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The equilibrium configurations of the Frenkel-Kontorova model have been studied numerically. This model,
which consists of a chain of ions connected by springs in the presence of a static sinusoidal potential, can be
used to describe sliding charge-density waves in solids, incommensurate chain compounds such as
Hg;_;AsF, superionic conductors, and epitaxial crystal growth. If the natural periodicity of the chain is
incommensurate with the periodicity of the sinusoidal potential, there exists, in the thermodynamic limit at
some critical strength of the sinusoidal potential, a transition from a state in which the chain is pinned in
place to a state in which it can accelerate freely when an arbitrarily small force is applied to each ion. The
lattice vibration spectrum in the sliding regime exhibits a zero-frequency mode involving ionic vibrations that
are more complicated than those found in the continuum limit of this model. Chains with free ends appear to
require an activation energy to slide. Comparisons between the exact numerical results and those generated
through approximation schemes are made along with an assessment of the validity of these schemes for
various problems. The results of this work have direct application to the study of the conductivity, lattice
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dynamics, and elastic neutron and x-ray scattering of the systems previously mentioned.

I. INTRODUCTION

There has recently been an upsurge of interest
in lattices with two incommensurate periods. v
Spin-density waves in chromium, incommensurate
with the underlying lattice, have been studied for
years.! In the last few years there has also been
interest in charge-density waves in psuedo-one-
dimensional electrical conductors, caused by the
Peierls instability, and also in layered com-
pounds.? More recently, the compound Hg, ; AsF;
has been found to have chains of mercury atoms
incommensurate with the periodicity of the rest of
the lattice;® Many ionic conductors have a state
in which the conducting ions form an ordered
structure incommensurate with the rest of the lat-
tice.* In particular, the ionic conductor potassium
hollandite has one-dimensional channels running
through the crystal, containing mobile potassium
ions,® which form a one-dimensional ordered
structure along the channels.

Such systems have no translational invariance
because there exists no single translation under
which both periods are invariant. This leads to
the question of whether there is wave-vector con-
servation in the optical spectrum of these materi-.
als. This question is treated in a separate publi-
cation,® where it is shown that despite the apparent
lack of translational symmetry, such systems al-
ways seem to have optical absorption due to pho-
nons not much different from that of systems hav-
ing only one periodicity (and hence having trans-
lational invariance).

Since two rigid incommensurate periodic struc-
tures have no favored phase relationship with re-
spect to each other, they are not locked together
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but are free to slide with respect to each other at
no cost in energy. If one or both of the periodic
structures can distort so as to conform to the oth-
er, then one would expect that the periods might
become locked together. This locking or pinning
phenomenon was treated for charge-density waves
by Lee, Rice, and Anderson who found that in-
commensurate charge-density waves are not
pinned by a rigid lattice.” The Frenkel-Kontorova
model® (which consists of a chain of masses con-
nected by springs interacting with a sinusoidal po-
tential well), used in the study of dislocations and
epitaxial crystal growth,® was applied by one of us
to the problem of pinning of a charge-density wave
incommensurate with the underlying lattice.'®

The question of pinning in the Frenkel-Kontorova
and related models was studied by Aubry using the
mathematics of Ergodic theory.!' In his work, he
makes use of the fact that the difference equations
which give the equilibrium positions of the atoms
can be written in the form of a nonlinear operator,
operating on a pair of successive atomic positions,
which generates all other atomic positions. There
exist mathematical theorems which show that this
operator admits fixed points, which correspond to
commensurate equilibrium configurations. If the
operator operates on points in the neighborhood of
a type of fixed point called an elliptic fixed point,
it moves the original point (positions of the first
two atoms measured relative to atomic positions
when the springs connecting the atoms are at their
natural lengths) along an elliptic curve in the two-
dimensional space, consisting of two successive
atomic positions, by an angle which is not an inte-
gral fraction of 27. Thus, one gets an incommen-
surate configuration because as one moves along
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the chain one finds that the atoms never repeat
their original configuration. Because one can
start laying out this chain at any point on this el-
lipse, it follows that the displacement of each
atom is a smooth function of the integer which
numbers the atoms. From this Aubry was able to
show that there exists a zero-frequency lattice
mode, which shows that the system is not pinned.
Thus, although Aubry was able to show that such
incommensurate periodic systems have unlocked
configurations, he was not able to give the values
of the parameters for which the system is or is
not pinned.

In this paper, we present numerical solutions of
the equilibrium equations of the Frenkel-Kontorova
model. We have found the values of the parame=-
ters for which the system first becomes pinned.
We have also found the type of atomic motion which
occurs in the zero-frequency mode. This motion
is much more complicated than that found in the
continuum approximation to the Frenkel-Kontorova
model by Theodorou and Rice,'? Sutherland,'® and
McMillan.'* We have also calculated the static
structure factor. Comparison will be made to ap-
proximate analytic solutions of the problem to as-
sess their validity.

II. MODEL

Our studies will be based on the Frenkel-Kon-
torova model which consists of a chain of ions
connected by springs interacting with a sinusoidal
potential. The potential energy of this model can
be written

N w 2mx
V=72 (xm_xn—b)2+-z—z (l—cos T") ,
n=1 n=1
1)

where x, is the position of the »th marble, b is the
unstretched spring length, and a is the period of
the sinusoidal potential. One of the authors!® has
applied this model to the study of a charge-density
waves in a one-dimensional solid by identifying the
sinusoidal potential with the interaction of the ions
in the lattice with a charge-density wave whose
period is a. This procedure is good if the charge-
density wave is much more rigid than the lattice.
The fact that Lee, Rice, and Anderson’ obtain a
velocity for phononlike excitations of the charge-
density wave much larger than the phonon velocity
of the lattice is evidence in support of this pic-
ture. In another application, the sinusoidal poten-
tial can be taken to represent the periodic poten-
tial due to the nonmobile ions in a superionic con-
ductor and the chain of ions, to represent the mo-
bile ions themselves.® 1%

In a third application, the chain of ions could

represent the mercury ions in Hg, ;AsF; and the
sinusoidal potential, the potential due to the rest
of the lattice in which the mercury ions sit.

Although it is appropriate to use free-end bound-
ary conditions for the problem of epitaxial crystal
growth, to which this model was originally ap-
plied,® we feel that for the applications described
in the preceding paragraph it is better to use peri-
odic boundary conditions. That is, we assume that
x, is periodic in » with period N, the number of
ions in the crystal, i.e.,

Kpow =Xp+ La. ) (2)

The reason for this choice of boundary conditions
for charge-density waves is that the mean inter-
ionic spacing is fixed by the length of the lattice.
For the superionic conductors and mercury com-
pounds, the number of ions in a given length of
lattice is fixed, which fixes the mean lattice con-
stant. Later on, however, we will report some
calculations for the free-end case in order to dis-
cuss the crystal growth applications of the model.

The physics of the system, in the thermodynamic
limit, may then be deduced from the study of a
single unit cell containing N ions. Due to the
boundary conditions, the unit cell may be viewed
as a ring whose circumference is necessarily
equal to Nb. The periodic chain is then an infinite
commensurate system, i.e.,

La=Nb, (3)

where L and N are integers. It is important to
emphasize that, unlike a chain with free ends, the
periodic chain can neither expand nor contract;

the “dislocation density” is fixed by b/a. This fea-
ture will be seen to be crucial in understanding the
existence of a zero-frequency excitation (sliding
mode) which arises in the incommensurate limit
(b/a an irrational number).

The equilibrium positions are solutions of the
following nonlinear difference equations, obtained
by setting the derivative of V with respect to x,
equal to O:

Xpyy = 2%, =X, +A8in(2mx,/a), n=2,3... ,N+1
Xya=La+x,, 4
Xyp=La+x,,
where

X a=1W/pa?. (5)

The presence of the nonlinear sine term precludes
the possibility of finding a general analytic solu-
tion which is valid for all values of N and b/a.
One can, for certain values of the parameters,
make valid approximations which render the prob-
lem tractable. These approximate methods will
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be discussed in Sec. IV. To obtain exact solutions
for any values of the parameters, one must solve -
the equations numerically. '

The numerical solution of Eq. (4), which is non-
trivial, can be simplified by exploiting the sym-
metries of the system. The periodic chain, unlike
the chain with free ends studied numerically by
Snyman and Van der Merwe,® always has a center
of symmetry. As a consequence, there can, in
general, be only three types of symmetry config-
urations. These are classified (up to a shift in
origin) by the position of the first ion:

Type (i) x,=0,

Xpp+Xyp=La, k=0,1,2,...:| (6a)
Type (ii) x,=3a, ’
Xy +¥yp=L +1)a, k=0,1,2,...:l (6b)
Type (iii) x,+x,=0,

Kgp+Xyp=La, k=0,1,2,...] (6c)

The existence of these symmetries reduces the
numerical problem to a one-parameter search.

We will now show from Eq. (6) that only two of
these three configurations are distinct for a given
chain. Assume that L and N are relatively prime
integers. (i) Suppose N is an even integer. Then
L is necessarily odd. The (x,=0) configuration has
its center of symmetry passing through an ion lo-
cated on a crest, whereas the (x1=%a) configura-
tion has its center of symmetry passing through an
ion located in a trough. By translating the origin
and relabeling the ions, types (i) and (ii) are seen
to be eqﬁivalent. (ii) Suppose N is an odd integer.
If L is odd, then the type (ii)(xr,=3a) and type (iii)
(x,+x%,=0) configurations are equivalent. Alter-
nately, if L is even, the type (i) (¥,=0) and type
(iii) (x,+x,=0) configurations are equivalent.
Hence, there are only two distinct configurations
for a given N.

There are other symmetries in the problem
worth mentioning. As in the model with free ends,
one need only consider values of b/a in the inter-
val [$,1]. The equilibrium positions and energies
associated with any value of b/a outside this in-

" terval can be obtained from those within the inter-
val by a point transformation. (i) Suppose b/a
=L/N +m. The coordinate transformation x,=%,
+m (@~ 1)a maps the set {x,|b/a=L/N +m} onto

the set {y,|b/a= L/N} leaving the energy un-
changed. (ii) Suppose b/a=0.5-L /N, where 0
<L/N<0.5. The transformation y,=%a - x, maps
the set {x,|b/a=0.5—L/N} onto the set {y,|b/a
=0.5+L /N} leaving the energy unchanged. The en-
ergy is thus a periodic function of b/a (with period
one) and is symmetric about the values b/a

=é (21’7’1 + 1).

From the previous symmetry considerations
several conclusions may be drawn about the sys-
tem when X is “small” (strong-spring—weak-po-
tential limit). First of all, if these symmetries
represent the only solutions, there are two ener-
gies in the problem. Secondly, by translating the
origin and relabeling the ions, it is seen that the
first ion is allowed precisely 2N +1 equilibrium
locations within the interval |x,|<$a. Thirdly,
these allowed locations will alternate sequentially
between the two symmetry types and thus alter-
nate between the two energies. The system, in
the incommensurate limit (N =, L /N finite and
irrational), might then be capable of supporting a
zero-frequency sliding mode. As the chain be-
comes more incommensurate with the underlying
periodic potential, the allowed equilibrium posi-
tions of the first ion become dense along the line.
Being that the periodic chain can neither expand
nor contract (unlike the chain with free ends), the
allowed equilibrium positions of all the ions be-
come dense along the line. Since the differences
between the positions of the ions in two sequential
configurations become infinitesimal, one might
expect the difference between the two energies (the
“pinning” energy) to vanish. Thus, in the incom-
mensurate limit there would exist an infinite num-
ber of equilibrium configurations, all with the
same energy. This degeneracy should give rise
to a zero-frequency mode. Thus, there exists a
continuum of infinitesimal displacements {u,}
which translate the chain through successive equi-
librium configurations; the chain will then slide,
i.e., an infinitesimal constant force placed on each
ion will cause the chain to accelerate. One sees
from the equilibrium equations that the chain can-
not be translated rigidly; the infinitesimal dis-
placements for each ion are necessarily different.
The zero-frequency mode, therefore, cannot be -
the usual zero wave-vector acoustical mode.

It should be emphasized that these conclusions
are only valid for sufficiently small A, for which
the system only admits the two possible equilibri-
um states which we have discussed.

III. NUMERICAL RESULTS

The equilibrium positions for the Frenkel-Kon-
torova model with periodic boundary conditions
have been computed for various values of [,
=a(am/2))'/ 2 and b/a using a one-parameter search
as dictated by the symmetry considerations of

" Sec. II. Even with simplifications afforded by

symmetry, the numerical problem is nontrivial
in that the function, whose roots are to be deter-
mined, can be extremely pathological. To cope
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with such functions, one uses double precision
arithmetic (good to, at worst, 1 part in 10%) and
three different numerical techniques—grid, bi-
section, and Newton’s method.

The equilibrium energy per particle found in
this way E as a function of b/a is displayed in
Fig. 1. The energy is seen to be a smooth function
of b/a (except for cusps at multiples of 3) which is
periodic with period one and symmetric about b/a
=3. Being that b/a gives the dislocation density
for periodic boundary conditions, it is instructive
to compare this plot with Snyman and Van der
Merwe’s® plot of the equilibrium energy per par-
ticle versus dislocation density for the discrete
Frenkel-Kontorova model with free ends. One
finds that the two plots are equivalent-when the
free-end chains approach the thermodynamic limit.
Furthermore, in this limit, the positions predict-
ed by these two models agree. One also notes that
if 1, is “sufficiently” large, positions (and ener-
gies) predicted by these two models will agree with
those of Frank and Van der Merwe’s continuum
model. Thus, a periodic chain of finite length can,
in certain cases, be used to deduce properties of
chains of infinite length. )

The point here is that if the periodic model has
but the two equilibrium solutions required by sym-
metry, the study of a single period of the chain is
equivalent to the study of an infinite chain. Longer
chains which are composed of integer multiples of
this unit chain contain no new information. How-

1 L 1 1 1 L 1 1 i
0 0.1 02 03 04 05 06 0.7 08 09 1.0
b/a —

FIG. 1. Energy per atom (in units of W)as a function
of b/a for two values of [, for a periodic chain (in units
of a).

ever, as [, is decreased so that a registry transi-
tion should occur, we have found, along with Sny-
man and Van der Merwe,® that each distinct sym-
metry configuration allows multiple equilibrium
solutions. Thus a long chain composed of several
unit chains can support many configurations since
each unit chain has several allowed equilibrium
states. The existence of such multiple solutions
in this regime is a reflection of the fact that a
periodic chain can neither expand nor contract to
accomodate registry. It must, therefore, develop
dislocations when the registry transition occurs.
Most of these solutions are not the ground state,
however. In the actual ground state, the disloca-
tions form a periodic lattice incommensurate with
the sinusoidal potential.'®

It was argued in Sec. II that, for I, sufficiently
large, the difference in equilibrium energy per
particle between the two allowed symmetry con-
figurations, AF(l,), should vanish in the incom-
mensurate limit. One might expect to see this oc-
cur as [, is increased beyond some critical value
which defines the registry transition. In that a
sequence of commensurate chains of increasing
order of commensurability are to be used to simu-
late an incommensurate chain, two points must be
kept in'mind. First, the pinning energy of any
periodic chain can be made arbitrarily small by
choosing [, sufficiently large (rigid-spring—zero-
potential limit). An incommensurate (sliding)
transition is said to occur if AE drops dramatical-
ly with a small increase in [, beyond a critical
value. Second, if the periodic model is to be of
any practical use in locating the registry transi-
tion, the desired effect must be observable in rel-
atively short chains.

The pinning energy as a function of [, has been
investigated for various values of b/a. Five of
these are displayed in Fig. 2. The transition is
seen to occur in some chains which have a rela-
tively low degree of incommensurability. In fact,
for certain chains a small increase in [/, produces
a decrease in AE of 20 orders of magnitude. It
was observed in this study that the “strength” of
the transition varies substantially with the natural
spring length and the number of ions in the unit
chain. For very short chains or for values of b/a
very near 3 or 1, the transition is “weak” or non-
existant as expected.

It has been shown that one feature of the incom-
mensurate limit, AE(l,)~0, can be simulated by
a relatively short chain. This leads one to specu-
late as to whether or not a relatively short chain,
for which AE vanishes, can simulate a zero-fre-
quency sliding mode. The answer to this question
is a “qualified” yes. To begin with, one recalls
that all commensurate chains slide in the rigid-
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FIG. 2. Log;, (AE/NW) dimensionless as a function of
1, (in units of a) for a few values of b/a for a periodic
chain. It should be noted that b/a determines the length
of the unit cell of the periodic chain, so that for b/a
=0.61, the unit cell is 100 atoms long, for b/a=0.62 it
is 50 atoms long, 500 atoms long for 5/a=0.602, 5 atoms
for 0.6, and 8 atoms for 0.625.

spring-zero-potential limit ({,~«). On the other
hand, for finite [,, no short chain can really sup-
port such a mode since the equilibrium locations
are not dense along the line. If a relatively short
chain is to simulate sliding, then the sliding
mechanism must necessarily involve certain non-
equilibrium configurations. One may conjecture
that the energies of two consecutive equilibrium
configurations bound, from above and below, the
energies of those nonequilibrium configurations
whose ions are restricted to lie in intervals de-
fined by the consecutive equilibrium locations.
Since these nonequilibrium configurations evolve
naturally into real equilibrium configurations in
the incommensurate: limit, they may be suitable to
simulate the sliding.

To investigate these configurations, one might
place the ions randomly in the allowed intervals
and monitor the energy. Since one is seeking to
identify the equal energy configurations, this gen-
eral procedure is of little use. There is an alter-
nate approach which is more fruitful. Recall that
the periodic model has two boundary conditions.
If one were to ignore the symmetry of the model,
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then the problem of determining equilibrium posi-
tions would require the use of a two-parameter
search. If a two-parameter search is applied to
chain whose pinning energy is known to be numer-
ically equal to O (say to 1 part in 10%), an inter-
esting effect is observed. Given any x,, one can
find a unique x, such that the configuration gener-
ated by (v ,x,) satisfies both boundary conditions
to, say, 1 part in 10%%, Thus, any x, can be con-
sidered numerically to be an equilibrium location
of the first ion. Furthermore, it was found that
the energies associated with these pseudoequilibri-
um configurations differ among themselves and
from the true equilibrium energy by no more than
1 part in 1025, .

It must be emphasized that these configurations
in a finite chain are strictly numerical in origin
and arise solely from the limitations of the com-
puter. The minimum value of I, which defines the
onset of these configurations is then somewhat
arbitrary. If the boundary condition tolerance is
set to a value approximately one order of magni-
tude larger than AE(l,), then these configurations
will always exist. Due to the limitations of the
available double precision arithmetic package AFE
~1072¢ W has been chosen todefine the critical value
of 1,. '

From a study of these pseudoequilibrium config-
urations, one concludes that a relatively short
chain can simulate a zero-frequency sliding mode.
There exist configurations in which the ions are
located arbitrarily close to real equilibrium posi-
tions. The infinitesimal displacements from equi-
librium extracted from these configurations define
the zero-frequency eigenvector of the dynamical
matrix. Thus, the system can support a zero-
frequency mode. Furthermore, a continuum of
these infinitesimal displacements (which are not
constant) can be generated which translate the
chain through successive equilibrium configura-
tions without changing its energy. Thus the chain
can slide.

It has been mentioned in Sec. II that a sliding
mode cannot be strictly the usual zero wave-vec-
tor acoustical mode since the chain cannot be
translated rigidly while remaining in equilibrium.
A few successive equilibrium positions for the
sliding chain are illustrated in Fig. 3. One sees
that a small translation of the first ion, originally
at the bottom of its potential well, to the next
equivalent equilibrium position will allow another
ion further down the chain to move into the bottom
of the potential well in which it lies. If the origin
of coordinates is moved from the first ion to this
ion, the new equilibrium configuration looks the
same as the original configuration. This explains
the origin of the high degeneracy of the ground
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FIG. 3. Successive equilibrium positions (i.e., the
motion that occurs for the sliding mode) for a chain of
atoms with b/a=0.62 and Z,=5 (in units of ). We have
shown the sinusoidal potential for reference.

state. As the repeat distance of the periodic chain
approaches infinity (i.e., the chain approaches the
incommensurate limit), the allowed equilibrium
positions become infinitesimally close together
because when the first ion is translated on arbi-
trarily small distance there will always exist an
ion further down the chain which will move into the
bottom of its potential well. Thus, the actual ionic
motion which occurs in the zero-frequency (slid-
ing) mode is much more interesting than that
found in the continuum (i.e., large /,) limit in
Refs. 12-14. It is not simply a rigid translation
of dislocations as occurs in the continuum limit.
When [, is made larger, however, the zero-fre-
quency mode when viewed from a distance, as il-
lustrated in Fig. 4 (which shows several consecu-
tive equilibrium configurations), does look like a
rigid motion of dislocations if we do not look in de-
tail at the motion of the individual atoms.

We will now demonstrate that unlike the case of
a periodic chain that we have discussed up to this
point, a chain of atoms with free ends in a sinu-
soidal potential need not have a zero-frequency
sliding mode. The reason for this is that unlike a
chain of fixed length, the chain with free ends is"
able to expand and contract in order to lower its
potential energy in the sinusoidal potential well
(at the expanse of its own distortional potential en-
ergy). These chains differ from the periodic
chains in a fundamental way. As observed by Sny-
man and Van der Merwe, free chains need not
have a center of symmetry. In their analysis of
ground-state properties they discard these non-
symmetric configurations by arguing (correctly)
that a nonsymmetric configuration cannot be the
state of lowest energy. (This is not to say that all
nonsymmetric configurations have higher energies
than all symmetric configurations.) It might then
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FIG. 4. Successive equilibrium positions for a chain
of atoms with b/a=gy and ;=12 (in units of a). The or-
dinate gives the contribution to the potential energy of an
atom due to the sinusoidal potential and the abscissa
gives the location of the atoms in units of @ (remember
that the sinusoidal potential energy increases as the
atoms are displaced away from the minima of the sinus-
oidal potential well).

be expected that a free-end chain of finite length
(and finite Z,) is necessarily pinned.

In order to test this conjecture, we have solved
the equilibrium difference equations [Eq. (4)] for
free ends. The difference equations for the end
atoms become in this case

%, —x, - b=xsin[(2n/a)y,], (7a)
Xy =%y +b=nsin[(2n/a)kxy]. (o)

To solve, choose x,, use Eq. (7a) to find x,, iter-
ate the set of equilibrium difference equations

[Eq. (4)] to obtain x,, and check to see if Eq. (7b)
is satisfied. Thus, we are doing a one-parameter

- search for the value of x, which generates a value

of x, which satisfies Eq. (Tb). Several free-end
chains were studied in this way. In all cases, the
energy per particle was found to oscillate smooth-
ly with x; with an amplitude which did not decrease
as the chain length was increased. For example,
for a chain with b/a=0.31416 and I, =7a, the am-
plitude of the oscillation in the energy per particle
AE (i.e., the pinning energy) was found to be 0.02
W, which did not vary significantly with chain
length, despite the fact that chains with number of
atoms ranging from 100 to 100 000 were studied!
The same type of behavior was found for chains
with I,=20000a (i.e., very stiff chains), with N
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varying up to 2000. Although A E falls off with in-
creasing [, it does not abruptly drop to zero at a
critical value of [,. In our studies, we have ob-
served a direct correlation between chain energy
and chain length, implying that this pinning effect
is likely to be due to expansions and contractions
of the chain.

One might conjecture that the pinning energy may
decrease as the number of ions increase. Howev-
er, this was not found to be the case except in the
rigid-spring (zero-potential) limit. Although the
equilibrium locations for the first ion in the inter-
val |%,|<%a do become dense along the line (like
a periodic chain) as N increases, the equilibrium
locations of the last ion do not. A small change in
x, can produce sizable changes in length which al-
ter the energy and the dislocation density.

Some insight into the previous remarks can be
gained by examining the rigid-spring case where
the chain can be made to slide. Here equilibrium
can be maintained in two nontrivial ways, both of
which require a center of symmetry. For general
b,a,L,N equilibrium is achieved only if the center
of mass (center of symmetry) is located on a peak
or in a trough. Here there are two energies in the
problem which become equal only in the limit N
-, This being the case, one could hardly expect
a free chain of finite length to slide at finite 7.
Equilibrium may also be achieved in the rigid-.
spring limit by requiring b/a=L/N (i.e., fixed
length) whereupon it is found that the equilibrium
energy is independent of x, for all N. Since this
condition is reminiscent of the periodic chain, it
is worthwhile to examine the effects of this con-
straint upon the free chain equations with A 0.

(Of course, the fixed length constraint requires
that there be forces on the end atoms in general.)
If the length is fixed at La, the chain satisfies
the condition

xy=x,+La-b, (8)
If Eq. (7b) is written

b=Xy—Xy., +Xsin[(21r/a)x,,]
and if x is added to both sides, we obtain

Ky +b=2xy %y 4 Asin[(2n/a)cy] =%y, . (9)
Substituting from Eq. (8) for x,, gives

Xyo=%,+La. (10)
If Eq. (7a) is written

%,=%,+b + A sin[(27/a)x,]

and if La is added to both sides of the equation and
La is added to x, in the argument of the sine, we
have, using Eq. (10),

%,+La= 2(;61 +La) - (v, +La - b) 4+ xsin[(21/a)cy,,]
=2%y,, =Xy + Asin[@r/a)xy, )= %y, .

Thus, the boundary conditions for a free-end chain
constrained to be of fixed length are identical to
those for the periodic chain, and hence, we ex-
pect such a chain to exhibit a zero-frequency slid-
ing mode (i.e., this chain is nol pinned). With this
result in mind, it is easy to understand why Ying'’
found such a sliding mode for a chian with appar-
ently free ends. Ying assumes that

x" =nb +u" ,

where the small equilibrium displacements from
uniform ionic spacing #, are assumed small and
satisfy

Z u"=0,
n

which is equivalent to requiring an infinity long
chain to have fixed length.

Our conclusion, at least for noninfinite chains,
is that with free ends the system is pinned, in
contradiction to Ying.!” Aubry has also found that
boundary conditions can drastically affect the na-
ture of the registry transition.!! Although micro-
scopic expitaxially grown crystallites have been
observed by electron microscopy to be quite mo-
bile,’® we must conclude that this motion is ther-
mally activated with an activation energy propor-
tional to the number of atoms in the crystallite,
and in the limit of weak substrate potential, pro-
portional to the depth of a substrate potential well
in which an atom in the crystallite sits. For I /a
=", the value used by Frank and Van der Merwe
for films, we have estimated this activation ener-
gy per crystallite atom (i.e., the pinning energy
found earlier) to be about 1% of the well depth.

One of the authors!® studied the motion of some
chains with free ends under an applied field (i.e.,
the same external force on each atom) as a func-
tion of chain length. The fluctuation in the chain
potential energy per atom was found to extrapolate
to zero in the infinite chain limit, which was taken
to imply that in the thermodynamic limit, the
chains were not pinned. Although the fluctuations
in the energy found for a chain as it slides under
a field are considerably smaller than the fluctua-
tions in the equilibrium energies that we have
found here, it should be noted that when the chain
slides under a force it need not be in a state in
which each atom is in equilibrium at all times.
The correct limiting procedure to consider for
studying the question of pinning for a chain in the
thermodynamic limit is to first take the thermo-
dynamic for a small nonzero applied field and then
consider the limit as the field approaches zero.
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This procedure was not followed here nor in Ref.
10. Although it is clear that in the limit as the
field approaches zero any finite chain will settle
into one of the equilibrium positions that we have
found, it is not obvious that this will happen if the
thermodynamic limit is taken first. It should be
pointed out that for the chain sliding under an ap-
plied field, the chain length fluctuates by around
0.1%, which is considerably smaller than the
fluctuation in chain length among the equilibrium
states that we have found in this paper. This is
quite likely the physical reason that the energy
fluctuations found in the sliding chain problem are
so0 much smaller than the fluctuation among the
equilibrium-state energies.

One can use the equilibrium positions that we
have found to study the effects of incommensura-
bility on the elastic structure factor at zero tem-
perature,

2

S(Q)=60.21m-/La (11)

1 .
— et
N2

Given that there are two competing periodicities
in the system it is useful to express the wave
vector as

Q =n, (21 /a) +n,(27/b). (12)

The choice of (#,,%,) for any @ is not unique but
can be made so by applying suitable restrictions
(see Sec. IV). The strengths of the peaks in S (Q)
will clearly depend upon b/a and l,. For large
values of [, (strong spring—weak potential), one
finds that for the periodic chains the major peaks
occur near @ =n,(27/b) (see Fig. 5). The satellite
peaks corresponding to nonzero values of #, are
seen to decrease in intensity as 7, increases.

The families of satellite peaks with n, fixed are
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FIG. 5. Calculated static structure factor as a function
of wave vector in dimensionless units in which s(0)=1.
The scattering wave vector @ is in units of 27/b.

seen to first increase and then decrease with in-
creasing @, following a damped quasi-periodic
function. As [, is decreased, the intensity of the
peaks at @ =n,(27/b) decreases while the intensi-
ties of the satellite peaks increase. The families
of peaks appear to “contract” with7,. For small
values of [, the roles of @ and b are reversed if
the chain is close to natural registry. Nothing un-
usual happens at the value of /, for which the tran-
sition from the free sliding to the pinned regime
occurs. ‘

It should be pointed out that these are zero-tem-
perature structure factors. As the temperature
is raised, the one-dimensional nature of the sys-
tem comes into play and some of the peaks are
broadened into diffuse scattering. In particular,
Widom has found that only the satellite peaks
due to the sinusoidal potential do not broaden.'®

1V. COMPARISON WITH APPROXIMATION SCHEMES

Many of the effects observed in the numerical
analysis of this problem can be demonstrated ana-
lytically using approximate solutions of the equi-
librium equations. Since M\ isoften smallin many
applications of the model, x, varies slowly with
n. Successive displacements differ from the na-
tural-spring length by amounts of order Aa. There-
fore, the continuum approximation of Frank and
Van der Merwe® and the linearization-iteration
scheme of Ying'” should be applicable.

In the continuum approximation the second-order
difference in Eq. (4) is replaced by a second de-
rivative yielding the “sine-Gordon equation, ” -
which is integrable. One finds (in units of a =1)
that the displacements are periodic functions of #,

¥,=3+(1/mam{[r(e - 1)/l k] - F[n(z -x )]}, (13)

where “am” is the amplitude of an elliptic function
of the first kind, F(¢). The period can be set to
L by requiring

L/N=nu/[2lK ()], (14)

which uniquely defines 2. With this restriction it
follows that the displacements in the continuum
model have the symmetries of the discrete chain.
When [, is large (A/a < 1) the displacements pre-
dicted by this model are in reasonable agreement
with the exact displacements computed numeri-
cally. If these displacements are used to approxi-
mate the discrete positions of the ions in the nu-
merical calculation of the energy, then many ef-
fects discussed previously regarding pinning will
be obtained. However, if one wishes to have ana-
lytic expressions for the quantities of interest,
one must evaluate these quantities in the continuum
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limit where sums are replaced by integrals. Then,
all lattice-dependent effects disappear. For ex-
ample, the equilibrium energy for the periodic
chain,

E =WI2{[4E(k)/ml ] - 2(1 - R2)[K (k)/ml k] - b}, (15)

is independent of x| regardless of the degree of
incommensurability. In this approximation the
chain can always support a zero-frequency sliding
mode. This is the acoustical mode discussed by
Sutherland,*®* McMillan,'¢ and Theodorou and Rice.!2

The approximation scheme of Ying!” is well
suited for an analytic description of certain lat-
tice-dependent effects when X is small. In this
iteration procedure, a power series in A is gen-
erated by linearizing at each step,

xim 25 (m) y xm) = X sin[(2n/a)x "] (16)

The resultant displacements are periodic func-
tions of #» with the proper symmetries so the meth-
od is well suited to the problem at hand. One finds
to first order

%,=%{"+ (0 - 1)b
- xsin{(27/a)[x{? + ¢ - 1)b]}/[4 sin*(nb/a)]

+0(2?). S

The problem with this approach is that the series
in A will ultimately diverge for any commensurate
chain since the denominators in the expansion go
as sin?(urb/a). Nevertheless, a numerical study
shows that when A/4 sin?®(wb/a) <1, the first-order
term approximates the displacements rather well
(to two or three decimal places). These first-or-
der displacements should then be adequate in ana-
lyzing certain lattice-dependent effects.

Consider the equilibrium energy per particle.
For finite chains it is easily shown that the ener-
gy depends upon the position of the first ion
through a series of terms which are Bessel func-
tions of small argument [7A/2 sin(27b/a)] and
large order (multiples of N). These terms pro-
vide a pinning energy which decreases rapidly as
the system becomes more incommensurate. In
the incommensurate limit, the pinning ene'rgy
vanishes, rendering the equilibrium energy inde-
pendent of the position of the first ion. Thus the
system, in the approximation, is seen to support
a zero-frequency sliding mode. Again, this is
not the usual zero wave-vector acoustical mode
in which all the ionic lattice moves rigidly.

Since the first-order perturbation theory dis-
placements are reasonable approximations of the
exact displacements (X < 1) some insight into the
behavior of S(Q) can be gained by using these ap-
proximate positions to compute S(Q) analytically.

Consider the Fourier transform of the density
1 .
P@)= g7 Do et (18)

(where {x,} denote the atomic positions in one peri-
od), whose modulus squared is equal to S(Q).

From Eq. (11) it follows using the standard expan-
sion in Bessel functions® that

Pu@)=e 1" S Ji(ev)
k=

1 &R i(Qark/ @ {0 )
x(l—v- Ze i ,  (19)

=0
where

y,=/[4sin*(nb/a)]. (20)
The sum over n will vanish unless

(Q -2mk/a)b=2mrm, m=0,+1,.... (21)

Since the allowed @ values for a Bragg peak to
occur are given by @ =2m/La, the solution of
this equation is nontrivial, since it is a Diophan-
tine equation.?! However, @ can always be repre-
sented as @ =»,(27/a) +n,(27/b) [although (z,,n,)
are not unique]. The values of n, and n, are given
by n,=an +sN and n,=pn —sL, where o, b, and s
are integers and s have any value 0, +1,+2, etc.
Because these are the general solutions to the fol-
lowing Diophantine equation obtained when we set
2mn/La=n,(21/a) +n,(21/b),

n=Ln,+Nn,. (22)
It follows that
Py = eiQx{O)
= for(ny-L0)x (O /p
X3 Tnganl@Jetr il (23)

In the incommensurate limit, the elastic structure
factor is then

S(@)=72[Qy,]. (24)

This result qualitatively explains the behavior
of S(Q) shown in Fig. 5. Here N =50, so it is not
unreasonable to neglect the highest-order terms
for moderate . One sees that the intensities of
the families of peaks (z, fixed) display the damped,
oscillating behavior of Bessel functions. The pre-
dominant peaks (J2) correspond to @ =n,(27/b),
whereas the major satellite (J2) correspond to @
=n,(27/a)+2r/a. From this analysis one expects
these two satellites to have similar functional de-
pendence on @. One notices, however, that as @
increases, there is a discrepancy between the be-
havior of the two. The source of this discrepancy
is that the first-order displacements which pro-
duce an S(Q) are accurate only up to some maxi-
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mum value of Q. If the second-order displace-
ments,

—1)b -y, sin{@n/a)[x{? + (& - 1)b]}
+v,sin{(@n/a)[x '+ @ - 1)b]}, (25)
where

y,=TA2/16a sin*(wb/a) sin?(27b /a)

xn=x(0)+(n

are used, one finds the density to be

p@ =1 3, @7, 1,[Q7,)]

kyq
X expl? zfr(nb~uz)x§°)/b] (26)

so that in the incommensurate limit,
2
(S Tdeviagen)”. (27)
q

From this expression one sees that for values of
@ where @y, <1, the principal satellites exhibit
similar behavior with . As @ is increased, how-
ever, the functional behavior of the two satellites
changes.

V. CONCLUSIONS

From numerical studies on finite chains of atoms
in the Frenkel-Kontorova model with periodic
boundary conditions,  we have concluded that as the
coupling of the chain of atoms to the sinusoidal
potential in the model decreases below a critical
value, a transition occurs for an infinite chain to
a state in which the chain will freely accelerate
under an arbitrarily small applied electric field
(assuming the atoms to be electrically charged).
This implies the existence of a zero-frequency
“free-sliding” phonon mode of the chain. Our
studies show, however, that this mode is not the
usual zero wave-vector acoustical mode in which

SOKOLOFF 18

the chain of atoms moves rigidly. Neither is it
simply the rigid motion of a lattice of dislocations
as found by several people,!?"!* although in the
rigid-chain (weak sinusoidal potential) limit this
picture is a good discription of the motion if one
does not pay much attention to the details of the
individual atomic motions. Studies of finite chains
with free-end boundary conditions, however, show
that in the long chain limit, the pinning energy of
the chain is a smoothly oscillating function of the
location of the first atom in the chain (the period
is the period of the sinusoidal potential) with am-
plitude which does not decrease with increasing
chain length. The conclusions regarding free slid-
ing under a field for this case are still unclear,
however. Nevertheless, our results do imply that
in epitaxial crystal growth, the mobility observed
for small crystallites'® must be thermally activat-
ed.

*The static structure factor was calculated and it
was found that in the sliding regime, most of its
features could be accounted for by using a pertur-
bation theory expression for the equilibrium atom-
ic positions.

Although applications of this model to charge-
density waves and to the compound Hg,-;As F
probably only require the weak-coupling limit for
which the continuum model® and perturbation the-
ory' are probably adequate for most purposes,
stronger coupling theory is important for hollan-
dite, for which displacements of atoms around a
vacancy are as large as 25% of a lattice constant.
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