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Density-functional theory of Wigner crystallization
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We present a theory of the transition from a low-density electron crystal to a uniform electron gas based
on the density-functional formalism. We find a first-order transition near r, = 26; for r, slightly greater
than the transition value the electrons must still be regarded as itinerant, but with inhomogeneous density.
As a step in our calculation we find a new value for the low-density limit of the exchange-correlation energy

to replace Wigner’s well-known form.

In 1934 Wigner pointed out that, for sufficiently
low densities, electrons in a uniform positive
background will crystallize.! This remarkable
electronic property has inspired many attempts
to obtain estimates of the density at which the
transition occurs.? These estimates have varied
over a wide range, in terms of the dimensionless
parameter v, from 5 to 700. (Here 7, is related
to the mean density »n, and the Bohr radius ag by
2mri=n;'az’.) In view of this uncertainty and,
lacking an experimental verification of the transi-
tion to the crystalline state, we reconsider the
problem in this paper and present yet another
estimate. We hope to demonstrate that our
method leads to new insights into this well-studied
system and in particular, that this approach gives
a unique qualitative picture of the nature of the
transition. In the course of the calculation we will
present a new value for the low-density limit of
the exchange-correlation energy to replace
Wigner’s well-known estimate.!

The majority of previous papers have approached
the problem from the extreme crystalline limit
where well-known techniques in crystal physics
can be used. The phase change to the uniform gas
is usually located by extrapolating the crystalline
energy to high densities and comparing it with the
energy of the uniform phase or by using a Linde-
mann melting criterion. The uncertainty in this
approach is illustrated by the widely varying
estimates of the transition density. Clearly what
it required is a theory which is capable of treating
the uniform and nonuniform phases on the same
footing. Such a theory is presently available in
the density-functional (DF) formalism which has
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enjoyed considerable success as a practical tech-
nique in inhomogeneous-electron-gas problems.3
The DF method is ideally suited to the classic
Wigner problem. In applying this method, our
purpose is twofold: to clarify the fundamental
question concerning the transition point and also
to shed light on the application of DF theory to
low-density situations.

We base our calculations on previous DF work
for the cohesive energy of metals; we shall
examine the ground-state energy of the electron
gas allowing for arbitrary variations of the density.
The gas is divided into lattice cells each containing
one electron, which are then replaced by Wigner-
Seitz spheres. (Thus we cannot distinguish be-
tween different crystal symmetries.) The ground-
state energy per electron is given by DF theory as

1 1 [0(r) = nol[n(r") = n,] 3
E,=T+= 9+ | eglnndr.
2 f !1,_7,,‘ f

(1)

Here T is the kinetic energy (to be discussed
below); the next term is the electrostatic self-
energy of the electrons and their interactions with
the positive background of density #,; and the last
term is exchange and correlation, treated in the
local approximation. The integrals extend over
the Wigner-Seitz sphere (electrostatic interactions
between cells are ignored).

An immediate problem arises in that the form
of €, (n) at small densities is unknown, and is
vital to our work. In this regard, we note that
the famous low-density limit for the correlation
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energy (e~ —0.88/7, Ry) obtained by Wigner and
subsequently widely used, is not the appropriate
quantity to use in the context of Eq. (1). For,
recall the derivation of €,: the total crystalline
energy is calculated from which is subtracted
the electrostatic energy and the kinetic and ex-
change energy the gas would have were it uniform.
The remainder is the correlation energy €, for
the inhomogeneous system. The correlation-
energy contribution to €,.(x) in Eq. (1) should,
however, be the energy of a uniform electron gas
of density »n; the quantity €, then appears as a
result of solving Eq. (1), rather than as input.

The question arises, of course, whether any
local form for €., exists as »;—~ <. In the low-
density limit one is dealing with essentially
isolated electrons: in the crystal they are bound
to lattice sites by a harmonic potential due to the
neutralizing positive background. But a single
electron has no exchange-correlation energy, and
no electrostatic self-energy, both of which occur
in Eq. (1). A similar situation occurs in Hartree-
Fock theory; although there the self-exchange
and self-repulsion cancel exactly. Our problem
is that a local €., cannot exactly compensate for
nonlocal electrostatic energy.

This quandary has an interesting resolution.
Suppose we take an ¢, of the form of ¢y, namely,
€,.=—a/7,, and adjust @ until the electrostatic
and exchange-correlation energies cancel, say
for a Gaussian charge density; in this case, «
turns out to be 217/63-7/6;-1/3 Ry =1,351 Ry. If
the calculation is repeated for an exponential
density, the answer for « is 27/33°8/35 Ry=1.346
Ry; i.e., the same as the Gaussian case to three
significant figures. Note that in both these cases
a is independent of the length scale in the charge
density: the result holds for any Gaussian or
exponential. Other profiles give almost the same

“result; for a large class of localized density
profiles, we have ’ )

€,.=-1.35/7, Ry (2)

as the correct limit for €,.. This should be com-
pared to the conventional expression ¢,,=-0.92/7
+ew=—1.80/'r$ Ry, where the first term is ex-
change. We believe Eq. (2) to represent the best
local form for €,, as ,~. For use in Eq. (1) we
smoothly join the expression in Eq. (2) to the high-
density results of Gunnarson and Lundquist.®* The
expression we use is, with x=7,/11.4:

0.080 38
xc='— -_—
X
- 0.0666 [(1+x3)1n <1+3) NP 1]
x/ 2 3

for x<1, (3a)

0.000 862(x — 1))

€ye=—x"110.117208+
x —0.902 245

for x>1. (3b)

The calculation of the Kinetic energy in Eq. (1)
is the heart of the DF method. The technique®®
is to solve the set of equations:

(-2V2+ o) =€ s, (4a)

n(n =73 9], (4b)

T=Z ei—fn(r)vd%’, (4c)

v= o+ W) (4d)
dn

- The first equation is to be solved with Bloch-wave

boundary conditions at the edge of the Wigner-
Seitz sphere. The energy levels are filled to
generate the density according to Eq. (4b), and
the kinetic energy according to Eq. (4c). Equation
(4d) is the self-consistency condition on the poten-
tail v, where ¢ is the electrostatic potential [cf.
Eq. (1)]. In calculating the band structure we
found it inconvenient to use the Kohn variational
method® (as other workers have)® because spur-
ious bands are generated, which are numerically
difficult to separate from the correct bands. We
used instead the method of Brooks.” Both methods
involve numerical solution of the Schradinger
equation within the Wigner-Seitz sphere for
several values of I (in our case for =0 to 6).
They differ, however, in the way they determine
the appropriate linear combination of the ¢ ,(T) to
approximately satisfy the Bloch condition on the
surface of the sphere.

Equations (4a)-(4d) can be solved two different
ways: a trial potential » can be chosen, the density
generated, and a new potential obtained from Eq.
(4d), and so on to self-consistency. Alternatively,
v can be a variational function,® E, being mini-
mized when v satisfies Eq. (4d). For the Wigner
problem it is evident that for any 7,, n(v)=n, is a
self-consistent solution. Of course, it does not
necessarily give the absolute minimum energy.

Consider now #,=50 for which the ground state
is crystalline in our theory. We first use a varia-
tional-potential approach, and put v=Ar/ 'ri,
where A is the variational parameter. We find a
minimum energy of E,=-0.0274 Ry as compared
with the uniform-gas value -0.0260 Ry; the charge
density is Gaussian and is plotted in Fig. 1. The
value of A for which the minimum occurs is 4 ;,
=0.98 Ry. These results, of course, are to be
expected in the Einstein phonon approximation to
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FIG. 1. Charge densities as a function of position in
the Wigner-Seitz sphere. For 7 =50 both variational and
self-consistent results are plotted. For »;=26.5 the
variational result is given.

which our method reduces by virtue of the cancel-
lation of the electrostatic self-energy and the
exchange-correlation energy. For comparison,
the more realistic harmonic phonon approximation
of Carr® gives —0.0283 Ry for the ground-state
energy at this density.

If we now iterate the calculation to self-consis-
tency, we see both the virtues and vices of Eq. (2).
The energy remains essentially the same, having
a value of —0.0275 Ry for the self-consistent
solution: However, the charge density takes on
the unphysical form plotted in Fig. 1. The reason

for this behavior can be traced to the local approx-
imation for €,. Although the electrostatic self-
energy and the exchange-correlation energy of the
single electron cancel globally, the potentials due
to these contributions do not cancel locally. This
difficulty clearly illustrates the limitations of the
local approximation and suggest the Wigner prob-
lem as a useful test for any proposed nonlocal
corrections to €,,.

Fortunately, these difficulties do not occur in the
transition region where our chief interest lies.
The location of the phase change can be investi-
gated conveniently in terms of the parameter
A_i.(7,) at which an absolute energy minimum is
found. These results are plotted in Fig. 2 where
it is seen that a first-order transition occurs in
the vicinity of »,=26. The electronic density in
the nonuniform state near the transition point is
shown in Fig. 1. Unlike the situation at v =50,
the self-consistent and variational charge den-
sities differ by less than 10% near the transition,
and are both monotonic.

The fact that the density at the edge of the
Wigner-Seitz sphere in the nonuniform state is
reasonably large suggests that the electrons are
itinerant, i.e., a well-defined band structure
exists. Thus, results based on a crystalline
melting criterion would appear to be of doubtful
validity. The picture of the transition that emerges
is one of spontaneous growth of a charge-density
wave,'?

To examine this point in more detail, we con-
sider the density response function of an electron
gas whose energy is given by Eq. (1). It is
straigtforward to show that the static dielectric
function for this case is

(Ry)
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FIG. 2. Variational para-
g meter as a function of 7.
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elg)=1- C?: d;““))xo() (5)
n

where X,(q) is the free-electron polarizability.
Excluding the second term in the parentheses one
recovers the random-phase approximation. The
gas becomes unstable against small amplitude
density fluctuations if €(g) has a zero for finite q.
For our model this first occurs at »,~27 which
is close to the critical », found above. The q for
this critical value of 7, is very close to q=2kp.
One can imagine forming a periodic three-dimen-
sional structure from intersecting planes of wave
vector g. However, a primitive cell of this struc-
ture can contain a nonintegral number of electrons.
" For example, a simple cubic lattice with lattice

wave vector 2k contains 57 electrons per unit
cell. In our spherical-cell calculation, the num-
ber of electrons in the cell was restricted to unity;
it is possible that the first-order character of the
transition is a consequence of this restriction. A
true band-structure calculation allowing arbitrary
periodicity would enable one to investigate this
possibility and, furthermore, to investigate the
possibility of several incommensurate phases
occurring near v =26. In any event, we believe
the location of the transition to be fairly reliable.

We should also point out the possibility of mag-
netic transitions in this system which could be
studied similarly using the spin-density-functional
formalism.!* Since the low-density limit consists
of one electron localized in each cell, the effect
of local spin polarization should in principle be
taken into account.

Our calculation indicated that the transition to
the inhomogeneous state is of first order. It
should be pointed out that this conclusion was

reached by using a mean-field approach to evalu-
ate the parameter A _,,(»,); the order of the tran-
sition may be changed if fluctuations are included.
Furthermore, the low-density limit for €, was
determined entirely by the requirement that the
self-interaction terms for a single electron can-
cel. A calculation of €, (n) for an artificial homo-
geneous electron gas need not have the same low-
density limit. Thus one cannot rule out the possi-
bility that the order of the transition or the value
of 7, at which it occurs, may be a consequence

of the use of . a local approximation for €,

The system we have been discussing in this
work is, unfortunately, mainly of academic inter-
est, although there are said to be astrophysical
occurrences of Wigner solids'? and two-dimen-
sional classical electron gases may crystallize.!®
In spite of this, we feel that this problem is werth
solving for the insight it provides into the physics
of the electron gas. Furthermore, it appears that
an improved DF theory will undoubtedly play a
role in finally resolving the details of the transi-
tion. The present calculation using this theory
provides for the first time some interesting infor-
mation about the nature of the ground state in the
vicinity of the transition and suggests the possi-
bility of studying other electronic transitions,
such as the metal-insulator transition, using
similar techniques.
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