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We present an exact solution to Schrodinger’s equation for the scattering of particles by a hard corrugated
wall with a triangular corrugation profile. The solution is applied to the problem of scattering of low-energy
atoms by a solid surface, and comparisons are made with the recent experimental data for scattering of
helium by stepped copper surfaces. We also give a discussion of the convergence properties of the solution
and a detailed comparison with the numerical method of Garcia and Cabrera.

I. INTRODUCTION

A theoretical model which has been extremely
successful in interpreting the results of recent ex-
periments on low-energy atom-surface scattering
is the potential known as the corrugated hard wall.
The interaction potential is taken to be zero in
front of the surface and infinite behind, the surface
itself being described by a periodic function, or
“corrugation.” ‘

This problem was first considered by Rayleigh'
in the context of acoustic waves using a method
that is now known to converge only under special
conditions. However, the Rayleigh method re-
mains an extremely important technique in the
case of scattering of electromagnetic waves.’
More recently the corrugated-hard-wall potential
has been used for solving the problem of scatter-
ing of low-energy neutral atoms by a solid sur-
faces.>~® Notably, the numerical calculations of
Garcia and Cabrera have given remarkably good
results in interpreting experimental data for wide-
ly differing surface conditions.”™® However, all
of the above treatments are open to a certain num-
ber of criticisms either because they introduce
“approximate” boundary conditions®-7 or because
the numerical procedure used does not necessar-
ily assure that the boundary condition is satisfied
on all points of the boundary zone.®

We present here a solution to this problem which
is exact and free of objection, that is to say a solu-
tion which introduces in an analytical way the cor-
rect boundary condition. This method is applied
to the case of a triangular profile corrugation and
the numerical results are compared with the ex-
perimental data of Lapujoulade and Lejay'® for a
vicinal surface. We also make a comparison with
the numerical method proposed recently by Gar-
cia and Cabrera,®® and the comparison allows us
to answer the objections which have been raised
against this procedure, at least for the case of
this particular corrugation shape.

II. GENERAL SOLUTION OF THE SCATTERING BY
A CORRUGATED-HARD-WALL POTENTIAL

The corrugated-hard-wall potential can be writ-
ten

V(E) = 0, z>@(R); regionl O
w0, z<@(R); regionII

where we have written the position vector ¥ as a
component z perpendicular to the surface and a
component R parallel, and ¢(R) is a periodic func-
tion describing the surface corrugation. The prob-
lem is to find the solution to Schrddinger’s equa-
tion

[Ho + V(T) ]IP, )= Ey, (f) (2)

which obeys the appropriate boundary conditions.

The general solution of Eq. (2) can be obtained
by a variety of different approaches. In terms of
the Green’s function G, of H, (the Green’s function
of the Helmholtz equation) the wave function is
given by ‘

[ oG - F () az
D

=% fD Gy(F, F) VE Jp(E) dF’

-3 [ a8 BEITGE ) - GF, FITIE],
®

where D is the volume enclosed by the surface S.
If the volume of integration is considered to be the
region I in front of the surface [z> ¢(R)] then V=0
and the volume integral does not contribute, and
the wave function is determined by the surface
integral. One gets

l/)(f) =¢; +£; 4, d§'[‘/}(fs)$Go(fyFa
- Go(—f;-fs)_elp(f‘s)] ’

T eregionI (4a)
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and

0=¢+5 J a8-[ENTGCE,E)
s’ -
- G,(F, F)Vy(E,)]
T eregion II (4b)

with ¢; an eigenfunction of H,, S’ coincides with
the surface corrugation, and ¥, refers to a point
on the surface,

On the other hand one may choose the volume
in Eq. (3) to be all of space, in which case the sur-
face integral equals ¢; and after writing the ex-
plicit form of the G, operator we are left with the
usual integral equation for quantum scattering
(sometimes referred to as the Lippmann-Schwin-
ger equation)

P = i+ V‘/’_i(+) . . ()

E;,-H,+ie
Either approach leads directly to the same final
form but for the results presented here we find

9, (F) = exp(R,* B) exp(=ikoz) - ;
Gz

a result which is valid whatever the ¥ value may
be. KO and %, are, respectively, the parallel and
perpendicular components of the particle incident
wave vector, G is a surface reciprocal-lattic vec-
tor, and k;, is given by the energy conservation
relation

B ,=K i+, - (K,+G)*.

One can see immediately that y;(¥) has the cor-
rect asymptotic form in the region 2> ¢, . an in-
coming plane wave plus outgoing diffracted waves.
The coefficients of the diffracted beams are given
by

1

== l;: f dRF(R) exp(~iG*R) exp[—i ks, 0(R)] .

(10)

The experimentally measured intensity is given by
I; = (kga/ ko) ICEI? . (11)

The remaining problem is to apply the appropri-
ate boundary conditions to y; in order to deter-
mine the source function F(R). In principle it ap-
pears that one should be able to determine F(R) if
the value of 3, is known for all Ron any hypersur-
face given by z =¢(R), but this choice is not indif-
ferent with respect to the physical problem to be
solved. In fact the y; function given by Eq. (9)
was obtained by introducing into the general scat-

expli(K,+G) R

it more convenient to use Eq. (5), which in terms
of the eigenfunctions of H, becomes

1
¢i=¢i+;¢in_

B =B, i 4 ©

where T,; is the transition matrix
7= [ dF o, EVEOROE . 0

The convenience of this approach lies in the fact
that the integral over z in Eq. (7) becomes trivial-
ly simple due to the fact that for this particular
potential the product V¢ is given by®

vp=e Ko R B)o(z - o(®)) (8)

where the “source” function f(ﬁ) is to be deter-
mined by application of the boundary condition on
¥ at the surface. [We note that Eq. (8) says nothing
about the value of the wave function on the sur-
face. ]

Putting (8) into (7) and (6) one gets after some
calculation

] f dR'F(R’) exp(~iG*R’) exp[ikg, |z — o(®")]|] 9)

tering equation the condition (8) imposed by the
physics of the particular problem at hand, that is
to say the potential. This condition implies that
the product Vi equals zero for z greater than or
less than @(R). On the surface [z = ()] the pro-
duct V3 is indefinite and consequently ¢ is not spe-
cified there. Therefore it is necessary to use a
boundary condition which states that the ¢ func-
tion takes the value at the surface which is speci-
fied by the hard-wall potential, that is to say

PR, z=0(R))=0. (12)

Now in order to be sure that this condition is suf-
ficient it is necessary to prove that it imposes
the correct behavior on y in regions I and II. We
put condition (12) into Egs. (4a) and (4b) and ob-
tain

v 20, -5 [ a8-GFERWE

- (13a)
reregionl

0= =gy [ d8-GiE, TG

. (13b)

reregionIl .
The two surface integrals in these equations will
be of the same analytical form since G, depends
on position only through the magnitude IT-T%l.
The calculation is carried out in Ref. 6 and the
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result for these integrals is exactly the sum over
reciprocal-lattice vectors of Eq. (9). Thus com-
paring (9) and (13) shows that the two give identi-
cal forms for the wave function, and furthermore
it shows explicitly that the wave function of (9)
vanishes if T lies in region II. This shows that the
condition PR,z = ¢(R)) =0 is a sufficient as well

as necessary condition on the wave function, and
consequently this boundary condition will always
give an exact solution to the problem of scattermg
by a hard-wall potential.

Applying condition (12) to the wave function of
Eq. (9) gives an integral equation for the deter-
mination of F(R)

0= exp[—ike p®)] - g 7 f B dR’F(R")e-‘G'R' explikg,| o@®) - o®")|] . (14)

Other boundary conditions have been used leading
to a much simpler integral equation than (14). In
the so called Rayleigh method the expression of
y; in free space, that is to say for z greater than
®¥max, 15 assumed to be valid in the selvedge region
(@min<Z < ¢¥may) and set equal to zero on the surface.
The solution obtained is known to converge only
for a sinusoidal corrugation of small amplitude.?
Another boundary condition is to force the wave
function to be zero on an arbltrary plane lying in-
side the surface (2 < @mp).” This is, of course, a
necessary condition, but it is open to the possibil-
ity that it is not a sufficient condition to produce
a convergent solution. In fact numerical difficul-
ties have been encountered using this boundary
condition for certain corrugation shapes and par-
ticularly for large corrugation amplitudes.®'? In
any case these two boundary conditions may give
a convergent solution in which case this must be
the exact solutionby the uniqueness theorem,'? the

only other alternative being that the solution does
_ ]

0=exp[~iky,¢(x)] - ;
with G=2ng/a, g=0,+1,+2,++- and

Co= 33 [ dxe =0 expl-ikg,pta] . (7

u.c.

Taking the Fourier transform of Eq. (16) gives a
system of linear equations, or otherwise stated,
a matrix equation for the unknown column matrix
Fy. ‘
A ylko,) = Z FyCuu s (18)
N

where M=27m/a is a surface reciprocal-lattice
vector,

uq)= f dx exp[-iMx - iqp(x)] (19)

and

not converge at all. A contribution to the discus-
sion of this problem will be given in another pa-
per.*?

III. EXACT CALCULATION: APPLICATION TO A
TRIANGULAR PROFILE

For simplicity we choose to work with a one-~
dimensional surface corrugation <p(§) = ¢(x) having
a period of length @, however, the extension to a
full two-dimensional corrugation is obvious. Rath-
er than obtaining the source function directly it
is more convenient to consider the Fourier trans-
form.

F(x)= 2 F e, (15)
N

where N is again a one-dimensional reciprocal-
lattice vector (N=2mn/a, n=0,+1,+2,+-+), In this
case the boundary condition (14) and coefficient
of the diffracted beam (10) become, respectively,

Z Fyf_ax 997" explit,|p(x) - p(x))] (16)

r

(G —M)x
Cyy= e f dxe
G Geg uc.

f dx' &M H-Grx!

x explikg.|@(x) - (x)]] . (20)

The coefficient Cz of the diffracted beam intensity
is given by

Co= D72 Ag_ulked) (21)
N Gz

where A (k) is given by Eq. (19). For the case of
an arbitrary corrugation function ¢(x), it is the
double integral of Eq. (20) which is difficult to
handle. However, for a corrugation profile con-
sisting only of straight lines all of the integrals
are relatively straightforward. In particular for
the triangular profile of Fig. 1, defined by



2hax/b; 0<x<b
2hala—-x)/(@-b); b<x<a

o(x) ={ (22)

(where 2ha is the corrugation height and x=5 is
the position of the triangle vertex) the integration
is straightforward.

Before discussing the results of the calculations
it is important to consider the convergence prop-
erties of the formalism, because at first glance’
the matrices involved have some rather interest-
ing properties. Formally, we can write the solu-
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tion to Eq. (18) for the coefficients F as

Fy= ; CryAully,) - (23)

However, one can show readily that the inverse
matrix Cy}, is not defined, in the sense that for
M large the elements are proportional to M. Nev-
ertheless, the Fourier coefficients Fy and the ex-
perimentally important quantities C; always re-
main well defined.

To explain this behavior we have to look first at

the matrix element Cy, given by

—2ha’a ([n(<p— B) +y — Bo] sinh27w — w(n — @) sin278
w(¢® - 2B¢ +v)(cosh2rw — cos2wp) (n — m)

Con= Gy a®+ 4

)+same term replacing a by (1 -a)

+4n*a* f: ko [F (D)= — expli[(N + G)b + 2kgha ]}) — Fla - b)(exp{—i[(M+ G)b - 2kg hal} - 1)]  (24)

c:—oo
with
_b _na®+4h’°K, sinb
a 2’ B= PYEIWTA ’

_n’a® = 4n°K} cos®s;
aZ+4n’ ’

K, =(a/2m)(K2+k2,)"/?, and 6, is the incident angle.
In addition

p=m(l-a)+na, w=(-pg)"2,
and
F(®) ={[(N+ G)(a~b) - 2kg hal [N+ G)b + 2k, ha]
X[+ G)(@— b) = 2k ha][(M+ G)b + 2k hal }™* .
For large values of [N| or M| with N+M one

9(x)

m

b a X

2ha

FIG. 1. Triangular corrugation profile as defined by
Eq. (22).

r
can seethat the two first terms go to zero as [N(V
~M)]™ or[M(N-M)]™*. One can show that the re-
maining sum over G behaves in the same way.
However, for the diagonal term C,,, the leading
part of which being equal to

2d°0* 7 sinh27w

(27)%(a® + 41°) w(cosh27w — cos27pR)
+same term replacing a by (1-a)

clearly goes to zero as N~! for large IN|.

Thus in the limit (N[ or |M| large the only im-
portant matrix elements are the diagonal terms
C,yWhich become smaller as 1/N. Consequently
in the same limit the only important elements of
the inverse Cy}, are the diagonal terms which are
proportional to N. In other words the matrix C,,
can be thought of as composed of submatrices,
where the submatrices of elements with large in-
dex values approach either null matrices or diag-
onal form, with diagonal elements falling off as
1/N. The inverse C3), is then of the same form
where for large index values the submatrices are
either null or diagonal, with the diagonal elements
proportional to N, Thus for |N| very large Eq.
(23) becomes ,

Fy=CynvAylky) .
On the other hand Eq. (19) gives

2iha’qlexp[~i(Nb +2gha)] - 1}
(Nb + 2gha)[N(a - b) — 2qha]

Ay = (25)
showing that A y(k,,) varies as N2 for large |NI
Consequently, in spite of the fact that C3}, grows
as |N| -, the coefficients F, decrease as N*
and are well defined. Furthermore Eq. (25) indi-
cates that A;_,(k;,) varies also as N-2 in the
same limit, Thus the summand in Eq. (21) giving
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the C; coefficients varies as N2 and the conver-
gence of this summation is very rapid.

Finally we note one other apparent difficulty
with C; that appears as |G| becomes large. In
this limit kg, is imaginary (corresponding to an
evanescent wave) and approaches iG, thus from
the form of A;_,(k;,) of Eq. (25) we see that the
coefficients C; grow as e*2¢®, However, this is
not a difficulty at all, because in the asymptotic
wave function [see Eq. (9)] this term is always
multiplied by the corresponding evanescent plane
wave, i.e.,

ei*62(C, — e=C%* M, 2>0hq .

This is the expected behavior for an evanescent
wave, it is of finite amplitude near the surface
but is rapidly damped.

IV. NUMERICAL RESULTS OF EXACT CALCULATIONS

We have carried out calcluations using the re-
sults of Sec. III for a number of different systems
to check the various aspects of the method, and
we have made a comparison with the experimen-
tal results of Lapujoulade and Lejay'° on stepped
copper surfaces. A comparison with the numeri-
cal method of Garcia is discussed in Sec. V.

The approach is to convert the infinite system
of Eq. (18) into a finite matrix equation by trunca-
tion at a dimension large enough to insure good
convergence. The internal summation over G in
(20) is carried over a sufficient number of terms
to obtain the desired accuracy for the elements
Cyy- The matrix is inverted to find the F ac-
cording to (23) and the diffraction coefficients are
then calculated from (21).

In general we find that the method converges for
all values of the parameters a, %, and b (b+#0, a).
By “convergence” we mean that the individual
diffracted intensities are stable and the sum of all
intensities (commonly referred to as the “unitari-
ty”) equals 1. It is always found that the individ-
ual intensities are quite stable under conditions of
good unitarity. For values of 2= 1 we find that the
result converges quickly when the total number of
source function Fourier components considered
[i.e., the dimension of the truncated matrix of Eq.
(18)] is only slightly larger than the number of
diffracted beams. We find that the internal sum
in the matrix C,,, [the sum over G in Eq. (20)] is
important in obtaining good unitarity and this is
handled either by taking a number of terms in the
summation which is approximately twice the di-
mension of the matrix, or by cutting off the sum-
mation when the terms become very small. In all
cases the results give the correct specular scat-

05
1l .1 2h= 30
sl ]
T
0s
LT 2h=10
0s |
J‘ I rr 1 2h = 08
05}
1”[1. 2h = 08
rrIIII 2h = Q4
os |
[ .1 .:11 2h=03
as |
[I [ 2h=Q2
0s
I[ 2h=

A d
-3-2-1 004 4243

FIG. 2. Diffracted intensities from a triangular cor-
rugation profile for various values of , 6 ;=0 (perpen-
dicular incidence), kya=21.18, and b=0.75a. In all
cases the unitarity is better than 0.999.

tering behavior in the limit of small corrugation
amplitudes.

Shown in Fig. 2 are a number of calculations
for different values of the corrugation height %
carried out for helium perpendicularly incident
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on a surface under conditions which produce seven
diffracted beams. For this system kya, the pro-
duct of the corrugation period and the incident
wave vector is 21.18, and b, the position of the
triangle vertex, is 0.75a. In all of the cases the
unitarity sum is better than 0.999.

It is seen that for small values of 7 (height of the
corrugation small compared to the period) the
diffraction intensities follow the typical quantum
mechanical rainbow pattern.® (The classical rain-
bow angles are the angles of specular scattering
from the flat portions of the surface, thus this
model exhibits two distinctly different classical
rainbow angles, even with perpendicular inci-
dence.) It is interesting to note that for very
strong corrugations 2% = 1.0, where the classical
rainbow picture becomes much more complicated,
there is still a large variation in the relative peak
intensities but the scattering seems to be strongly
in the forward, or specular direction. This is the
region where clearly multiple scattering is ex-
tremely important and is a very good test of the
convergence properties of the method.

A more definitive test is the comparison with
the experimental results of Lapujoulade and Lejay
for the scattering of helium at stepped copper sur-
faces.’® The experiments were carried out using
the (117) face of the copper which consists of (100)

R
02 +
x
01+
x
x
x
x x I[
xxl
[ L
x
I r T 17T
-10 -5 0 +

FIG. 3. Comparison with the experimental results of
Lapujoulade and Lejay using the triangular corruga-
tion profile with ¢ =9.13 A, a=11.25°, =20°, ky=1.1
x10% em™ !, and 6;=60°. The unitarity is 0.998. The
experimental points are denoted by X.

terraces separated by linear steps parallel to the
[110] direction. Figure 1 shows the triangular
corrugation which we have used to approximate the
experimental situation. The period is 9.13 A and
the angle « is 11.25° [a is the angle between the
plane of the (117) surface and the (100) terraces].
The angle B, which is the angle of the steps, is
not determined a priori and thus we regard it as
a parameter. Figures 3 and 4 show the compari-
son with the data at an incidence angle of 60° for
B=20° and B=22°. There is surprisingly good
agreement with the data especially for =20° The
strong rainbow at 6~ 82° [corresponding to clas-
sical specular scattering from the (100) terraces],
the rainbow centered at 6, ~20° (due to scattering
from the step face), and the secondary rainbow
due to multiple scattering centered around 6, 50°
are all in agreement with the calculations. With
the exception of diffraction orders —10 and -6 the
calculated intensities are about twice the experi-
mental values which is consistent with the fact
that the calculations always exhibit unitarity but
the sum of the experimental intensities is only
0.568 after correction for the Debye-Waller ef-
fect.’® This agreement is more striking when one
realizes that the behavior of approximately ten
experimental peak intensities has been matched
with a theory having only one adjustable parame-
ter, namely, the angle 8.

The calculation shown in Fig. 4 for 8=22°is
also very interesting. The general pattern is quite

R
02 -
x
01 |
x
x
x
x x ]
L]
¥ X
%
r I I Lt
-10 -5 0 +2

FIG. 4. Same as Fig. 3 except f=22°, The unitarity
is 1.000. ’
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similar to the case for 3=20° except that the rain-
bow pattern associated with the step face and the
secondary rainbow are shifted by about 4° (ap-
proximately by one reciprocal-lattice vector)
towards the normal direction. This is consistent
with the fact that a change 68 in the angle of the
surface will cause a change 56,=26p in the classi-
cal rainbow angle. This ability to detect subtle
differences in surface structure is an example of
the sensitivity of the experimental technique of
atom surface scattering, and indicates how power-
ful this tool should become as a method for deter-
mining surface information.

Lapujoulade and Garcia have recently used the
corrugated-hard-wall model to explain the scat-
tering of the same He-Cu system for all angles of
incidence'* using the numerical method that is not
limited to triangular corrugations.® They find
that the best agreement with all the data is ob-
tained for a corrugation which is basically triangu-
lar having g=22°and with the addition of rounding
at the sharp points (¥x=0,5 in Fig. 1) and a slight
shoulder at the peak of the step (x=b5 in Fig. 1).
(Tre shoulder possibly corresponds to a combina-
tion of a slight outward relaxation of the edge

atoms with the Friedel oscillations of the elec-
trons.) However, it should be mentioned that their
agreement for large angles of incidence (6, =60 °)
is no better than that discussed above in Figs. 3
and 4. Even if the Lapujoulade and Garcia model
seems to be the more probable from a physical
viewpoint, more precise experimental data are
needed in order to define without ambiguity the
surface potential shape.

V. COMPARISON WITH THE METHOD OF GARCIA
AND CABRERA

The Garcia and Cabrera method,® which is a
completely numerical way of solving for the source
function in Eq. (14), has up to now been used only
for the case of one-dimensional corrugations. It
consists in dividing the unit cell of length g into
2N intervals of equal length and then replacing the
integral over x of Eq. (14) by a finite summation
over the 2N intervals of this grid. Equation (14)
is then converted into a system of linear algebra-
ic equations by evaluating it at each point on a
second identical grid of elements denoted by 2N’.
That is to say the ¥ function is forced to zero at
a set of 2N’ points x=x,., 2 = ¢(x,.) as follows:

. N
0=exp[~iko,¢(x,)] —5% ; ixﬁ%f—’—c"i ZN F(x,)e™ % explike,| @(xy) = o(x,)|] . (26)

n=—

This system is inverted to obtain the F(x,) values
and then the reflection coefficients are calculated
by numerical integration of the one-dimensional
form of Eq. (10). The number N=N’ is taken suf-
ficiently large to satisfy the condition of unitarity.

In spite of its success in explaining experimen-
tal data the Garcia-Cabrera method [called the
NN’ method because of the form of Eq. (26)] has
been criticized on a number of points. One of the
most important objections is that it is a rather
complex numerical procedure and is open to the
possibility of a variety of systematic errors. Sec-
ondly, since the wave function is forced to zero at
only a finite number of points on the surface there
is possibly some penetration of the wave function
into the solid. An effect of this sort could lead to
results which still obey the condition of unitarity
but do not give the correct diffracted intensities.

Both of these objections, at least in the case of
a triangular corrugation, seem to be clearly an-
swered by the work presented here. We have made
numerous comparisons of the present method with
the calculations of NN’ and in every case the val-
ues of the diffracted intensities are identical with-
in the limits of the unitarity defect.

A comparison of the two methods for the seven
diffracted beam system of Fig. 2 is given in Ta-

f

ble I. The first two columns show that the results
of the two methods are almost exactly the same
with the slight differences being explained by the
unitarity defect. A distinct advantage of the exact
method is that it can produce results which con-
verge to very good unitarity with a substantially
smaller matrix than the NN’ approach. (However,
it should be remembered that the two matrix di- -
mensions are not exactly equivalent. In the exact
case the dimension N is the number of Fourier
components of the source function retained, while
in the NN’ formalism the dimension 2N is the num-
ber of intervals into which the unit cell is divided.)
From Table I, we see that results equivalent to
the NN’ method with dimension 2N =100 are ob-
tained using the present approach with only 15
Fourier components of the source function, while
substantially better results are obtained with 25
components.

For comparison the NN’ calculation of dimen-
sion 2N=16 gives unitarity of only 0.998, while
the exact method gives a comparable unitarity of
0.999 with only 9 Fourier components. It is in-
teresting to note that the present method still
gives good results for small % even if only a small
number of Fourier components are calculated
(that is to say, the dimension of the matrix to be
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TABLE 1. Exact solution and comparison with the Garcia—Cabrera (NN’) method for the triangular profile with
kya=21.18, h=0.1, and b = 0.75a. For the exact calculation N is the dimension of the matrix and 2G is the number of
terms kept in the intermediate sum over G in Eq. (24). For the NN’ method 2N is the dimension of the matrix.

N=25 N=25 NN’ method NN’ method

Order G =500 G =200 N=15 N=9 N=17 2N =100 2N=16
-3 0.00377 0.00377 0.00367 0.00424 0.00505 0.00377 0.00657
-2 0.37950 0.37935 0.37913 0.38844 0.39481 0.37936 0.40842
-1 0.29592 0.29614 0.29635 0.28820 0.28105 0.29599 0.27302

0 0.07416 0.07418 0.07467 0.07221 0.06744 0.07409 0.07004

1 0.00443 0.00444 0.00443 0.00436 0.00376 0.00441 0.00737

2 0.08604 0.08597 0.08584 0.07797 0.06273 0.08616 0.07449

3 _ 0.15619 0.15614 0.15586 0,16354 0.17034 0.15620 0.15836
Total 0.99999 0.99998 0.99996 0.99896 0.98427 0,99998 0.99828

(unitarity)

inverted is small). For the model of Table I the
unitarity with 7 Fourier components (the same as
the number of diffracted beams) is 0.98. This
may be an advantage if one wishes to calculate the
diffracted peak intensities from a two-dimension-
al corrugated surface.

Another objection to the NN’ method is that the
infinite sum over reciprocal-lattice vectors G in
Eq. (26) is restricted to roughly not greater than
2N terms. The reason for this is clear, for larger
values of G the exponential ¢*®* oscillates rapidly
and cannot be considered a slowly varying func-
tion over the interval ¢/2N=Ax. In practice if
one arbitrarily extends the summation over G to
larger values of G the convergence of the solution
becomes progressively worse. On the other hand,
with the calculations presented here the integra-
tion is carried out exactly and the corresponding
intermediate sum over G in Eq. (20) can be extend-
ed indefinitely and the unitarity continues to be-
come better and better.

Considering further the question of the interme-
diate summation over G in Eq. (26) there is an ap-
parent divergence which arises in the Garcia-
Cabrera method when x,=x,,. In this situation the
sum becomes . 1/k;, which is undefined if the
sum is carried out over the infinite set of recipro-
cal-lattice vectors, and special care must be taken
to avoid the problem.’ Again we note that this
problem does not exist in the present calculation.

The final comparison we would like to make con-
cerns the interesting question of what happens to
the solution when there is a discontinuity in the
corrugation profile. Such a situation arises with
the triangular profile in the limit 5/a-0 or b/a
-1, which gives a profile in the form of a saw-
tooth wave. Clearly the Garcia-Cabrera method
fails in this limit because it depends on the as-
sumption that the surface profile varies slowly

over the interval Ax=a/2N, thus the wave function
is not forced to equal zero on the vertical part of
the profile. A similar problem arises with the
exact method presented here. One can not arbi-
trarily set b/a=1 in Eq. (24) to obtain the saw-
tooth limit, in fact a simple form for the limit
does not exist. The explanation comes from re-
garding the sums over N and G appearing in (18)
and (20). “Since the sums range over all recipro-
cal-lattice vectors from — to +« one can never
regard terms such as G(a ~ b) or N(a—b) (in the
limit b+ @) as small, Thus for values of b/a near
unity the dimensions of the matrix Cy, as well

as the sum over G must be increased to values
that go well beyond the minima which always ap-
pear in the denominator of F of Eq. (24). This re-
sult is borne out by the calculations; for the sim-
ple system as in Fig. 2, but with 2=0.01 and b/a
=0.99 the unitarity is only 0.94 if the matrix di-
mension is 25, but the unitarity is 0.99 if the di-
mension is increased to 95.

We should mention here that the problem of ver-
tical components (b =a) in the surface profile has
recently been solved using a method which replaces
the integrals over x in (16) and (17) by integrals
over z, the direction perpendicular to the surface.
With this method the vanishing of the wave func-
tion on the vertical portion of the profile is as-
sured and well defined equations for the diffracted
intensities are obtained.'®

VI. CONCLUSIONS

“We have given here an exact analytical solution
(in the sense that all integrals have been evaluated
exactly) to the problem of the scattering of a plane
wave from a hard corrugated surface with a tri-
angular profile, The diffracted intensities are
found in terms of solutions to an infinite matrix
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equation. In practice the matrix is truncated at a
finite dimension and inverted to obtain the final
results. The solution converges very rapidly as
the dimension of the matrix is increased (that is
to say the intensities of the diffracted beams be-
come stable and the sum approaches unity) and
the convergence becomes better and better even
if the matrix is made very large. We have made
a comparison with the experimental data for the
scattering of helium atoms at a stepped copper
surface and the agreement is surprisingly good.
The rainbow patterns are in the correct positions
and the intensities are in quite reasonable agree-
ment if one takes into consideration the unitarity
deficit of the experimental data.

We have made a number of comparison between
the Garcia and Cabrera® method (called NN’) and
the exact calculation and in every case the results
agree to within the unitarity deficit. This seems
to indicate that the objections raised against the
NN’ method (which involve questions of systematic
numerical errors and cancellation of the wave
function at the surface boundary) are not impor-
tant, at least in the case of the triangular corruga-
tion. However, this should be a rather good test
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of the method because the triangular profile has
two sharp points (the peaks of the triangle) and it
is well known that solutions to'Schrodinger’s equa-
tion converge slowly near such structures.

This is an important result because the NN’
method is a much more flexible approach as it
can be easily applied to a wide range of surface
profiles, while the present work is a limited to.
profiles for which the relevant integral can be
carried out (and, in fact, calculations have only
been presented for the triangular profile).

Finally we note that the analysis presented here
together with the comparison with the experimen-
tal data show that the corrugated-hard-wall model
and the experimental technique of atom-solid scat-
tering have the potential of becoming very power-
ful tools for the examination of surface proper-
ties.
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