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Evidence for a paracrystalline bcc lattice in molten alkali metals
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It is proved that the structure of molten Li, Na, and K is given by a convolution polynomial with bcc
microparacrystalline domains with a mean interatomic distance ro larger than in the solid state at the melting
point and paracrystalline distance fluctuations g;k of (12-16)%. An fcc lattice can be excluded. Within the
errors of experiments body-centered-tetragonal lattices are also possible, but the ratio c/a must lie between
0.9 and 1.1. From the density and ro values it can be concluded that about (2—5)% of the atoms lie on
interstitial places or belong to fcc microdomains. This effect is attributed to the lower packing density of the
bcc lattice, since in fcc melts (for example, lead) ro does not change at the melting point and instead of
interstitials atomic vacancies appear.

I. INTRODUCTION

Atoms in liquid metals are always interacting
with a great many others; therefore, simplifica-
tions of the kinetic theory of gases are not avail-
able. The structure of liquids plays an important
role in the theory. Bernal and King' have tried
to describe liquid structure using random packing
of hard spheres. The data on random close pack-
ing of spheres from Bernal et al. show quite clear-
ly that such packing has an inherently lower den-
sity than an ordered one.

Kaplow et al. , ' on the other hand, have attempt-
ed to describe the structure of molten lead as a
distorted crystalline arrangement. Their results
were compared with paracrystalline distortions
described by Hosemann et al. ' Both studies are
capable of reproducing the observed experimental
results, but they have different physical interpre-
tations for their different formulations.

The paracrystal is based on the idea that each
atom in a liquid spends statistically much of its
time confined by its neighbors to a comparatively
restricted region. This means that the mean local
atomic environment in a liquid in spite of its relative
larger fluctuations is not very different from that
in a solid. However, the paracrystal is described
according to Ornstein and Zernike's idea4: Each
atom has a priori the same distance distribution
from its neighbors. Contrary to Ornstein and
Zernike this distance distribution is not a spher-
ically symmetric one. Mathematically it can be
described in terms of a convolution polynomial
so that long-range order is no longer present.
This corresponds with the experimentally ob-
served results. The theory of paracrystals has
been applied to analyze the structure of various
solids, for example, promoted ammonia catalysts'
and polymers. ' ' This theory has recently been
employed for describing the radial distribution of
molten metals. '" The synthesized radial distri-

bution functions (RDF) of Refs. 3 and 9 are based
on the paracrystalline distorted fcc lattice, they
can reproduce the observed experimental RDF of
copper and lead.

In this work experimental RDF data of the al-
kali group are investigated because these are
broadly studied and their crystalline structure is
bcc instead of fcc. Ruppersberg" has shown that
a classification of liquid metals is possible with
regard to their reduced density. Willmann and
Hosemann" found that the reduced pair distribu-
tion functions of liquid alkali metals are different
from those of other liquid metals. Nevertheless,
it is still doubtful whether one can fit the experi-
mental RDF of any molten metal with only one
lattic type or if there exists no unique solution.
We will analyze the structure of liquid alkali,
therefore, on the basis of different paracrystal-
line-distorted lattice types. Furthermore we will
try systematically to fit the experimental RDF of
the alkali group with the changing c axis of their
unit cell. In other words, the paracrystalline-
distorted bcc lattice will be transformed to the
parac rystalline-distorted body-centered tetragonal
(bct) which with increasing c/a at c/a=a 2 be-
comes the fcc lattice.

II. PARACRYSTALLINE DISTORTIONS AND

COORDINATION STATISTICS

The x-ray scattering pattern of a liquid is re-
lated to the radial distribution function g(r) by
the following equation:

si(s}=4sS,f r[S(r}—1}sis(sr}dr,

where i(s). is the intensity function. [i(s) 1(s)/f (s)-
-l, I(s) is the scattered intensity, and I,(s) rep
resents the coherent part of the normalized in-
dependent scattering of the atoms. ] This equation
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was first given by Zernike and Prins. " The re-
lated quantity, g(r) —1, is called the pair correla-
tion function which tends to zero at larger y, cor-
responding to the fact that the correlation is then
lost. g(r)p, dv is the probability of finding an
atom in the volume element dv at a distance r
from a reference atom in the liquid. p, is the
mean atomic number density.

In order to analyze the liquid structure we will
describe some of the important properties of a
paracrystalline lattice in terms of convolution
polynomials which are connected to the radial
distribution function. The idea of describing the
pair correlation function in a liquid by means of
paracrystalline lattice has been developed in a
series of papers by Hosemann and co-work-

Lemm '5 Willmann, and Hosemannx' and
Steffen and Hosemann. ' The essential point is
that the distance statistics of any two atoms can
be calculated by convolution products from a
limited number of fundamental statistics which
describe the distribution of nearest neighbors.
Let us consider, for instance, three atoms a„
a„and a, : I et us assume that H, (x, ) is the dis-
tribution of ao and a, (x, =R „), and H, (x,) is the
distribution of x, = R, , then under the condition

Qg Q2

that correlation between x, and x, may be neglec-
ted, the distribution of x = R, = x, + x, is the

Qo 02
convolution product of H, and H, :

orthogonal components of x);

r„=r x',k= (x, —&x,&)(x,—(xk&)H„„(x)dv. (6)

The mean square fluctuation in some direction
s (s is a unit vector with components s,) is given
by the equation

[s ~ (x - &x&)]'H», (x) du

(6)

Since only the spherical average of z(x) is ob-
servable, we have to integrate over a sphere of
radius x and thus we can connect the RDF with
the coordination statistics by the equation

47)r'g(r) p, = z(x) df= Q H„„,(r),
Ixm =~ aI ~

where H», (r) is the spherical average of H„»(x):

If the shape of the function H», (x) is close to the
spherical form, we may use the following approxi-
mation for this function:

where

H(x) = H)(xy)H(Z2)6{x —x~ —x2) d)J dv, ~ass x d~» = x ant (10)

H, (x,)H, (x —x, ) du, = H, *H, (x), (2)
is the distance of the centroid of the function

H„»(x) from the origin. The width 6 is defined
by Eq. (6) with

where 5(x- x, —x, ) is the Dirac 5 function. Ac-
cordingly, the coordination statistics of a three-
dimensional lattice as represented by Hosemann
and Bagchi" is

s = s„„=&x&„„/i&x&„„i
.

For the case of a bcc lattice, the unit vector
is given by the equation

2'(x) = PH»)(x),
hkl

(3) s», = (he, + he, + le,)/(h'+ h'+ l')'~ ';

and for the case of the bct lattice, we have

(12)

where

hk l(

=5(x)*(*H «H * ~ ~ )

*(*H,«H, « ~ ~ )«(«H, «H, * ~ ~ ~ ).
H„H2, and H, are the coordination statistics in
the directions of the three edges of the unit cell.
Each factor («H,. *H, * ~ ~ ~ ) represents a. p,. fold-
ing of H, where the p,.'s (i = 1,2, 3) are the mini-
mum number of steps to reach the given atom
at position (h, 0, l) from the origin (0, 0, 0).

The shape of the function H„»(x) is character-
ized by the fluctuation tensor T,.~ which is defined
by second-rank moments of H», (x) (x, and x„are

s„„=(he, + he, + l~e, )/(h'+ h'+ l'z)'~',

where e„e„and e, are three orthogonal unit
vectors and g is the ratio of the lattice constants,
c a.

III. APPLICATION TO THE STRUCTURE OF MOLTEN

ALKALI ELEMENTS

The results of the structure analysis of liquid
lead carried out by Steffen and Hosemann, which
we have mentioned above, indicate that the struc-
ture of the melt possesses some relationship
with the structure of its crystalline state. That
is to say the structure of liquid lead can be des-
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cribed by means of a paracrystalline-distorted
fcc lattice.

In order to find out whether such a relationship
can also be found in the alkali elements which
have a bcc lattice in the solid state, we have first
transformed the structure factor of liquid lithi-
um, sodium, potassium, rubidium, and cesium
measured by Gingrich and Heaton. " In the case
of liquid sodium and potassium more recent ex-
perimental data from Greenfield et al."are avail-
able. These are considered to be more accurate
than those of Gingrich et al. and are in good agree-
ment with the work reported by Huijben et al."
We have therefore analyzed also these data and
compared the resulting RDF with that obtained
from Gingrich's data.

The number of the fundamental statistics needed
to describe some type of paracrystalline lattice
depends on the degree of symmetry. In the case
of the bcc lattice we can build up the whole RDF
'on the basis of one fundamental statistic H, (x)
which describes the distance-vector distribution
between an atom in the position 111 and the ref-
erence atom at 000. The statistics H, (x) and

H, (x), referring to the atoms in the positions 1T1
and 111), are obtained from H, (x) by correspond
ing rotations (see Fig. 1). On account of sym-
metry, the tensor T,, has two equal main axes
orthogonal to the [111]direction. From Eq. (4)
we may then calculate the coordination statistics
H„»(x) of an atom in any position heal of a —,', part
of the lattice defined by the conditions

(1,T, 1), and (1,1, X):

(h, k, l)=p, (1,1,1)+p,(1,I', 1)+p,(1,1,1). (15)

The coefficients p] p2 and p3 are non-negative
on account of condition (14) and define the folding
powers occurring in Eq. (4) in this segment of the
space. Due to symmetry, the spherical average
of z(x) can be calculated from the coordination
statistics H„»(x) restricted by condition (14) and
the other parts of the lattice are taken into ac-
count by. multiplication with the corresponding co-
ordination numbers.

In the case of the bct lattice, because of its
lower symmetry we need one more fundamental
statistic [H,((T, 1, 1)}]in addition to the three sta.—

tistics H„H„and H, under the conditions l ~ h
& k & 0 (see Fig. 1). Furthermore, it is convenient
for the calculation of the convolution products to
represent the coordination statistics by Gaussians
[Eq. (9)] since these functions do not change their
character after convolution operations. The
square of the fluctuation at a given position heal

is just the sum of the squares of the fluctuations
of the individual coordination statistics times
their folding powers.

However, from an inspection of the experimen-
tal RDF (asymmetry of the first peak) we must
conclude that the fundamental statistics cannot
be symmetric so that it is necessary to use two
Gauss ians,

h~ k~ Z~O. (14) H, (x) = o.H, (x) + (1 —o.)H«(x) (16)

We represent. the vector (0, 0, l) as a linear com-
bination of the three basis vectors (1,1,1),

[00&]

Hg [111]

[~00]

H [ill]3

FIG. I. Fundamental statistics for describing the
paracrrystalline bcc and bct lattice.

whose centers do not coincide. Such a "bimodal
statistic" has first been discussed by Hosemann,
Vogel, and Weick" and its application to liquid
lead and physical interpretation have been re-
ported by Steffen and Hosemann. ' According to
this interpretation, H, describes the distances
within the paracrystalline microdomains (intra-
particle distances) an6 H» the distances between
neighboring atoms belonging to different clusters
(interparticle distances).

Figure 2 shows three cuts of the bimodal fun-
damental statistic H, (x) of liquid lithium, sodium,
and potassium at 180, 100, and 65 C, respec-
tively, along the (110) plane. With increasing
atomic number they become more disklike and
broader (Table I). The shape of the function

H», (x) is almost spherical and therefore the use
of equation (9) in the present work is justified.
[We have checked the validity of Eq. (9) which is
exact only in the case of spherical symmetry by
performing the spherical average [Eq. (8)] nu-,
merically. In the present case no significant dif-
ferences occurred. ]
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FIG. 2. Contour lines of the fundamental statistic
in the (110) plane. The increment of the contour line is
o.o5 A- ~.

IV. RESULTS AND DISCUSSION

The synthesized RDF curves based on the bcc
lattice are shown in Fig. 3 in comparison with the
experimental curves of molten lithium, sodium,
and potassium obtained from Gingrich's experi-
mental structure factor. " The same was done

with the experimental data of liquid sodium and
potassium measured by Greenfield et al. (see Fig.
4). The positions of the peaks and their profiles
of these synthesized curves agree very well with
the experimental data in both cases. However,
the widths of the fundamental statistics are a
little different, which results from the fact that
the peaks in Fig. 4 are somewhat higher than in
Fig. 3. Fittings have also been done for rubidium
and cesium; except for the second maximum, the
positions of the calculated RDF curves are in
good agreement with experiments. Since we do
not know whether the disagreement in the second
maximum could result from unaccurate experi-
mental data or from physical effects, we ignore
the results on Rb and Cs in the present work. The
parameters which give the best fit to the observed
experimental RDF curves are shown in Table I.
r, = r, + P&r is the position of the center of gravity
of the coordination statistic H„r, is the first-
nearest-neighbor distance of the first statistic
HI and r, is the first-nearest neighbor distance
of the solid state at the melting point. A~ is the
difference between interparticle and intraparticle
distances. P is the percentage of the second sta-
tistic; g„, g„, and g;, are the fluctuations of
the edge vector a, in the [100], [010], and [001]
directions respectively, related to its mean
length a, . a„b„and c, are the corresponding
widths of the fundamental statistic H, [Eq. (13)]
and a» is the width of the second part of the fun-
damerital statistic H«. To reduce the number of
parameters, we chose the spherical Gaussian for
the second part of the fundamental statistic H„.
The mean densities p„' are calculated on the basis
of the paracrystalline unit cell [= 2/(2r, /~3' (A ')]
These calculated mean densities are always
smaller than the experimental densities p„while
for molten lead (fcc melt) the contrary is the
case. The difference can be explained in the fol-
lowing way:

The bcc lattice is not the most dense packing.
Atoms can penetrate into the interstices of the
bcc lattice above the melting point. This causes
statistically an increase of the local atomic den-
sity in the melt. Another cause could be that
a small part of the paracrystalline microdomains
exist in the form of a more ordered close pack-
ing (for example, fcc lattice). It is interesting
to mention that in the case of lead, ' r, = ~, at the
melting temperature. The observed macroscopic
density p„however, changes at the melting
point. This apparent discrepancy may be explain-
ed by an increase of vacancies during the phase
transition. On the other hand, inthe case of li-
quid Li, Na, and K r, is larger than r, (see Tab-
le I). The same has also been observed in the
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TABLE I. Statistical parameters of the synthesized BDF.

Element
& |'c)

Lattice type
Reference

Li
180

17
fcc

18

Na
100

17
fcc

18 17
bcc fcc

18

rg (A)
rg (A)
rp (A)
p (%)
r, Ql
egg (%)
al Ql

Sr =c& (A)
rr .(A
pp (A )

3.12
0.17
3.16

20.5
3.067

3+21
0.17
3.24

18.7

13.2 15.1
0.41 0.53

13.2 16.6
0.41 0.53
0.57 0.55

0.04373

3.71
0.28
3.79

29.8

12.3
0.45

16.7
0.62
0.45

3+71
0.28
3.79

29.8

3.88
0.04
3,88

10

13.6
0.53

14.6
0.57
0.51

3.737
9.3
0.35

15.5
0.58
0.53

0.0243

3.86
0.15
3.88

10

11.5
0 44

14.1
0.54
0.50

4.51
0.46
4.72

45

11.5
0.52

15.5
0.70
0.70

4.51
0.46
4.76

55

7.0
0.32

13.3
0.60
0.68
0.01276

4.61
0.25
4.72

33.7
4.530

13.6
0.63

13.6
0.63
0.79

4.75
0.47
4.81

13

11.3
0.54

13.6
0.65
0.71

case of liquid gallium. " Therefore the coordina-
tion numbers of Li, Na, and K in the melt are ap-
proximately 2%-5% larger than in the solid
state, while that of Pb is 2%-4% smaller than in
the solid state.

Steeb and Prokhorenko have compared the
ratios of the individual interatomic distances of
the solid state with the positions of the peaks in
the liquid state in order to check the correlation
between them. The disagreement of the distance

C)
CA
I

C'A

CV

—exp
--- bcc

~ ~ ~ fcc

Li 180OC

0
CN

I

C7l

tV

-- —bcc
~ ~ ~ fcc Nci 100oC

0—

Na 100OC

K 65oC

K65C

0

2 4 6 8 10 12 14 16. 18 20
r

FIG. 3. Experimental RDF ( ), Gingrich et al.
(Ref. 17), in comparison with the synthesized RDF

. based the bce (-----) and fcc ( .")lattice.

I I I I I I I I I

2 4 6 8 10 12 14 16 18 20
r [A]

FIG, 4. Experimental RDF ( ), Greenfield et al.
(Ref. 18), in comparison with the synthesized RDF based
on the bcc (-——) and fcc ( - ~ .) lattice.
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Li )80oC

o /,
I
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N

-6-
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rr r rr,

FIG. 5. Comparison between the positions of the maxi-
ma (I, II) of the experimental RDF and the interatomic
distance of the bcc-paracrystal. The peaks are weighted
by the corresponding coordination numbers.

ratio between the two states leads Prokhorenko
to conclude that there is no relationship between
the two states. The explanation of these discrep-
ancies is obvious in the light of the paracrystal-
line state. Each RDF peak is composed of sev-
eral different interatomic distances (Fig. 5) and

its position shifts, if the coordination statistics
become broader (Fig. 2). The results for the bct
lattice whose axial ratio cia is ~0.9 or ~1.10 are
in good agreement with the experimental RDF
curves.

The synthesized RDF curves based on the fcc

lattice. are shown in Figs. 3 and 4 by dotted lines
in comparison with the experimental RDF curves
of molten Li, Na, , and K. In the case of sodium
and potassium the second peak shifts to a smaller
distance r. The third, fourth, fifth, and sixth
peaks of lithium and sodium shift, on the other
hand, to larger-~ values and their amplitudes
are more strongly damped. The nonrotational
symmetrical statistics (g» wg») have also been
fitted, but no improvement can be obtained. It is
obvious that the fcc synthesized RDF cannot cor-
rectly describe the observed experimental RDF
curves of molten lithium, sodium, and potassium.
However, this misfit decreases with increasing
atomic radius in the alkali elements. On the
other hand, the difference between the synthesized
bcc and fcc curves tend to decrease. Obviously
this can be due to the weaker cohesive forces in
potassium" compared with lithium and sodium.
Nevertheless, this can also depend on the elect;ron
configuration of the atoms.
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