ ~ ~

82.67
~ ~ ~

28.62
47.80

50.96
49.36

32.01

40.44

~ ~ ~

33.17
14.80

33.14
13.70

~ ~ ~

42.85
~ ~ ~

58.50

45.82
34.15
33.54

- 46.28
39.23
35.42

17.25
~ 0 ~

51.10
75.49

36.79

17.55
~ ~ ~



18 PHONON FOCUSING AND PHONON CONDUCTION IN. . . II 6589

TABLE VI. (Continued)

Orthorhombic material

Sodium tartrate 48.32
46.77
43.44

7.51 85.80

{010), (100), and (001) planes, respectively
8( 02 ~3

62.15
~ ~ ~

Staurolite

Strontium sulphate

Sulfur

Terpine monohydrate

Topaz

Uranium (at 4.2 oK)

Zinc sulphate
heptahydr ate

34.32

30.63

34.18
~ ~ ~

~ ~ ~

6.98

19.50

32.23
20.68

33.89
18.08

53.65
~ ~ ~

59.31

59.00
~ ~ ~

79.41
~ ~ ~

76.07

75.30
60.06

55.77
70.05

35.66
43.15
51.90

46.96
46.80
44.87

48.02
48.44
46.34

47.00
49.65
47.49

45.50
43.07
42.79

55.72
47.97
37.67

44.67
45.77
46.15

14.99
~ ~ ~

27.79
~ ~ ~

20.49
25.71

78.83
~ ~ ~

71.47
~ ~ ~

74.90
77.00

55.30
~ ~ ~

56.65
45.96

58.29
35.90
58.30

57.80
68.94

41.92
~ ~ ~

58.88

0 0 0

37.44
~ ~ ~

45.96
36.74
20.06

and for the slow mode along 8,:
a,a, &a,'. (74)

Inequalities (73) and (74) follow from Theorems I
and II, respectively, in the Appendix.

F. Phonon-amplification factor for the orthorhombic lattice

when cuspidal edges are present

The presence of a cuspidal edge increases the
phonon-amplification factor because wave vectors
in more than one direction contribute to group-
velocity vectors in a given direction. Consider a
circular phonon detector centered about the [001]
axis with its boundaries at an angle d 8„of ap-
proximately 1' from this axis. If a cusp exists
along the [001]axis, there are additional wave-
vector spaces besides the one about the [001]axis
which provide phonons that strh the detector.
Orthorhombic uranium, for example, has a cusp
about the [001]axis in the (100) plane, (see Table
VI), so that two wave-vector spaces near 8~= 80
= 33.33', one on each side of the [001]axis in the
(100) plane, give rise to phonons that strike a pho-
non detector centered about the [001]axis. In or-
thorhombic topaz, for example, there are two
cuspidal edges about the [100]axis, one in the (001)

plane, the other in the (010) plane, (see Table VI).
If a circular phonon detector is centered about the
[100]axis, wave vectors near the [100]axis, the
two 8, directions (one on each side of the [100]
axis in the (001) plane), and the two 8, directions (one
on each side of the [100]axis in the (010) plane)
give rise to transversely polarized phonons which
strike the detector. The two cusps, however, oc-
cur on different velocity surfaces (see Fig. 1) so
that each transverse velocity surface has contri-
butions from only two wave-vector spaces in ad-
dition to the one about the [100]axis. A similar
situation exists about the [010]axis. If a circular
detector is centered about a 8, collinear axis about
which there is a cusp, then wave-vector spaces
surrounding 8„8„and 84 give rise to phonons that
strike the detector (see Fig. 3).

If the solid angle bA„subtended by the detector
is circular, the wave-vector solid angles AQ~ sur-
rounding the collinear axes or the ~p ~y ~3 and
~, directions are nearly elliptical. Let a and b be
the lengths of the semimajor and semiminor axes,
respectively, of the quasiellipse surrounding the
co1linear direction, and let a, and b,. be the lengths
of the semimajor and semiminor axes of a quasi-
ellipse about either the ~p or 8, directions. Since
there are three wave-vector spaces contributing
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TABLE VII. Collinear axes and other directions associated with cusps in symmetry planes
of tetragonal crystals. Theangles 8; which are defined as in Figs. 3 and 4, are measured in
degrees. In the (010) and (110) planes, entries under 80 and 8, indicate cuspidal edges about
directions parallel and perpendicular, respectively, to the [001] axis. In the (001) plane,
entries under 80 and 8~ indicate cuspidal edges about the f100] and f010] directions, respec-
tively. In the (010) and (110) planes, entries under 83 and 84 indicate cuspidal edges about di-
rections having an angle 82 with respect to the t001] axis. In the (001) plane, entries under 83
and 84 indicate cuspidal edges about directions having an angle 82 with respect to the t100] axis.

Tetragonal material 80

(010), (110), and (001) planes, respectively
8(

'

82 83 84

Ammonium dihydrogen
phosphate

Indium {at 4.2 'K)

Indium bismuth

Nickel sulphate
hexahydrate

Paratellurite

Potassium dihydrogen
phosphate

Rutile

%hite tin
(at 4.2 K)

Zircon

Zirconium silicate

32.98
13.72
33,42

36.51
33.53
33.73

38.63

43.91

~ ~ ~

38.24

33.65

~ ~ ~

56.78

56.58

48.67
50.54
56.27

51.37

. 85.07

51.76

56.35

37.69
42.76
45.00

44.66
43.39
45.00

41.48
40.40
45.00

43.78
39.11
45.00

52.07
43.56
45.00

44.12
47.58
45.00

50.83
46.54
45.00

47.30
45.49
45.00

39.60
42.53
45.00

4$.57
50.17
45.00

10.40

5.05

16.51

18.25

5.53

13.77
25.59
14.66

35.06

7.18

59.02

84.95

55.40

69.77

69.23

84.47

60.76
55.10
75.34

61.15

82.82

45.00

48.98

45.00

53.34
60.70
45.00

37.49
24.04
45.00

39.83
45.00

39.92

45.00

62.02
45,00

50.26
45.00

21.08
28.67
45.00

57.22

45.00

(V5)

phonons which strike the detector, (the distance
D from the source of phonons to the detector is
assumed to be unity), the PAF can be written as

ZB Q~ nab+ 2va, b, ab+ 2a, b,
v(ar 8„)* (~8/'

For example, if the PAF along the [001]axis in
uranium is considered, then additional contributing
wave-vector spaces surround 8, in the (100) plane.
Since a is evaluated for the T, portion, and b for
the T, portion of the surface ps'=C«(see Fig. 1),

a=68„~ =b, 8, ~ =68„
'g =' ~~a e =e, =o

k v

(V 6)

b=b8
~

=a8 " =~8d8 a —la I' d8„g„=g,~ " a, —(2a', —a,a,}/la, l

(VV)



PHONON FOCUSING AND PHONON CONDUCTION IN. . . II 6591

TABLE VIII. Collinear axes and other directions associated with cusps in symmetry planes
of cubic crystals. The entries are as described in Table VII.

Cubic material
(010) and (110) planes, respectively

82 83 84

Calcium fluoride

Diamond

I.ead (at 0 K)

Lithium fluoride

Magnesium oxide
(at 4.2 'K)

Niobium (at 4.2 K)

Silicon

Sodium Quoride

39.16
33.12

23.86
18.73

21.03
15.50

23.65
18.15

50.84
55.07

66.14
75.81

68.97
82.41

66835
76.58

45.00
46.52

45.00
43.85

45.00
43.10

45.00
43.09

45.00
43.28

45.00
46.07

45.00
43.32

45.00
46.59

19.22
26.76

13.96
19.19

24.09
33.82

70.78
68.31

76.04
73.80

65.91
62.17

. 45.00
54.74

45.00
54.74

45.00
54.74

45.00
54.74

45.00
54.74

45.00
54.74

45.00
54.74

45.00
54.74

b~=&0=~8I I o ea ~O ~v~
(V8)

d0~ 2a4a7[(g —a,a,)/(a2~—a52)]'~' —[(2a27 —a,a,) tan280+ a26]
(79)

where tan'8, is given by Eq. (57).
Note that a i.n Eq. (76) is evaluated in the (010)

plane, but that b and bo in Eqs. (V7) and (79), re-
spectively, are evaluated in the (100) plane. Since
the cusp occurs about the [001]axis in the (100)
plane, the value of (ab)/(n, &„)' can be found by
taking the magnitude of the expression for the
PAF given in Table III for the ps'=C~ surface
along the [001]axis The fac.tor ao/68„ is most
easily determined numerically and is the same if
either solid angle, AO, or bQ„ is chosen circu-
lar. If a circular wave-vector space is chosen,
then the factor ao/h8, is the ratio of the radius of
the wave-vector surface surrounding ~~= Hp to a
semiaxis of the quasiellipse surrounding the col-
linear axis.

For a cusp about the [100]axis, for example
in the (010) plane, the results are similar. Eval-
uating a for the T, portion, and b for the T, por-
tion of the surface ps'= C» (see Fig. 1) yields
results (76)-(V9), but with cot'8, replacing tan'8„
a, interchanged with a4, and a, interchanged with
a6. Note again that a is evaluated in the (001)
plane, but b and b, are evaluated in the (010) plane.
Again, (ab)/(48, )2 can be found using the magni-
tude of the PAF given in Table III for the ps'=C»
surface along the [100]axis.

For a cusp about the [100]axis in the (001)
plane, a and b are evaluated for the ps'=C~ sur-
face giving results (V6)-(V9), but with a, and a,
interchanged. In this case a is evaluated for the
(010) plane, but b and b, are evaluatedinthe(001)
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w'here

Z EA~ nab+ 'ma3b3+ va4b4 ab+ arabs+ a4b4
n(uVe„)2 (we„)'

(8o)

b=we,
~

=~e„ d0

»&=8 =82
(81)

which can be evaluated from Eq. (47),

b, =we,
~

=~6„ d8~

e,.e„e„~,
(82)

b~ = 68„~ = 68„
v ey&4, eva82

(83)

When these values are substituted into Eq. (80),
the PAF becomes

a3 de a4 d 0~

+~v d~v' 8 =8 8 ~8 ~~v d~v

a d8~+ 46 d& 8 8 8
(84)

plane. A cusp about [010] in either the (100) plane
or the (001) plane can be treated in a similar man-
ner.

Since the collinear axis 6, is in general not at
the intersection of orthogonal symmetry planes,
the determination of the PAF is slightly different
for a cusp about this axis. When a given 62 axis
lies in only one symmetry plane, the quasiellipti-
cal wave-vector spaces around ~, and 6~ are nei-
ther equal nor located at equal angular distances
from 6,.

The PAF for this case can be written, using the
form of Eg. (75), as

tensities obtained along with their directions are
listed in Tables IX and X. Phonon intensities ob-
tained by the above method near collinear direc-
tions are given in Tables XI-XIII. More accurate
calculations of phonon intensities using the dimen-
sions of ellipses and circles are given in Table
XIV.

In the [001]direction tetragonal and cubic ma-
terials have two sets of mutually orthogonal sym-
metry planes. For a circular phonon detector
and group-velocity space centered on the [001]
direction, the corresponding wave-vector space
must have four-fold symmetry and thus can not
be a quasiellipse. Conversely, the group-velocity
space corresponding to a circular wave-vector
space is not quasielliptic. The vector spaces for
cubic calcium fluoride in Fig. 7 clearly illustrate
this and even indicate the presence of a cusp.
Numerical integration may be used to determine
the area of the surface when such a cusp is pres-
ent.

When a cusp exists about the [110]direction in
tetragonal and cubic materials, circular wave
vector spaces centered about the [110]direction,
the 6, directions in the (110) plane, or the &, and

8~ directions in the (001) plane can be expected
to give rise to quasielliptic group-velocity sur-
faces about the [110]direction. Calculation of
the areas of the two group-velocity spaces which
correspond to wave vectors about 8, and ~~ is
shortened by the fact that these areas are equal
and located at equal angular distances from ~,.

In cubic crystals no cusp is expected about the
(111)directions because collinear axes exist in
these directions only for the L mode. For a
circular wave-vector space centered about the
[111]direction the corresponding group-velocity
space has three-fold symmetry. However, for 1
angular deviations about the (111)directions the
resulting group-velocity space is very nearly
circular and thus its approximate area ean be
easily calculated.

The coefficient factors a/4&„, a, /68„, and a~/68„
can be determined numerically as before. Al-
though the derivatives in Eqs. (82) and (83) can be
represented by long expressions, they too are
most easily calculated numerically.

For noncollinear directions, it is more conven-
ient to use numerical integration to count the num-
ber of group-velocity vectors falling within a
small solid angle using a fine angular mesh and a
uniform angular density of k vectors. This has
been done for some orthorhombie, tetragonal, and
cubic crystals. The highest and lowest phonon in-

G. Effect of phonon focusing on phonon conduction

In the orthorhombic lattice the phase velocities
along the x, y, and z axes are in general different
so that the thermal conductivity can be expected
to be anisotropic at all temperatures. In the boun-
dary-scattering regime, where ballistic phonon
propagation occurs, phonon focusing can be re-
sponsible for anisotropic heat conduction even
when the phonon phase velocities along the x, y,
and z axes are equal. In fact, focusing will al-
ways be present whenever a solid is elastically
anisotropic. and occurs even in cubic crystals.
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TABLE IX. Calculated maximum and minimum phonon intensities in orthorhombic mater-
ials. Thedirections atwhich the extrema occur are given by the spherical polar angles 8 and
P in degrees. The angle 8 is measured with respect to the [0011 axis and the angle y is mea-
sured in the (001) plane with respect to the [1001 axis. For an elastically isotropic solid the
corresponding intensities are unity. Calculations were performed using a 1' mesh in 8 and P,
the number of wave vectors at each point weighted to give a uniform density. Because of this
mesh, a much larger number of different wave vector directions fell within a 1 deviation from
the [001l axis than for any other axis making any azimuthal variation in intensity about the
[001] axis clearly observable. This is indicated in the table.

Orthorhombic material

Highest
phonon

intensity
Direction
8

Lowest
phonon

intensity
Direction
8

Aragonite

Barium sulphate

Benzophenone

Gallium (at 4.2 Q
Iodic acid

Lithium ammonium
tartrate monohydrate

Magnesium sulphate
heptahydrate

Nickel sulphate
heptahydrate

Olivine

Potassium pentaborate

Resorcinol

Rochelle salt

Sodium tartrate

Staurolite

Strontium sulphate

Sulfur

Terpine monohydrate

Topaz

Uranium (at 4.2 'K)

Zinc sulphate
heptahydrate

23.80

43.39

27.95

16.89

26.17

34.06

30.50

35.62

10.42

34.88

32.62

7.31

14.10

23.98

40.33

33.95

9.00

64.40

32.77

35.40

90

90

80

00

82

00

00

00

72

90

90

00

00

00

80

00

90

04

90

60

64

90

00

34

02

68

30

40

00

20

86

90

78

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

52

90

52

40

16

40

90

62

90

90

90

90

28

90

30

90

90

90

00

90

60

90

90

70

00

00

90

68

00

00

The anisotropy in the thermal conductivity of
cubic crystals was first reported by McCurdy,
Maris, and Elbaum' on measurements made in
silicon and calcium fluoride. Anisotropies of up
to 50% for silicon and 40% for calcium fluoride
were observed and shown to be the direct result
of phonon focusing ari. sing from elastic anisotropy.

Phonon focusing and conductivity calculations
have also been made by McCurdy for elastically
anisotropic hexagonal crystals. " For materials
having large elastic anisotropies differences in
phonon intensity (up to factors of several hundred)
were predicted for various crystallographic di-

rections. Calculations of the thermal conductiv-
ity demonstrated that the phonon-focusing prop-
erty could cause differences in the phorion con-
ductivity in the ballistic regime by as much as
300%.

%internheimer and McCurdy' have predicted
that the phonon-focusing property will cause an-
isotropic heat conduction even in cubic super-
conductors providing the temperature is a small
fraction of the superconducting transition tem-
perature, and the phonon mean-free path approach-
es sample dimensions, (i.e., A»-l).

Calculations have been made for a number of
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TABLE X. Calculated maximum and minimum phonon intensities in tetragonal and cubic ma-
terials. The corresponding intensities for an elastically isotropic solid are unity. : 'The angles '

8 and P are defined in Table IX. 'Calculations were performed using the same mesh as described
in Table IX. The suffix I refers to the longitudinal mode.

Tetragonal material

Highest
phonon

intensity
Direction
8

Lowest
phonon

intensity
Direction
0

Ammonium dihydrogen
phosphate

Indium (at 4.2 K)

Nickel sulphate
hexahydrate

Paratellurite

Potassium dlhydrogen
phosphate

Rutile

White tin (at 4.2 'K)

Zirconium silicate

31.'30K

11.34

13.93

64.32

10.00L

28.50

10.47

14.61

88-

74

00

00

56

00

12

42

00

04

20

00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

90

00

90

90

90

00

45

00

00

00

00

00

Cubic material

Calcium fluoride

Lead (at 0'K)

Lithium fluoride

Magnesium oxide
(at 4.2 'K)

Niobium (at 4.2 'K)

Silicon

Sodium fluoride

9.49

32.65

46.61

51.62

12.24

34.65

14.06

88

00

00

04

00

38

30

04

0.00

0.00

0.00

0.00

0.00

0.00

0.00

90

46

72

00

orthorhombic and tetragonal crystals, and, as
expected, anisotropic phonon conductivity was
predicted in those crystals which were elastically
anisotropic. The direction of high thermal con-
ductivity always coincided with the direction in
which the PAP was high. To illustrate the effects
of focusing, calculations were performed to de-
termine the phonon-conduction-enhancement factor
A„defined as

where ~„ is the thermal conductivity calculated
by correctly including effects of phonon focusing
and ~, is the thermal conductivity calculated using
phase-velocity vet.'tors instead of group-velocity
vectors for each mode. Calculations of ~, thus
disregard the angular deviation between the group-
velocity vectors and their corresponding wave
vectors for elastically anisotropic solids. Values
of a, depend on the crystallographic direction of
the heat-flow axis and will be largest in those

directions having the largest inverse-square phase
velocity averaged over the three modes.

3amples used in the calculation of z„and &, were
assumed to have circular cross-sections with a
thermal length of 3 cm and a diameter D of 0.3
cm. Calculations of the thermal conductivity ~;
end-corrected mean free path, A„„; and ther-
mal-conduction-enhancement factors A. „are given
in Table XV for several crystallographic direc-
tions. For elastically isotropic solids the thermal-
conductivity-enhancement factor A. „ is unity, and
the end-corrected mean free path A„„ is 0.926D.
Note that higher values of thermal conductivity co-
incide with higher values of A, . Tables VI-XV
show that the highest values of therma1. conductivity
are found along directions about which cuspidal
edges exist. The above results should be applic-
able (for dielectric solids) at temperatures which
are a small fraction of the Debye temperature.
For the superconductors, however, these results
should not apyly until the temperature becomes a
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TABLE XI. Approximate phonon-amplification factor A {0„,Q„) in some orthorhombic crystals near collinear direc-
tions. The PAF values given are those calculated at the nearest even integer number of degrees to the collinear axes.
The PAF was calculated as the ratio of the number of group-velocity vectors to the number of wave vectors for a solid
angle of 4 square degrees. Four wave vectors were used in each 2 x 2' box and each box was weighted to gjve a uniform.
density of wave vectors over all space. Entries for 0 ahd P are in degrees.

(~v 4u)

(0, 0)

(eg, 0)

(e„o)

(90, 0)

(90, Pgj

(80, Q,)

(90, 90)

(e„90)

(8g, 90)

(e~ &ne)
'

(~.„4 )

(~ns~'II ns)

Slow T
Fast T

L
Slow T
Past T
88

I
Slew T
Fast T
82

Slow T
Fast T

L
Slow T
Fast T

L
Slow T
Fast T

Slow T
Fast T

L
Slow T.
Fast T
02

I
Slow T
Fast T
88

I
&ns

Slow T
ens

Fast T

&ns

Aragonite

0.00
0.00
3.00

0.51
1.38
0.68

28.62

0.43
13.51
0.51

36.18

9.99
0.00
1.00

1.00
4.48
0.00

51.54

0.00
23.80
4.00

0.98
3.49
0.00

44.66

1.00
3.20
0.00

47.80

1.00
48.55
85.18

Barium
sulphate

2.00
0.00
1.00

1.09
0.59
0.00

47.42

1.00
13.95
2.00

3.00
1.50
0.00

49.36

3.00
2.50

. 0.00
44.44

2.00
0.00
5.00

0.52
1.52
0.00

46.76

0.50
7.06
0.00

50.96

1.25
57.80
28.47

3.26
46.06
47.14

Benzophenone

0.00
0.00
1.00

0.00
2.95
1.31

32.01

0.00
4.60
0.51

40.11

4.00
0.00

12.00

4.50
0.00
0.50

40,44

4.50
0.00
0.50

45.63

2.00
1.00
7.OQ

0.84
3.00
0.00

41.46

Ga
(at 4.2 'K)

4.00
1-.00
1.00

1.10
2.92
0.00

48.27

1.00
5.00
2.00

2.0Q

0.00
0.00

39.69

2.00
0.00
0.00

46.16

0.00
1.00
1.00

0.56
1.03
0.00

49.72

1.50
62.57
35.83

0.97
16.73
31.81

12.08
47.25
43.42

Strontium
sulphate

2.00
0.00
1.00

1.10
0.65
0.00

46.96

1.00
6.00
2.00

2.00
0.00
0.00

45.96

1.50
0.50
0.00

44.87

1.00
1.00
1.00

1.06
4.66
2.49

46.80

0.50
8.15
2.03

56.65

1.25
58.31
33.84

2.20
36.98
31.35

10.19
45.83
44.47

Topaz

1.00
1.00
0.00

1.51
1.03
0.90

41.92

1.54
0.99
0.45

45.50

0.00
14.91
3.00

1.50
0.50
1.00

58.88

1.5Q

0.50
1.00

42.79

1.00
1.00

17.00

0.46
1.51
9.66

43.07

3.30
48.47
67.16

0.50
42.74
56.84

U

(at 4.2 'K)

0.00
4.00
0.00

0.00
0.50
1.64

55.72

0.00
3.96
0.00

0.00
0.50
2.43

37.67

0-00
17.29
0.00

6.12
0.00
0.97

47.97

6.13
0.58
1.91

37.44

0.00
50.18
41.13

' 8~, Q~, are the nonsymmetry collinear axes.
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TABLE XII. Approximate phonon-amplification factor in some tetragonal crystals. The entries are as described in
Table XI.

(~„4,)

(0, 0)

(86, 0)

(e, , o)

(90, 0)

(90,45)

{6,, 45)

(0, , 45)

L
Slow T
Fast T

Slow T
Fast T
86

L
Slow T
Fast T
02

Slow T
Fast T

I
Slow T
Fast T

L
Slow T
Fast T
86

L
Slow T
Fast T
0)

In
{at 4.2 'K)

1.00
1.00
0.00

1.49
0.00
2.13

48.98

1.46
0.00
1.44

44.66

1.00
1.83
2.00

2.00
9.07
5 49

1.33
0.00
0.00

43.39

Nickel sulphate
hexahydrate

1.00
4.00
0.00

0.49
0.00
0.00

37.49

0.00
0.00
0.00

43.78

0.00
2.00
0.00

13.49
0.00
0.00

1.50
0.00
1.18

24.04

0.84
0.00
5.82

39.11

TeO, '

4.00
0.00
0.00

0.00
0.00
1.74

52.07

0.00
1.99
0.00

35.99
0.00
0.00

1 ~ 75
0.00
2.06

39.83

1.92
0.00
2.70

43.56

KDP '
4.00
0.00
0.00

2.00
0.00
4.92

39.92

0.97
0.00
4.57

44.12

10.00
0.00
0.00

0.00
2.00
0.00

0.27
2 ~ 36
1,81

47.58

Rutile

1.00
18.00
1.00

0.00
1.59
0.80

50.83

0.00
11.90
0.00

6.00
0.00
1.00

3.75
0.00
1.08

62.02

1.32
0.00
3.93

46.54

%hite tin
(at 4.2 K)

1.00
4.00
0.00

1.09
0.58
0.00

47.30

1.00
3.00
1.00

2.00
0.00
1.00

1.50
0.00
2.26

50.26

1.53
0.00
8.21

45.49

Zirconium
silicate

4.00
0.00
0.00

3.00
0.00
1.13

57.22

1.06
0.00

14.61
46.57

5.00
0.00
0.00

0.00
1.99
0.00

0.58
1.08
0.39

50.17

' Te02, paratellurite.
KDP, potassium dihydrogen phosphate.

TABLE XIII. Approximate phonon-amplification factor in some cubic crystals, The entries
are as described in Table XI.

CaF,
Pb

(at 0 'K) LiF
MgO

(at 4.2 K)
Nb

(at 4.2 K) Si

(0, 0)

(45, 0)

(g~ 45)

(02, 45)

L
Slow T
Fast T

L
Slow T
Fast T

Slow T
Fast T
88

L

Slow T
Fast T
82

4.00
0.00
0.00

0.50
0.00
3.88

0.25
3.16
0.00

54.74

0.52
5.43
0.30

46.52

0.00
0.00
1.00

2.43
0.00
1.59

2.49
0.00
0.00

54.74

2.41
0.50
0.00

43.10

0.00
15.00
9.00

1.96
0.50

10.67

2.24
1.76
0.00

54.74

1.97
1.56
0.00

43.09

1.00
42.55
19.00

1.96
0.50

16.09

2.24
3.23
0.00

54.74

2.02
1.50
0.00

43.28

4.00
0.00
0.00

0.50
0.00
3.27

0.50
2.40
0.98

54.74

0.52
2.45
0.23

46.07

1.00
6.00

11.00

1.96
0.50

14.69

2.24
1.76
0.00

74

2.44
1.26
0.00

43.32

4.00
0.00
0.00

0.50
0.00
4.64

0.25
4.93
0.00

54.74

0.52
6.66
1.95

46.59



PHONON FOCUSING AND PHONON CONDUCTION IN. . . II 6597

TABLE XIV. More accurate phonon-amplification factors, A(e„, p~), along selected col-
Finear axes for orthorhombic, tetragonal, and cubic materials whose elastic constants were de-
termined at or below 4.2 'K. %hen the group-velocity spaces generated by the circular wave-
vector spaces were quasielliptical, the PAF values given were calculated from their dimensions.
The values marked with a dagger indicate that three wave-vector spaces gave rise to group-
velocity vectors near the collinear axis. The value 0.1322 under calcium fluoride was not found

by this method; it was obtained by numerical integration and agreed to within 1.3% of the value
obtained when using Table V.

(eo 4'v)

(0, 0)

(e,, o)

(82, 0)

(90, o)

(90, Pg)

(90, @,}

(90, 90)

(e2, 90)

{e,, 90)

{et;,45)

(e2, 45)

(90, 45)

L
Slow T
Fast T

Slow T
Fast T

L
Slow T
Fast T

Slow T
Fast T

I
Slow T
Fast T

Slow T
Fast T

Slow T
Fast 2'

L
Slow T
Fast T

Ga

2.92
0.531
0.731

0.605

0.559
0.772
5.27$

2.09

0.262

0.452
0.430
2.86$

0.826

0.359

0.272

0.203

5.8

0.506

0.96

0.0613

0.42

2.09

0.190

0.051

2.09
0.19

15.0

0.1322

0.782

3.10$

0.445

0.78
0.32

MgO

0.279

~ ~ ~

1.39

2.12

0.441

1.39
0.267

Si

0.272

1.42

2.16

0.311

1.423
0.228

TABLE XV. Thermal conductivity, end-corrected mean free path, and thermal-conduction-
enhancement factor for selected crystals at very low temperatures. Calculations were per-
formed for samples in the form of circular cross-section rods with a thermal length of ten
rod diameters. Symbols are defined in the text. The elastic constants used are those given
in Table XVI.

Material

Gallium

Rutile

Magnesium oxide

Lattice

Orthorhombic

Tetragonal

Cubic

Rod
axis

[oo1]
[010]
[100]
[11o]

[001]
[100]
[11o]

&100)
(110&
(111)

]c/T3

(Wcm~ K )

0.126
0.134
0.154
0.106

0.0436
0.0417
0.0316

0.0340
0.0247
0.0231

~corr~D

0.939-
0.996
1.142
0.789

1.213
1.159
0.879

1.31
0.95
0.893

1.048
1.045
1.242
0.809

1.44
1.28
0.83

1.45
0.98
0.95
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TABLE XVI. Elastic. constants of some orthorhombic, tetragonal, and cubic materials. All elastic constants are
multiplied by 10' for units of dyn/cm2. The density is given in g/cm . All values are for measurements performed
at room temperature, unless noted otherwise.

Orthorhombic material

Aragonite ~

Barium sulphate

Benzophenone ~

Gallium {at4.2 'K} d

Iodlc acid ~

Iodic acid
{deute rated)

Lithium ammonium ~

tartrate monohydrate

Magnesium sulphate ~

heptahydrate

Nickel sulphate &

heptahydrate

Olivine "

Potassium
pentaborate '

Resorcinol '

Rochelle salt"

Sodium ammonium ~

tartrate

Sodium tartrate "

Staurolite m

Strontium sulphate

Sulfur"

Terpine monohydrate

Topaz P

Uranium (at 4.2 K}&

Zinc sulphate
heptahydrate &

Cig

16.000

8.620

1.070

11.180

3.012

3.009

3.860

3.250

3.530

32.400

5.820

1.030

4.060

3.680

4.610

34.300

10.440

1.422

1.250

28.100

11.430

3.320

C22

8.720

9.170

1.000

9.960

5.805

5.800

5.390

2.880

3.110

19.800

3.590

1.440

5.200

5.090

5.470

18.500

10.610

1.268

0.990

34.900

21.110

2.930

Css

8.480

10.840

0.710

14.780

4.286

4.281

3.630

3.150

3.350

24.900

2.550

1.290

6.400

5.540

6.650

14.700

12.860

1.830

1.530

29.400

28.600

3.200

C44

4.130

1.200

0.203

3.970

1.688

1.692

1.190

0.780

0.910

6.670

1.610

0.330

1.220

1.060

1.240

4.600

1.350

0.827

0.243

10.800

13.960

0.780

Css

2.560

2.870

0.155

4.520

2.065

2.064

0.670

1.560

1.720

8.100

0.463

0.440

0.300

0.303

0.310

7.000

2.790

0.428

0.223

13.200

8.200

1.530

Tetragonal material

Ammonium dihydrogen '
phosphate

Indium {at 4.2 K) '

Indium bismuth '

Nickel sulphate
hexahydrate

Paratellurite "

Potassium dihydrogen
phosphate

Rutile ~

%(hite tin" {at4.2 K}

Zircon &

Cgg

6.890

5.392

5.110

3.210

5.570

7.400

26.600

8.274

7.350

C))

3.350

5.162

3.460

2.930

10.580

6.800

46.990

10.310

4.600

C44

0.856

0.797

1.980

1.160

2.650

1.350

12.390

2.695

1.380
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TABLE XV&. (Continued)

Orthorhombic material

Aragonite

Barium sulphate

Benzophenone c

Gallium (at 4.2 K) d

Iodic acid ~

Iodic acid
(deute rated)

Lithium ammonium ~

tartrate monohydrate

Magnesium sulphate g

heptahydrate

Nickel sulphate g

heptahydrate

Olivine "
potassium,
pentaborate '

Resorcinol '

Rochelle salt"

Sodium ammonium I

tartrate

Sodium tartrate "

Staurolite m

Strontium sulphate

Sulfur n

Terpine monohydrate

Topaz P

Uranium (at 4.2 'K) q

Zinc sulphate
heptahydrate g

Tetragonal material

Cee

4.270

2.740

0.353

4.720

1.582

1.594

2.330

0.900

0.990

7.930

0.570

0.400

0.950

0.870

0.980

9.200

2.660

0.437

0.346

13.100

8.920

0.830

C„

3.720

5.230

0.550

4.440

1.-608

1.598

1.650

1.740

1.980

5.9GO

2.290

0.620

2.560

2.720

2.860

6.700

7.730

0.299

0.380

12.600

2.860

1.720

&ee

Q.170

3.410

0.169

2.830

1.106

1.098

0.870

1.820

2.010

7.900

1.740

0.V40

3.460

3.080

3.200

6.100

6.050

0.314

0.620

8.400

3.470

2.000

C2s

1.570

3.560

0.321

2.330

0.796

0.801

2.010

1.820

2.010

7.800

2.310

0.690

3.200

3.470

3.520

12.800

6.190

0.795

0.410

8.800

11.290

1.980

2.9300

4.4320

1.2190

5.9840

4.6410

4.6670

1.7100

1.6770

1.9530

3.3240

1.7400

1.2800

1.7910

1..5900

1.7940

3.3730

3.9600

2.0750

1.1100

3.5300

19.0400

1.9740

Ammonium dihydrogen
'

phosphate

Indium (at 4.2 K) '

Indiu bis th '

Nickel sulphate ~

hexahydr ate
Paratellurite "

Potassium dihydrogen
phosphate

Rutile ~

White tin" (at 4.2 K)

Zircon ~

0.595

1.684

1.590

1.780

6.590

0.630

18.860

2.818

1.600

0.400

3.871

3.700

2.31G

5.120

1.800

17.330

5.785

0.900

1.890

4.513

3.200

0.210

2.180

2.700

13.620-

3.421

1.360

1.7960

7.4713

8,9790

2.0700

5.9900

2,3380

4.2500

7.3915

4 ~ 5931
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Tetragonal material

Zirconium silicate '

TABLE XVI. (Continued)

42.370

C33

49.000

C44

11.360

Cubic material C44

Calcium fluoride ~
(at3 K)

Diamond

Lead {at O'K) ~

Lithium fluoride d

17.400

107.600

5.554

12.460

3.590

57.600

1.942

6.490

5.600

12.500

4.542

4.240

3.2100

3.5120

11.5990

2.6460

' %. Voigt, Ann. Phys. {Leipz.) 24, 290 (1907).
T. Seshagiri Rao, Proc. Indian Acad. Sci. A 33, 251 (1951).
A. A. Chumakov, I. M. Silvestrova, and K. S. A1eksandrov, Kristallografiya 2, 707 (1957) ISov. Phys. -Crystallogr.

2, 699 g.957)l.
K. R. Lyall and J. F. Cochran, Can. J. Phys. 49, 1075 (1971).
S. Haussuhl, Acta Crystallogr. A 24, 697 (1968).
K. S. Aleksandrov and T. V. Ryzhova, Kristal1ografiya 6, 289 $.961) I.Sov. Phys. -Crystallogr. 6, 228 (1961)],

& K. S. Aleksandrov, T. V. Ryzhova, and A. I. Bostuntseva, Kristallografiya 7, 930 (1962) fSov. Phys -«ysta&»gr
753 {1963)j." R. K. Verma, J. Geophys. Res. 65, 757 {1960).

W. R. Cook, Jr. and H. Jaffe, Acta Crystallogr. 10, 705 (1957).
V. A. Koptsik, Kristallografiya 4, 219 (1959) fSov. Phys. -Crystallogr. 4, 197 (1960)l.

"R.V. G. Sundara Rao, Proc. Indian Acad. Sci. A 30, 173 (1949).
R. F. S. Hearmon, Adv. Phys. 5, 323 (1956).

~ J. Bhimasenachar and G. Venkata Rao, J. Acoust. Soc. Am. 29, 343 (1957).
" S. Haussuhl, Z. Naturforsch. A 24, 865 {1969).

M. Silvestra, K. S. Aleksandrov, and A. A. Chumakov, Kristallografiya 3, 386 (1958)
fSov. Phys. -Crystallogr. 3, 388 (1958)].

I'R. F. S. Hearmon, Rev. Mod. Phys. 18, 409 {1946).

small fraction of the superconducting transition
temperature.

III. DISCUSSIDN

In the hexagonal. lattice, because of transverse
isotropy, all wave vectors occur in symmetry
planes. As a result, general statements" con-
cerning cuspidal edges (Sec. IID) and phonon focus-
ing (Sec. IIE and Appendix) are valid for all wave-
vector directions in the lattice. In orthorhombic,
tetragonal, and cubic lattices, however, such gen-
eral statements are valid only when the wave vec-
tors are confined to the symmetry planes of the
lattice. Note also that since a, &0, a collinear axis
8, always exists for the slow mode in each of the
symmetry pla, nes. A number of solids do not have
acollinear axis 8~ for the fast mode (see Tables
VI-VIII) because focusing (defocusing) in the sym-
metry plane of the wave vectors does not occur
both parallel and perpendicular to the g axis. It
is also evident, that for wave vectors confined
to a given symmetry plane, focusing (defocusing)
of the T, mode in this plane about the q axis must
result in defocusing (focusing) of this mode, for

this plane, about g~.
In orthorhombic lattices cusps about 8, in the

(001) plane are very rare, occuring in only one
material in Table VI, i.e. , in potassium penta-
borate. Cusps about 8, are more common in the
other two symmetry planes. In the (100) plane
they occur in 3 of the 22 materials listed, and in
the (010) plane they occur in 9 of the 22. Eight
of the orthorhombic materials, however, have
cusps about both the [100] and [010] directions
in the (001) plane.

In tetragonal materials, however, cusps about
8, in the (001) plane are far more frequent than
they are in orthorhombic materials. They occur in
nearly half the tetragonal materials in Table VII.
Further consideration reveals that cusps about 8,
are almost evenly distributed among the (010),
(110), and (001) planes. Cusps about the [001] axis
are rather rare and exist in only two of the tetra-
gonal materials of Table VII because only indium
and indium bismuth, show a 8, value in the (010)
or the (110) planes. Indium, indiumbismuth, and
ruti1e are the only tetragonal materia1s listed
which have a cusp about the [100] direction in the
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Tetragonal material

Zirconium silicate '

TABLE XVI. (Continued)

4.850

Ci2

7.030

Cq3

14.950 4.5310

Cubic material C44 Cq2

Magnesium oxide ~
(at 4.2 'K)

Niobium (at 4.2 'K) ~

Silicon (at 3 'K) @

Sodium fluoride +

30.670

25.231

16.770

10.850

15.760

2.998

8.040

2.900

9.371

13.617

6.500

2.290

3.5800

8.6206

2.3301

2.8510

q E. S. Fisher and D. Dever, Phys. Rev. 170, 607 (1968).
W. J. Price and H. B. Huntington, J. Acoust. Soc. Am. 22, 32 (1950).
B. S. Chandrasekhar and J. A. Rayne, Phys. Rev. 124, 1011 (1961).

' Y. C. Akgoz, J. M. Farley, and G. A. Saunders, J. Phys. Chem. Solids 34, 141 (1973).
" Y. Ohmachi and N. Uchida, J. Appl. Phys. 41, 2307 (1970).

H. M. Barkla and D. M. Finlayson, Philos. Mag. 44, 109 (1953).
J. B. Wachtman, Jr. , W. E. Tefft, and D. G. Lam, Jr. , J. Res. Natl. Bur. Stand. (U.S.) A 66, 465 (1962).
J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. 120, 1661 (1960).

Y J. Bhimasenachar and G. Venkataratnam, J. Acoust. Soc. Am. 27, 922 (1955). Value of
C&3 was corrected by Ref. f.' H. Ozcan, L. Cartz, and J. Jamieson, J. Appl. Phys. 45, 556 (1974).

D. R. Huffmann and M. H. Norwood, Phys. Rev. 117, 709 (1960).
+H. J. McSkimin and W. L. Bond, Phys. Rev. 105, 116 (1957).
~ D. L. Waldorf and G. A. Alers, J. Appl. Phys. 33, 3268 (1962).
d C. V. Briscoe and C. F. Squire, Phys. Rev. 106, 1175 (1957).
"K.Marklund and S. A. Mahmoud, Phys. Scr. 3, 75 (1971).

Calculated using phonon velocities from R. Weber, Phys. Rev. 133, A1487 (1964).
gI'H. J. McSkimin and P. Andreatch, J. Appl. Phys. 35, 2161 (1964).

J. T. Lewis, A. Lehoczsky, and C, V. Briscoe, phys. Rev. 161, 877 (1967).

(010) plane. Notice that of the tetragonal materials
listed only indium bismuth has a cusp about the
[110] direction in the (110) plane. Cusps about
the [100] and [010) axes in the (001) plane, how-

ever, are quite common, occurring in six of the
ten materials listed.

Cusps in the group-velocity surface of the T,
mode are always absent for wave vectors in sym-
metry planes (see Theorem III). Cuspidal edges in

the T, group-velocity surface, however, can exist
for wave vectors in orthogonally intersecting, non-
symmetry planes. As a result, considerable care
must be exercised before a group-velocity sur-
face is given a cusp-free designation. Consider,
for example, the phase-velocity surface of orthor-
hombic gallium in Fig. 1. Note that the T, portion
of the ps' surface in the (001) plane meets the T,
portion in the (010) plane at the [100] axis, and
the T, portion in the (100) plane at the [010] axis.
I3ecause a cusp exists about the [100] axis in
the (001) plane (see Table VI), symmetry con-
siderations require that group velocities in the
(010) plane can also be generated by wave vectors

on either side of the (010) plane. These group
velocities form a second (inner) locus in the (010)
plane and form part of the cuspidal configuration
which extends from the [100] axis toward the [001]
direction on both sides of the (010) plane. A sim-
ilar situation occurs about the [010] axis where,
because of the cuspidal edge in the (001) plane
about the [010] axis, the cuspidal configuration ex-
tendsfromthe [010] axis toward the [001] direc-
tion on both sides of the (100) plane. In tetragonal
indium, there is, in addition, a cuspidal edge about
the [100] axis in the (010) plane, and about the
[010] axis in the (100) plane (see Table VI), so
that a cuspidal configuration extends from the [100]
axis to the [010] axis on both sides of the (001)
plane. Similarly, in cubic calcium fluroride,
the cuspidal edge shown in Fig. 7 around the [100]
axis is part of the cuspidal configuration about the
[011]axis in the (100) plane which extends from
the [011] axis toward the [100] direction.

Note that the presence of cuspidal edges can
give rise to a large phonon-amplification factor.
The amount of enhancement is related to the width
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of the cusp (the narrower the cusp the higher the
phonon intensity). The highest phonon intensities
in Tables IX and X occur where the direction of the
group velocity varies on the average most slowly
with wave-vector direction within the 2' mesh used
in the computer calculations. For some of the
materials listed in Tables IX and X this occurs in
the vicinity of a cusp (see Tables VI-VIII), but
for others where conditions for a cusp are nearly
satisfied.

A cusp in a symmetry plane about a principal
axis may not give a high phonon intensity within. a
1 deviation from that axis if the group-velocity di-
rection varies quite rapidly with wave-vector
direction in the other symmetry plane. Gallium,
for example, has a cusp about the [010] axis in
the (001) plane (see Table VI), but in the (100) plane
near the [010] direction calculations show that the
group-velocity direction varies more than twice
as rapidly as the wave-vector direction. It should
not be surprising, therefore, that the resulting
phonon intensity along the [010] axis is only unity.

However, high phonon intensities can exist in
the absence of a cusp if the group-velocity direc-
tion varies slowly with wave-vector direction in.

bath symmetry planes. Orthorhombic aragonite
gives a good example of this (see Tables VI and

XL) There is no cusp about its [010] axis, but
near this axis the group-velocity directions for
both transverse modes varies slowly with wave-
vector direction in both the (001) and (100) planes.
The result is a phonon intensity along the [010]
axis of 23.8 for the slow transverse mode and 4.0
for the fast transverse mode. High intensities can
also occur in the longitudinal mode when the
group-velocity direction varies slowly with wave
vector. An excellent example is paratellurite
in the (001) plane, where conditions for a cuspidal
edge about 0&= 45 in the fast mode are more favor-
able than in any other known material.

Note that the orthorhombic lattice can not have
double cusps along its principal axes generated by
wave vectors confined to symmetry planes. This
is evident from Fig. 1 which shows that for a given
surface, a T, portion in one symmetry plane always
meets a T, portion in the adjoining symmetry
plane, However, double cusps can exist along the
[001] axis in tetragonal and cubic crystals even
when wave vectors are confined to symmetry
planes. In fact, indium has a cusp along the [001]
direction in all symmetry planes which contain the
[001] direction. This ispossiblebecause, as is shown
in Fig. 2, all T, portions on symmetr y planes can
meet at a common point along the [001] axis in
tetragonal and cubic crystals. Figure 2 also in-
dicates that double cusps can not exist along the
[100], [110], and [010] directions in a tetragonal

crystal (when wave vectors are confined to sym-
metry planes) because, for a given surface along
these directions, all T, portions in symmetry planes
meet T, portions.

Materials for which the ratios of the elastic cons-
tants are similar have similar anisotropies and
focusing properties. Cubic materials, for ex-
ample, with similar anisotropies have many sim-
ilar PAP values (see Table XIII). Table VIII shows
that calcium fluoride, niobium, and sodium fluoride
(which shall be designated Set A) all have cusps
about the (110) directions and near the (111) di-
rections, while lead, lithium fluoride, magnesium
oxide, and sili.con (desi.gnated as Set B) all have
cusps about the (100) and (110) directions. As a
result energy flow is enhanced along the (100)
and (110) directions in Set B, but along the (111)
and (110) directions in Set A. Thus for Set B the
thermal conductivity is larger along the (100) and
(110) directions than along the (111)directions and
for Set A higher along the (111) and (110) di-
rections than along the (110) directions. ""

Furthermore, calculations of A„show that the
effects of focusing can actually reverse the aniso-
tropy one obtains by neglecting the angular de-
viation between the phase and group velocities.
For example, magnesium oxide would have a ther-
mal conductivity z, of 0.0234 in the (100) di-
rections and 0.0244 in the (111) directions if
focusing were neglected, but when focusing effects
are considered the correct thermal conductivity
z„ is 0.0340 in the (100) directions and 0.0231 in
the (111) directions. Similarly, for rutile, v, is
0.0303 and0. 0381 for the [001] and [110] direc-
tions, respectively, but the correct thermal cond-
ducitivity K„ is 0.0436 and 0.0316, respectively,
for these same directions.

Finally, note that phonon focusing, a general
property of elastically anisotropic crystals, also
occurs in crystal lattices of still lower symmetry.
Strong focusing is predicted to have a dramatic ef-
fect upon the phonon conductivity at very low tem-
peratures provided the phonon mean free path can
approach sample dimensions.
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IV. APPENDIX

Since group-velocity vectors in a symmetry
plane can be generated by wave vectors on. either
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side of that symmetry p1ane, the followin. g three
theorems B,ssume that the wave vectors, and thus
their corresponding group-velocity vectors are
restricted to the symmetry planes of the crystal
lattice.

TheoremI. If a collinear axis 8& in a symmetry
plane exists, any focusing (defocusing) occurring
about 8& in the fast mode must be accompanied by
defocusing (focusing) of the fast mode about both

g and q, axes, and conversely.
For focusing (defocusing) of the fast mode about

8~,

a7 a7 —a5 + a7 —a6

(ja, I

—a,)(ja, I
—a,)(a', —a,a,) & 0. (A3)

Because of Eq. (48) and inequalities (A2) and (A3),
respectively, both focusing (defocusing) about
8z require

a, a —a, + a, —a,
x [z (a + a ) (a6 as) + ( I a7 I+ a&) (I" I

—")] & 0

(A4)

Theorem II. If a collinear axis 8, in a symmetry
plane exists, any focusing or cuspidal edge occur-
ing in the slow mode about 8, must be accompanied
by defocusing of the slow mode about both q and

Similarly, an,y defocusing of the slow mode
about 8, must be accompanied by focusing at both
g and g, , or a cuspidal edge about either g or g~
or both axes. The converse of the two previous
statement is also true.

For a cuspidal edge, or focusing (defocusing) of
the slow mode about 8, -

x [g (a~+ a,)(a, —a,)+( I a, I
+ a,) ( I a,

I
—a,)] & 0.

Proof: From Figs. 3 and 4, based upon Eqs. (20)-
(22), it is self-evident that for a 8& to exist, and
for focusing (defocusing) to occur about 8&, that the
values of 8„versus 8~ must intersect the line 8„
= 8~ at 8„= 8&. Since g and g, are the only other
collinear axes for the fast mode, focusing (de-
focusing) about 8& must thus be accompanied by
defocusing (focusing) aboutboth 7i and q, , and
conversely.

For a 8I to exist, Eq. (26) requires

(la, I
—a,)(ja, I

—a,) &0. (Al)

Furthermore, for a 8& to exist, and for defocusing
to occur about q and q, , inequality (Al) and Sec.
II E require

a,)(l a. I
—a,)(a:—.a.a.) ' o (A2)

but for focusing about these same two directions
requires

a, a + a, + a + a,
x [& (a, + a,) (a, —a,) + (a, —

I a, I
)(as+ I a, I ) ] & 0.

Also, for a cuspidal edge about 8, or for focusing
about 8, , defocusing must occur about both g and

g, . Together with inequality (A5) this requires

(a, + ja, j)(a,+ ja, j)(a,a, —a', ) &0, (A6)

but for focusing about these same two directions
requires

(a, + ja, j)(a,+ ja, j)(a,a, a', )& 0. (A7)

Because of Eq. (47) and inequalities (A6) and (A7),
respectively, both focusing (and defocusing) about

8, require

a, a + a, + a + a7

x [p (a, + a,) (a,.—a,) + (a, —
I a,

I )(a, +
I
a,

I )] & 0 .

(A8)

TheoremIII. Cuspidal edges in the transverse
T, mode, and the fast mode about any collinear
point in a symmetry plane, are always absent in
an elastically stable solid.
Proof: For the T, mode in any symmetry plane

d8~ a, sec'8„
8 a&sec 8q

(A9)

Since a, &0, a, & 0 therefore, d8~/d8„& 0 for all
values of 8„, and. a cuspidal edge is impossible.
For the fast mode. a cuspid@1 edge about the g
axis requires

a, +ta, l

a, + (2a', —a,a,)/ I a, 1

Since a, + ja, I
& 0, this requires

Proof: From Figs. 3 and 4, based upon Eqs. (20)-
(22), it is self-evident that for a 8, to exist, and for
a cuspidal edge or focusing (defocusing) to occur
about 8, , that the values of 8, versus 8~ must
intersect the line 8„=8, at 8~=8,. Since g and

q, are the only other collinear axes for the slow
mode, a cuspidal edge or focusing about 8, must
be accompanied by defocusing about both g and

g, , and conversely. Similarly, defocusing of the
slow mode about 8, must be accompanied by focus-
ing of the slow mode about both g and g, , or a
cuspidal edge about either g or g„or both axes,
depending upon the strength of the inequality a7

a,a,. Conversely, focusing of the slow mode
about both g and g, , or a cuspidal edge about
either g or g, or both axes, must be accompanied
by defocusing of the slow. mode about 8, .

For a 8, to exist, Eq. (25) requires

(a, + la, l)(a, + ja, j)&0. (A5)
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or
a, + (2a,' -a,a,)/~ a,

I
& 0

(A10)

but

(C„+2C,6)' —C„C„&0 if a7& 0,

C12 Ci~C22 & 0 if a7 & 0;

(A18)

(A19)

Since a cuspidal edge about 8& requires defocusing
about both pand q, , inequality (Al) and Sec. IIE
require

(fa, /
a5)+(fa, J a6) & 0 (A12)

and because of inequality (A4) requires

—,'(a, +a,)(a,—a,)+((a, )+a,)((a, (
-a,)& 0.

(A13)

Inequality (A13) reduces to the following conditions
for each of the symmetry planes of the orthorhomb-
ic lattice. For the (010) plane:

If a, &0, then a cuspidal edge requires 2a',
& a,(a, —a, ) which is impossible since a, & 0 and
(a, —a,) & 0 for all symmetry planes. If a, & 0,
then a cuspidal edge requires 2a', & a,(a, + a,) which
again is impossible since (a, + a,) &0 and a, & 0.

For a cuspidal edge about the g, axis the proof is
similar but with a, replacing a4, and with a, and
a, interchanged. Results for a„a,& 0 2nd for the
T, mode were previously proved by Musgrave, "
by considering the inverse phase-velocity surface.

For a cuspidal edge to exist about 8&, Eq. (48)
and inequalities (A2) and (A4) require

4((a, (
—a,)((a, ( a,)(a', —a,a,)

a, Q7 Q5 + g7 —a,
x [~ (a,+a,)(a, —a,)+((a, [+a,)(ja, (

—a,)] .

(A11)

C'„—C„[g(C„+C„)+C66]» if a, & 0. (A21)

Inequalities (A15), (A17) and (A19) violate con-
ditions (6), and (A21) violates condition (11) for
elastic stability. Inequalities (A14), (A16), (A18)
and (6) give the necessary but not sufficient con-
ditions on a7 for a cusp about 0& in the orthor-
hombic lattice. For the (010) plane:

C,~+ C„& (C„C~~—Cia)/4C„& 0,
the (100) plane:

C„+C4, & (CnC, 3 —C,',)/4C44 & 0,
and the (001) plane:

C„+C6, & (C„C22—C,',)/4C„&0.

(A22)

(A23)

(A24)

Similarly, inequalities (A20) and (11) give the
necessary but not sufficient conditions on a, for a
cusp about 8& in the (110) plane of the tetragonal
lattice:

C„+C~~ & {C„[g (C„+C„)+ C„]—C,'J /4C~~ & 0.
(A25)

and for the (110) plane of the tetragonal lattice to

(C,~+2C44)' —Cs, [g (C„+C„)+C~, ] & 0 if a, &0,

(A20)

but

(C~~+ 2C„)'—C„C,~ & 0 if a7 & 0,

Cjs- C„C»& 0 if a, & 0;
the (100) plane:

(C„+2C44)' —C22C~~& 0 if a7& 0,
but

C,'3 —C22C33& 0 if a7& 0;
the (001) plane:

(A14)

(A15)

(A16)

(A17)

Necessary but not sufficient conditions on a, for a
cusp about 8& for the other symmetry planes of
tetragonal, hexagonal and cubic lattices are
easily obtained from inequalities (A22)- (A25).

Since a, &0, a cusp, if one exists about 8z, will
most likely occur when a, » [a, ), a, » (a, ~. For
finite a„ the most extreme case consistent with
el3stic stability occurs when a, =a, = 0, for which
inequality (A11) reduces to 2a, &a, + a,. Inequality
(A26) is impossible to satisfy since a, & a, when

a, =a, =0 for all symmetry planes in an elastically
stable solid.
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