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By analogy with the change-in-self-consistent-field (hSCF) method of atomic physics, the work function of
a metal surface is computed as the difference between the total energy of the system in its final state, where
one electron is missing from the metal and removed to a large distance from the surface, and its initial state,
where the metal is charge neutral. Our hSCF expression is a generalization of one given by Lang and Kohn,
who assumed the electron density profile to be that of a jellium surface. The ASCF expression also reduces
in the appropriate limit to an expression derived by Mahan and Schaich. We show that the bSCF expression
is much less profile-sensitive than other exact expressions for the work function and is therefore well suited
for use with approximate profiles. We apply our "variational self-consistent" profiles (more realistic than
jellium profiles) to evaluate the hSCF work function for a few selected surfaces of simple metals, among
them the three low-index faces of Al, for which agreement with experiment is found to be good.

I. INTRODUCTION

This paper is concerned with the accurate calcu-
lation of the face-dependent work function of a
metal within the density-functional theory of the
inhomogeneous electron gas." The question of
accuracy arises for any approximate solution of
the metal-surface problem. Examples of such
approximate solutions include those in which the
total energy is minimized by variation of a small
number of parameters, ' ' those in which a model
problem (such as the jellium surface') is solved
self-consistently instead of the real problem, and
the "variational self-consistent" solutions we have
recently proposed, "' in which the model problem
to be solved self-consistently is itself varied in
order to minimize the energy. Each of these ap-
proximations yields an electron density profile
which is not a self-consistent solution of the real
metal surface problem.

We will present three exact density functionals
IEqs. (2.7), (2.8) and (2.13)] for the work function
of a real surface which are numerically equal for
a self-consistent electron density profile at the
surface. For a non-self-consistent profile these
three expressions can differ. We show rigorously
that the least profile sensitive and therefore the
most accurate expression is the 4SCF expression
[Eq. (2.13)], which takes advantage of the fact that

the charge defect left behind by the escaped elec-
tron is localized at the surface of the metal in or-
der to compute the work function as the difference
between the total surface energy of the system in
its final state, where one electron is missing from
the metal and removed to infinity, and its initial
state, where the metal is charge neutral. This is
of course an extension to a macroscopic system
of the rNCF (change in self-consistent field) meth-
od for calculating ionization energies of atoms. '
Lang and Kohn" were the first to take a MCF ap-
proach to calculate work functions for low-index
faces of simple metals, but they assumed from
the outset that the electron density profiles were
close to those of the jellium surface. Since we
have recently found"' that the electron density
profiles at the surfaces of simple metals are often
not jelliumlike, and in fact depend strongly on the
choice of exposed crystallographic face [see Fig.
1(a)],we have derived the explicit ASCF expression
for a more general electron density profile' at the
surface and evaluated it for our variational self-
consistent profiles.

The 4SCF work functions we calculate agree
within a few tenths of an electron volt with those
of Lang and Kohn. " This numerical confirmation
of the profile insensitivity of the 4SCF expression
suggests that the 4SCF work functions calculated
here should be highly accurate.
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FIG. 1. (a) Face-dependent electron-density profiles
n(x) for the {neutral) surface of fcc Al, calculated by the
variational self-consistent method using the variational
form {1.12). x is the distance from tne jellium edge.
The profile for the (100) face is closest to the jellium
profile. {b) Face dependence of the relaxed surface
charge profile left behind at the Al surface by an escaped
electron, calculated by the variational self-consistent
method using the variational form (1.12). x, the dis-
tance from the jellium edge, is scaled as in (a) to facil-
itate comparison with the electron-density profiles. The
centroids of the surface charge density are, respective-
ly, at 0.16 [{111)l,0.27 [(100)l, and 0.38 [(110)) Fermi
wavelengths outside the jellium edge. (The curves were
obtained for a total surface charge Z = 5 && 10 4 atomic
units. The Fermi wavelength of Al is 6.77 atomic units. )

On the other hand, the other two expressions for
the work function considered here are found to be
highly profile sensitive. Qne of them, called here
the "out" work function, [Eq. (2.8)] gives realistic
(within a, few tenths of an eV) work functions when
evaluated for our variational self-consistent pro-
files, which are therefore shown to be more real-
istic than the jellium profiles, which give "out"
work functions in error by several electron volts
for the metals of higher electron density.

We conclude this introduction by reviewing first
the exact, self-consistent solution for the real
metal surface, and then some approximate solu-
tions.

The ground-state energy of a system of electrons
interacting with static ions via a local pseudopo-
tential tu(r) can be written as a. functional of the
electron number density n(r):

+ J'dr+~(lr-II) (r)
1

Z2+— (1.1)

(Atomic units h=
I
e

I
= m = 1 are used in all the

equations of this paper). The first three terms
of (1.1) are the noninteracting kinetic energy, ex-
change-correlation energy, and Hartree electro-
static energy, respectively, as defined in density-
functional theory. " ILike Lang and Kohn, '"we
will treat the exchange-correlation energy in the
"local density approximation'"; it has recently
been shown that this approximation will produce
errors in the work function of at most a few hun-
dredths of an eV." For the ionic pseudopotential
tv(r) we will use Ashcroft's form. " The pseudo-
potential core radius, and indeed all input para-
meters of our calculation, will be the same as in
Refs. 8 and 10.] The last term in (1.1) is the Cou-
lomb interaction between the ions distributed over
sites T. The energy functional (1.1) is minimized
by the correct n(r). The self-consistent electron
density n(r) is constructed from auxiliary one-
electron wave functions which satisfy Schrodin-
ger's equation with the effective potential

v„,((n};r)= &P((n};r) + fv(r) + p,„,((n};r),
where

(1 2)

(( ) ) ~,n(r') n, (r')-

6v(r) = Q w(
I
r —I

I
)+ dr

I r -r'I '
1

p,„,((n};r) =
( )

Z„,(n}.

Here n, (r)=n9(-x) is a fictitious semi-infinite
uniform positive background of density equal to
the bulk electron density n.

The self-consistent solution of the exact one-
electron Schrodinger equation is laborious, large-
ly because of the three-dimensional spatial vari-
ation of v,«, Eq. (1.2). In an approximate solu-
tion, an approximate density profile is constructed
from approximate one-electron wave functions
which satisfy a Schrodinger equation with v,«((n};
r) replaced by some approximation v,",,(r) which
usually varies only in the x direction (perpendic-
ular to the surface). The "in" superscript is
meant to suggest that this is the effective potential
which goes &s to the calculation of the approximate
density profile n(r). On the other hand, given this
approximate n(r), another approximation to the
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effective potential for the real surface would be

v',"„'({n);r) = @({n);r)+ 5v(r)+ i(,„,({n);r), (1.6)

where P and p,„, are obtained from (1.3) and (1.5)
evaluated for the approximate n(r). The "out"
superscript is meant to imply that this is the ef-
fective potential which comes out of the calcula-
tion of the approximate n(r). Of course v,'«'= v,'«
if and only if n(r) happens to be the self-consistent
solution of the real surface problem (1.1).

If v f f as def ined above depends only on x, the
distance perpendicular to the surface, then so will
n, Q{n) and p,„,{n) (but not 5v). If in addition v~,
tends to a constant as x- -~ (deep inside the met-
al), then

inant source of inhomogeneity in the electron den-
sity. This led us to propose the variational self-
copsistent method, "' which preserves the compu-
tational simplicity of the Lang-Kohn' approach
while accounting for the presence, due to the dis-
creteness of the ion distribution, of an additional
potential in the half space occupied by the metal.
Explicitly, we minimize the surface energy for a
given face of a given metal over a restricted class
of electron density profiles, which have the com-
mon feature that they all go to their jellium value
far inside the metal. The individual profiles n(x)
are obtained by solving self-consistently the one-
electron equations (1.7) and (1.8), with

v,",,({n);x)= ((()({n);x)+V(x)+ (u„,({n);x), (1.11)
1

n(x) = —, dk(k~ —k') [g„(x)]', (1.'7 ) where V(x) is a parametrized fictitious potential
which "mocks up" 5v(r), and again (t) and p„, are
obtained from Eqs. (1.3) and (1.5) evaluated for
the approximate n(x). The two functional forms
we considered' were

(1.8) v(x) = ce(-x)
V(x) =(5v),„e(-x+X)

(1.12)

(1.13)
As x tends to -~, n(x) tends to the bulk density
E and

g,(x)- sin[Ox -y(k)t.
We now describe some different approximate

solutions which arp characterized by different
ways of constructing n,",,(x). The simplest is the
purely variational solution, '." in which v',«(x) is
some analytic function depending on one or more
parameters which are varied to minimize the en-
ergy (1.1).

In the Lang-Kohn6, io approximation which we

refer to as "perturbational self-consistent, " the
discrete lattice perturbation 5v(r) is treated as
a weak perturbation: the "jellium surface" model
problem

vt;, ({n);x)= (t)({n)",x)+ p„,({yg);x), (1.10)

which is obtained from (1.2) in the limit 5v(r)-0,
is first solved self-consistently. Then 5v(r) is
reintroduced as a first-order perturbation to the
surface energy' and work function. "

The discrete-lattice potential 5v(r) is zero far
outside the metal, but has for many metal sur-
faces a la.rge (a several eV) average value (5v),„
inside. Consequently the jellium model profiles
are unrealistic for these surfaces. ' However the
jellium model has the appealing feature that it
leads to a one-dimensional problem with simple
boundary conditions, which can easily be solved
on a computer. Furthermore, it is known to give
a, reasonable description of the bulk, ' so that one
expects the presence of the surface to be the dom-

II. THREE EXPRESSIONS FOR THE WORK FUNCTION

'I'he work function, i.e. , the minimum energy
required to remove an electron from a metal at
zero temperature, is known from experiment'4
and theoryio, a5 to depend on the crystalline face
considered. By definition

W=y({n); )+Z„, Z„, (2.1)

where C and X are variational parameters and

(5v)„ is the (crystallographic face-dependent)
average of f)v(r) over the volume of the semi-in-
finite crystal. Both forms gave similar results
for the surface energies and density profiles; the
calculated energies were lower (and sometimes
significantly so) than those of Lang and Kohn, and

the calculated electron density profiles were often
quite different from those of the jellium surface.
(Of course the Lang-Kohn' calculation would be
recovered from (1.11) by taking V(x) = 0 or con-
stant, i.e., by the special values C =0 or X=+ ~ of
the variational parameters. )

The effect of relaxation of the position of the
first lattice plane after formation of the surface
will be for the most part neglected here, as it
wa,s in our previous work' a,nd that of Lang and
Kohn." We believe that lattice relaxation has
little effect on the work function. ' However, if
such a lattice relaxation has been calculated for
the neutral surface, it need not be recomputed for
the charged surface (as shown in Appendix A).
This latter conclusion has been reached indepen-
dently by Schulte. "
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where E„and E„,are, respectively, the ground-
state energy of the metal containing N and N —1
electrons, the number of positive charges being N
in both cases. Q({n};~) is the electrostatic poten-
tial energy of an electron far from the (neutral)
metal, its distance from the surface being large
enough for it to be in the asymptotic region, but
small compared with any linear dimension of the
crystalline face under study. (In practice and
hereinafter the work function is evaluated for a
semi-infinite metal filling the half space x& 0.)

Using the definition of the chemical potential

(2.2)

Eq. (2.1) can be rewritten as

(2.3)

Lang and Kohn" have shown that in the density-
functional approach the chemical potential is given
by

example, consider the purely variational "in-
finite linear potential model, """in which v,'«(x)
is takentobe aconstantvt«(-~) forx&x, (wherex, is
chosento satisfy charge conservation) and vt„'f(-~)
+E(x —xo) forx&xo. Whenthe slope parameterE is
chosen to minimize the surface energy of jeBium, '
8',„,yields quite reasonable values for the jellium
work function while W„is always infinite (because
v', «(+ ~) is]. This example shows that W„ is sensi-
tive to the asymptotic decay of the electron density
in the region far outside the surface, while 8',„,
depends only on the overall relaxation or "spilling
out" of the electron density after formation of the
surface (and on bulk properties).

So long as the approximate density profile tends
to a constant n as x- -~ (i.e. , deep inside the
metal), the second term on the right in (2.6) be-
comes & kf2„where kf; = (3fr'n)'~' is the Fermi wave
vector. Thus for the variational self-consistent
density profiles

l = 6~{n}/6n(r), (2.4) (2.9)

where E{n}is the exact ground-state energy (1.1)
of the neutral metal. Evaluation of the functional
derivative (2.4) gives

(2.10)

p, = v„f({n};r)+ [6/6n(r)]T, {n}, (2.5)

(2.6)

So far no approximation has been made. But
suppose now that we have an approximate, non-
self-consistent solution to the metal surface prob-
lem. Then there may be an ambiguity in the chem-
ical potential (2.6). We may use the potential v,'«,
defined in the paragraph following Eq. (1.5), which
gives the "in" work function (called the "exact
work function for the model problem" in our pre-
vious work'):

(2.7)

or we may use the potential v',"„', defined in Eq.
(1.6), which gives the "out" work function (called
the "variational work function" —an unsatisfactory
name —in our previous worke):

out Veff( ) & eff&av (2.8)

Of course for a self-consistent solution (v,'«'=v,'«)
these two expressions become identical. They can
however be very different, even for a good ap-
proximation to the electron density profile. For

with v,«given by Eq. (1.2). Since p is a constant
(independent of r), we may replace it by its aver-
age value (p,&„over the volume of the semi-infinite
metal:

= 4fr dx x [n(x) —n6(-x)],
afO

(2.11)

the dipole barrier due to electronic relaxation
after formation of the surface, depends implicitly
on V(x). Here p,„,(n)=6[no„,(n)]/Bn where e„,(n) is
the exchange-correlation energy per electron of
a uniform electron gas of density H. Note that the
"in" (2.9) and "out" (2.10) expressions agree when
V(-~) =(6v&,„; this is guaranteed in one version
of the variational self-consistent method [V(x)
=(5v&,„6(-x+X)]and usually turns out to be ap-
proximately true in the other [V(x) =C6(—x)]. Note
further that (2.9) and (2.10) are both exact expres-
sions for the work function of the "model problem"
in which 6v(r) is replaced by V(x).

In Tables I and II we show the "in".and "out"
work functions and the corresponding dipole bar-
riers D, for low-index faces of several simple
metals, evaluated here using first the jellium mod-
el [V(x) = 0] electron density profiles and then the
variational self-consistent profiles in both ver-
sions (1.12) and (1.13) of the method. Note that
the jellium model profiles, which are face inde-
pendent, predict a face-independent dipole barrier
and "in" work function, and an "out" work func-
tion that varies strongly (by several eV) ) from
face to face (due to the face dependence of (6v&„).
On the other hand, the strongly face-dependent
variational self-consistent profiles predict a
weak face dependence for the work function, in
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Metal & face
PSC VSC-I VSC-jl

TABLE I. "In" and "out" work function in eV for a few

selected metals and faces, calculated from Eqs. (2.9) and (2.10),
respectively, using the approximate electron-density profiles of
the perturbational self-consistent (PSC) scheme (i.e., the jellium
surface profiles) and those of the variational self-consistent
scheme in the versions of Eq. (1.12) (VSC-I) and Eq. (1.13)
(VSC-II). The "in" and "out" work functions as defined in

Eqs. (2.7) and (2.8) would be equal for a fully self-consistent
solution of the real surface problem; note how badly this

equality fails for the PSC profiles.

Metal and face PSC VSC-I VSC-II

Al (111)
(100)
(110)

6.2
6.2
6.2

4.7
7.2
9.8

4.8
6.4
9.1

TABLE II. Dipole barrier D, in eV due to electronic
relaxation after formation of the surface, .as defined in Eq.
(2.11),calculated for the electron-density profiles of the PSC,
VSC-I, and VSC-II schemes (see caption of Table I). The VSC
profiles properly show a strong face dependence ofD, while

the PSC profiles do not.

Al fcc (1 1 1)
(100)
(110)

3.9
3.9
3.9

5.6
3.7
0.9

4.2 4.0
3.8 4.7
3.7 4.5

4. 1

3.9
3.8

Pb (111)
(100)
(110)

4.8
4.8
4.8

0,8
2 9
6.5

0.9
3.1

5.9

Pb fcc (111)
(100)
(110)

3.8
3.8
3.8

7.7
5.7
2.6

6. 1 3.7
4.4 3.8
3.6 4.4

3.9
4.0
3.8

Zn (0001)

Mg (0001) 3.3

4.6

3.7

Zn hcp (0001) 3.8 4.5 3.9 4.3

Mg hcp (0001) 3.7,4.0 ' 3.6 4.2

(110)
(100)
(1 1 1)

1.0
1.0
1.0

1.2
1.8
2. 1

1.0
1.7
2, 1

Na bcc (110)
(100)
(111)

3.1

3.1

3.1

3.1

2.2
1.6

3.0 3.3
2.8 3.0
2.8 2.7

3, 1

2.9
2.7 removal of an electron, we can write (2.12) in

term~ of the surface energy 0 alone:

Wgsc p lim ~(E(sc]' E/sc oj)
1

C~0
(2.12)

where no(r) is the electron density for a state in
which Z electrons per unit area have been carried
off to rest at x = ~, (these electrons still being
counted innc) and the remaining electrons inside
the metal have relaxed. by formation of a surface
charge density Z. Since this relaxation process
leaves the bulk electron density unchanged by the

agreement with all theory" and experiment. "
Clearly the dipole barriers D, of the variational
self-consistent profiles are more realistic than
those of jellium.

The two expressions for the work function pre-
sented so far [Eqs. (2.7) and (2.8)] involve the
chemical potential p, , a bulk property. However,
it is well known from elementary electrostatics
that excess charge on a metal will localize at the
surface. This is true in particular for the re-
laxed charge defect left behind by the electron in
an experiment (e.g. , photoemission) that measures
the work function. As a result, it should be pos-
sible to compute the latter as the difference be-
tween surface-related quantities alone. This is
achieved in the 4SCF expression, our third exact
density functional for the work function, which is
obtained directly from (2.1):

cia
ABC F

C-"0
(2.13)

Since the ASCF expression, Eq. (2.13), may be
somewhat unfamiliar, we pause here to derive
from it a familiar expression" for the contact
potential difference between two different metals.
Consider a parallel plate capacitor in which the
first plate has work function W, and is separated
by a macroscopic distance D (much less than any
lateral plate dimension) from the second, which
has a smaller work function 8;. Let the two
plates be linked by a conducting path which trans-
fers a surface charge —Z to the first plate, and
leaves +Z on the second. Only the surface energy
changes in this process, and by an amount

(2.14)

47TZD= W, —W2 (2.15)

for the potential difference between plates, a re-
sult more conventionally derived" by equating
the chemical potentials of the two metals.

The rNCF expression (2.12) or (2.13) is exact.
Suppose now that we use an approximate, non-

where the term linear in' follows from (2.13), and
the quadratic term arises from the long-range
electrostatic interaction between plates. Minimiz-
ing the energy with respect to Z gives
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W»cz = W& +
OO

9
dx [6v(x) —V(x)]—, n, (x) ~. ..

(2.16)

where 6v(x) is the planar average of 5v(r) and
nc(x) is calculated self-consistently in the pres-
ence of the potential V(x). [Bnc(x)/BZ calculated
here for three faces of Al is displayed in Fig. lb. ]
In the perturbational self-consistent scheme, ""
where V(x) =0 and W„ is the jellium work function,
[i.e. , Eq. (2.9) evaluated for the jellium surface],
equation (2.16) reduces to the one given by Lang
and Kohn '

It is also of some interest to note that the ASCF
work function includes all the physics of the "out"
work function plus electronic relaxation effects
(after removal of an electron) that are neglected '

in W,„,. Thus if nc(x) -nc, (x) is replaced by its
unrelaxed value, -(ZA)/0 almost everywhere in-
side the metal and Z5(x —~) outside, where A is
the surface area and Q the volume of the metal,
then Eq. (2.16) reduces to the "out" expression

self-consistent electron density profile nc(r) to
evaluate E or o. By the variational principle, '
the error in the energy E(nc) is second ord-ex in
the error of n~. Thus we can expect W~cF. , like
o, to be insensitive to the choice of density pro-
file. W»c~ should be a highly accurate expression
when the surface energies of the charged and neu-
tral systems are obtained variationally. (In Ap-
pendix A, we show that only the 4SCF expression
avoids spurious terms that arise from use of an
approximate density profile. We also show there
that in variational' ' and variational self-consist-
ent' schemes the parameters which minimize the
surface energy of the neutral system suffice for
the charged system as well. )

Before deriving a general explicit expression
for W»c~, we note that it must take a particularly
simple form in perturbational"" and variational'
self-consistent schemes. In th'ese schemes we
solve exactly and self-consistently the problem
in which the discrete-lattice perturbation 5v(r}
[Eq. (1.4)] is replaced by a model potential V(x)
[Eqs. (1.12) and (1.13)], and we then reintroduce
5v(r) —V(x) as a, weak first-order perturbation.
Since W„ is the work function to zeroth order in
5v(r) —V(x), Eq. (2.13) evaluated to first order in
5v(r) —V(x) is just

in this relaxation when an approximate density
profile is used, but second order when the exact
profile is used. These second-order corrections
to "Koopmans' theorem"" vanish as the volume
of the system becomes infinite.

III. EXPLICIT 6SCF EXPRESSIONS

While equation (2.16) would suffice for the actual
4SCF work-function calculations in this paper, we
derive here a general explicit expression for
W~~cp that can be used with, e.g. , a purely vari-
ational density profile. ' ' (We will assume that
the electron density depends only on x, the dis-
tance perpendi. cular to the surface, and tends to
a constant n as x - -~.)

In order to evaluate (2.13), we first decompose
the surface energy"" [the surface piece of (1.1)]

0 Wg = CF~+ 0'~~+ 0'es + Vys +.0'g + 0'~g

and the work function

W =5'+W, +W +W

(3 1)

(3.2)

1
W, = lim —(o,(n,) -o,fn, ,]).

C~0

I.et us write

(3.3)

n, (x) =n,'(x)+ r, 6(x — }, (3.4)

where the first term on the right counts all the
electrons which remain behind in. the metal and
the second term counts the electrons that have
escaped to x = ~. The pseudopotential contribution
and the local density approximation to' the ex-
change-correlation contribution to the surface en-
ergy are easily found as functionals of n~:

dx 6v(x) [n', (x) —ne(-x)],
~CO

(3 6)

dx [nc(x)a„,(nc(x)) —ne„,(n)e( —x)].

into kinetic, exchange-correlation, electrostatic,
and pseudopotential contributions. The last two
terms in (3.1) are profile-independent terms (see
Ref. 8) which do not contribute to the work func-
tion. Each term in the work function is the deriv-
ative with respect to the surface charge density
Z of the corresponding term in the surface energy,
e.g. ,

W,.-(6v}„+(V}.,= W,„,. (2.1'7) (3 6)

It may seem strange that the "out" expression
(2.8), which neglects electronic relaxation after
removal of an electron, is still an exact density-
functional for the work function. In Appendix 8,
we show that corrections to (2.8) are first order

The electrostatic energy

j ao

o =
2

dx Q(/nc]", x)[nc(x) -n9(-x)]

becomes, to first order in Z,

(3.7)
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1o„=— dx P((n );x)[n'(x) -ne(-x)]

(3.8)

The surface kinetic energy is evaluated in Appen-
dix C, with the result

TABLE III,. Work functions in eV calculated self-consistently
for the je/lium surface by the "in" and "out" expressions (2.7)
and (2.8), and by the DSCF expression (2.13). The small dis-
crepancies are due to numerical error in the DSCF calculation.
r is the bulk density parameter [n = (4 7r ) ']. The individual
components of V~s&&, are also shown.

1
s 2 2

Op
2 2 r

da a(a; -a') — y, (a))

CO f

dx [v„',"(x)—vc,',"(—~)]nc(x) —Z2k~,

2.07
3.28
3.99

3.88
3.40
3.10

SSCF

3.9S
3.41
3.08

—2.42
—1.21
-0.91

4.98
3.83
3.38

1.38
0.80
0.60

(3.9)

1
dk k ——y.c(k) = Z,

0

can be used to simplify (3.9):

(3.10)

where kz is the Fermi wave vector (independent
of Z) and pc(k) is the phase shift of Eq. (1.9). Of
course for the neutral surface (Z = 0), these ex-
pressions for cr reduce to those given by Lang and
Kohn. ' The Sugiyama-Langreth phase shift sum
rule" for the case of a charged surface

tually a fouxtk exact density-functional for the
work function. The derivation is deferred to Ap-
pendix D. The result is a simple generalization
to real metals of an expression first discovered
for the jellium work function by Mahan and
Schaich. " When evaluated for approximate density
profiles, this fourth expression appears to give
good results for the work function, although it
does not in general satisfy the kind of accuracy
theorem (Appendix A) that the ASCF expression
satisfies.

0.,=, dkk' y k —
4

dx [vc,',"(x)—v,",,"(-~)]n',(x), (3.11)

As a first test of these expressions and of our
numerics, we evaluated the hSCF expression (3.2)
for the self-consistent electron-density profiles
of the jellium surface. Here the resulting work
functions should be exact (within the local density

' approximation) and identical to the "in" and "out"
work functions of Sec. II. The work functions for
jellium given by these different methods are com-
pared in Table III, and the agreement is seen to
be satisfactory. (The small discrepancies between
8'»c~ and „=,„, re presumably due to nu-
merical error in the evaluation of W»cF.

As a further test of the numerics, we attempted
to reproduce Lang and Kohn's perturbational
self-consistent calculation" of the work function
for Al, Li, and Na, i.e. , we evaluated

IV. NUMERICAL RESULTS AND DISCUSSION

TABLE IX~. Pseudopotential contribution W„, in eU to the
ASCF work function, as calculated in the perturbational self-

consistent scheme here and by Lang and Kohn (Ref. 10).
The 0. 1 eV discrepancies for Li (111)and Na (111)are not
understood.

Metal and face This work Lang-Kohn

We have calculated the 4SCF work functions for
a few selected metals and faces, using the varia-
tional sel'f-consistent' electron-density profiles
obtained with the form V(x)=CB(-x). (The step
height C for the neutral metal is given in Ref. 8;
we show in Appendix A that this value suffices also
for the charged metal. ) The expression actually
evaluated here was (3.2) and not (2.16). The elec-
tron density and surface energy were evaluated
for 7=0 and for two small nonzero values of the
surface charge Z, arid the derivatives such as

W„= dx 5v(x)
anc(x)

«00 eZ
(3.12)

2.07 Al (1 1 1)
(100)
(110) .

0.18
0.40

-0.19

0.19
0.32

-0.21

using the jellium profiles for nn(x). As shown in
Table IV, our values of 8'„so calculated are us-
ually quite close to those of Lang and Kohn; the
reason for the O. l eV discrepancies for Al(100),
Li(111), and Na(111) are not known. 2O

We close this section by observing that the rather
complicated hSCF expression (3.1) can be used
to derive a much simpler expression which is ac-

3.28

3.99

Li

Na

(110)
(100)
(1 1 1)

(110)
(100)
(1 1 1)

0.19
-0.05
-0.24

0.01
-0.29
-0.47

0.19
-0.05
-0.13

0.03
-0.29
-0.39



CHANGE-IN-SELF-CONSISTENT-FIELD THEORY OF THE. . . 663

Face .

(1 1 1)
(100)
(110)

-3.05
-2.14
—1.74

5.39
4.79
4.48

1.53
1.27
0.93

0.38
0.33
0.33

4.27
4 25
4.02

TABLE V. Individual components in eV of the ASCF work

function calculated for three faces of Al in the variational self-

consistent (VSC-I) scheme.

TABLE VII. Work functions in eV for a few selected metals
and faces, calculated from the hSCF expression by Lang and

Kohn (Ref. 10) using the perturbational self-consistent
profiles and calculated here using the variational self-consistent
(VSC-I) profiles. The experimental polycrystalline work
functions (as quot'ed in Ref. 10) are also shown. For single-

crystalline Na (110),the experimental work function is 2.90 +

0.10 eV (Ref. 30).

Metal and face Lang-Kohn This work
(Poly crystalline)

Experiment

TABLE VI. Experimental and theoretical work functions in

eV for the three low index planes of Al. The Lang-Kohn values

are from Ref. 10.

{100) {110)

Experiment:

Ref. 14

Ref. 23

4.24+ 0.02

4.26 + 0.03

4.41 + 0.03

4.20 + 0.03

4.28 + 0.02

4.06 + 0.03

Theory:

This work

Lang-Kohn

Ref. 26

Ref. 27

Ref. 28

4.27

4.05

4.26

5.17

4.25

4.20

449

4.02

3.65

4.83*

*Includes relaxation of first lattice plane.

(3.3) were evaluated numerically 2nd the results
extrapolated to Z = 0. The electrostatic potential
Q((nc);x) was obtained as the solution of an in-
tegral equation"" subject to the boundary condi-
tion that the slope of Q at large x is 4m'. The
various contributions to W»c~ calculated for the
three faces of Al are displayed in Table V.

Of all the real metals we considered, the one
which provides the most clear-cut test of our
ASCF method is Al, for which (i) the work function
has been measured for all three faces, "'"(ii)
the Ashcroft pseudopotential is known to be quite
trustworthy, ' and (iii) the relaxation of the first
lattice plane is thought to be small, at least for
the (111)and (100) faces, "'"although for the (110)
face the analysis of LEED data, suggests a 10%%uo

contraction of the outer-layer spacing. "'" In
'Table VI we compare our MCF results for Al with
experiment"'" and with other theoretical calcula-

Of the two experiments quoted, only
that of Ref. 14 monitored the cleanliness of the
surface during the measurement, so that the cor-
responding numbers are probably more reliable
than those of Ref. 23. Our results for the work
function are in excellent agreement with experi-
ment" for the (111)face, and too low by 0.15 eV

Pb {111)
(100)
(110)

3.85
3.95
3.80

~ ~ ~

4.10
3.90

4.01

Zn (0001) 4.15 4.30 4.33

Mg (0001) 4.05 4.18 3.66

Na (110)
(100)
(1 1 1)

3.10
2.75
2.65

3.13
2.84
2.76

2.7
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Eq. (Al) becomes

Ba Bo' dD
BZ, ~ 0 BD dZ (A4)

the second term on the right-hand side is spurious,
and does not arise in the full &SCF, expression
(A3).

APPENDIX A: WHY THE VARIATIONAL PARAMETER

NEED NOT DEPEND ON THE SURFACE CHARGE

Consider the surface energy o(Z, C,D) which is
a function of the surface charge density Z and all
possible variational parameters controlling the
shape of the electron-density profile (and possi-
bly also the positions of the first lattice. planes),
which we denote by C and D. I.et C~ -and D~ be
the minimizing values at surface charge Z. Then
Eq. (2.13) gives the exact work function

do' Bo i B(T dC
W= —(Z, Cc,Dc) =— +——

C=O B~ ~ 0 BC dZ L-"0

Bo dD
BD d'Z (Al)

Since the variational principle guarantees that

BO' Bo' =0,
C=O C=O

Eq. (A1) becomes

(A2)

B
W= —, o(Z, C„D,)

C=O

an exact relationship.
Next consider the ASCF approach actually em-

ployed in this paper, in which some of the varia-
tional parameters (called C) are adjusted to mini-
mize the surface energy of the neutral metal (i.e. ,
Bo/BC

~ c,= 0), and the other variational parame-
ters (called D), which are implicit in the choice
of a particular variational form for the density
profile, are kept the same for, the charged as for
the neutral metal (i.e. , dD/dZ = 0). Once again
(Al) reduces to (A3), except that now D, in (A3)
is replaced by D (independent of Z). It follows
that in the evaluation of the LNCF expression
(2.13), the variational parameters C, which mini-
mize the surface energy for the neutral metal suf-
fice also for the charged metal.

Finally, we note that both the "out" expression
Isee Eqs. (2.10) and (2.17)] and the "displaced-
profile" expression (Appendix D) for the work
function can be obtained from the ASCF expression
(2.13) by suitable choices of density profile for
the charged metal. These choices normally cor-
respond to changing the parameters D (those
not used to minimize o), so for these expressions

APPENDIX 8: ELECTRONIC-RELAXATION CORRECTIONS
TO KOOPMANS' THEOREM

Koopmans" used the stationary property of the
Hartree-Fock total energy to show that the ion-
ization energy of an atom could be approximated
by the negative of the highest occupied single-
electron energy, with an error that goes like the
squ&re of the correction to the single-electron wave

functions due to the electronic relaxation following
ionization. 'There have been a number of
proofs""'" that a generalized Koopmans' theorem
is exact for the metal surface, i.e. , that the chem-
ical potential p, of Eq. (2.3) is also the highest
occupied eigenvalue of the one-electron Schro-
dinger equation in the effective potential (1.2).

Suppose first that we know the exact, self-con-
sistent one-electron wave functions fP,.j for the
real surface problem. Imagine removing an elec-
tron from the metal in two steps: In the first step,
the electron in the highest occupied state g,. is re-
moved zvithout any change in the remaining wave
functions, i.e. , the electron density in the metal
changes from v(r) to n„,„„(r)= n(r) —

~
g,.(r)

~

', and
the total energy changes by

where &,- is the highest occupied single-electron
eigenvalue for the neutral metal. In the second
step, the remaining occupied one-electron wave
functions adjust to "relaxed" values, and the den-
sity relaxes to n„,(r). Now by the variational
principle n„,(r) minimizes E„,(n), i.e. ,

E„,In„„„)= &„,(n„,)+ O((n„„„-n„,)') . (B2)

Thus the relaxation correction to the chemical po-
tential (2.2) is of the order of the square of the
relaxation correction to the density (integrated
over the volume of the system). But the relaxa-
tion correction to the density is just to take one
electronic charge away from the surface region
and spread it over the bulk of the metal, in order
to produce a neutral bulk and a net surface charge.
'Thus the relaxation correction to the density goes
like the inverse of the volume of the metal in the
bulk, and like the inverse of the surface area at
the surface, and consequently the relaxation cor-
rection to (B2) and to the chemical potential van-
ishes as the volume of the system tends to infin-
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ity.
Suppose now that instead of the exact single-

electron wave functions and electron densities we
only have approximate ones. Then our relaxed
density n„, does not correspond to a minimum in
E„,with respect to all possible density varia-.
tions, and instead of (B2) we now have corrections
to E„, that are first oxd-er in the relaxation cor-
rection to the density. These corrections do not
vanish as the volume tends to infinity. A perfect
illustration is provided by Eq. (2.16), in which
Bnc(x)/BZ contains significant first-order relaxa-
tion corrections.

APPENDIX C: KINETIC ENERGY CONTRIBUTION

TO ASCF WORK FUNCTION

Our arguments here for the kinetic energy (3.9)
of the charged surface are patterned after those
of Huntington" and Lang" for the neutral surface.
We consider a large slab of metal of thickness
L, with electron density variation only perpendic-
ular to the two faces, each of area A, at x=0 and

x = -L, with a surface charge Z on each face. The
total kinetic energy is

Ng

T,inc] = &c —2A ' dx vc„(x)nc(x), (C1)

where ec, the ith eigenvalue of (1;8) in the pres-
ence of the potential v, «(x), includes contribu-
tions 0(1/L). nc(x) is the electron density (not
counting the electrons that were removed from
the metal), and

dx n,'(x) . . (C2)

The surface kinetic energy is obtained by subtract-
ing from T, the kinetic energy of N~~ bulk elec-
trons, i.e. ,

N —N = -2ZA,

1dxn8(-x) = dxnc(x) ——(Nc —Nc~),2A

(G6)

(C'7)

we get
d)

+ (n ], — (eL' ebulk)
s i i

g

dx [v„,(x) —v,'„(-kL)]n,'(x) —Z2k~.
-I /2

(C8)

Now let L --~ and evaluate the first term in (C8)
by the method of Huntington" in terms of the one-
electron phase shifts. The result is (3.9).

APPENDIX D: THE "DISPLACED-PROFILE" EXPRESSION

We derive here the fourth exact density function-
al for the work function, as promised at the end
of Sec. III. Notation is as in Sec. III.

We showed in Appendix A that, in the &SCF ex-
pression (2.13), the variational parameters that
minimize the surface energy for the neutral sur-
face (Z =0) may also be used for the charged sur-
face. It follows that, in the &SCF expression, the
density profile n~ for the charged surface may be
replaced by the exact electron-density profile

of the neutral surface, rigidly displaced in-
ward by a distance -Z/n with respect to the pos-
itive background. The resulting expression is
called the "displaced-profile" expression for the
work function.

We now evaluate this expression for an approx-
imate profile nc~(x), i.e. , we use

&c c~
a, (n J= —Qa',. —Z a',."'")

i =& i=&

n,'(x) -n, (x+Z/n).

It follows immediately that

(D1}

/2
dx v„,(x)n,'(x) 8, 1 d—n,'(x) c~=:—„n,~(x),

n dg
(D2)

dx v„, ( L/2)n 8( x-)—(C3) v '"(x)=v"" x+—Zeff eff (D3)

In the limit of large L, the "escaped" electrons
all come from the Fermi surface,

N

&c —(N, —N ) [-,'p' + vc„(-—,'L)].
and to first order in Z

(f((n );x) = Q(ln j;x+Z/n)+4vZx8(x). (D5)

Since

Use of (D2)-(D5) to evaluate the derivatives with
respect to Z of (3.5)-(3.11) gives the simple re-
sults
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W, = —5 (pk~),

W„,= -&„,(n),

W,.=y((n, ]; )-@((n, );0),

(D6)

(D7)

(De)

00 1 dW„= dx 6(x) = d
- nc ~(x).dx

(D9)

While the individual terms (D6)-(D9) will not be
accurate, the work function, which is the sum of
these four terms, will be accurate if nc~(x) is
a good approximation to the electron-density pro-
file of the neutral surface Iand will be exact if
nc~(x) is].

Note that for the jellium surface only the first
3 terms (D6)-{DB)survive. In this case we re-
cover an exact expression for the jellium work

function first derived by Mahan and Schaich. "
U nc~(x) is a variational density profile, then

the argument of Appendix A shows that in most
cases the *'displaced-profile" expression will in-
troduce spurious terms into the work function—
terms which are absent in the full &SCF expres-
sion. These spurious terms will be absent from
the "displaced-profile" expression only if the
rigid displacement (Dl) occurs without any change
in the parameters {called & in Appendix A) which
specify the class of density profiles over which
the energy is minimized. (This actually happens
in the linear potential model'" —but not in the
variational self- consistent method. )'

The accuracy and utility of the "displaced-pro-
file" expression are now being tested by V. Sahni,
J. P. Perdew, and R. Monnier.
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