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The coupled dynamics of translations and rotations is studied with respect to mixed molecular crystals. At
high temperatures the dynamic scattering law exhibits a Brillouin doublet which softens with decreasing
temperature (fast orientational relaxation regime). In diluted molecular crystals of type (KCN), (KX),
X = Cl or Br, the structural phase transition is suppressed and one reaches the slow orientational relaxation
regime at low temperatures. Then the Brillouin doublet frequency passes through a minimum and increases

again with decreasing temperature. At the same time a well-defined central resonance rises in the spectrum
as a consequence of slowing-down orientational relaxation. The theory describes recent neutron-scattering
experiments in mixtures by Rowe and Rush and recent Brillouin-scattering results by Satija and Wang.

I. INTRODUCTION

The study of soft modes and central peaks is a
subject of extensive current research. So far, one
has investigated mainly these features in crystals
which exhibit displacive or order-disorder phase
transitions. ' For a brief review of the recent
literature, the reader should consult Ref. 2. From
the experimental and theoretical work it is clear
that there can exist several reasons for the oc-
currence of a central peak. It needs not be an
intrinsic effect but could also be due to the pre-
sence of static impurities. ' Since the width of the
central, peak is in many cases smaller than the ex-
perimental resolution, ' it is very difficult to clarify
unambiguously the nature of this phenomenon in
order-disorder and in displacive systems.

There exists another class of crystals which are
also of interest for the study of soft modes and
central peaks, na.mely, molecular crystals or
complex crystals. As complex crystals, we con-
sider those crystals where part or all of the atoms
form molecules or molecular ions. We assume
that these molecules have orientational degrees
of freedom. In an orientationally disordered
phase, the collective dynamics of orientational
relaxation' gives rise to a central peak which is
measurable by coherent inelastic neutron scatter-
ing. The measurability depends crucially on the
experimental energy resolution compared with the
intrinsic frequency of the relaxation process. If the
orientational relaxation is extremely fast, the cor-
responding central peak is broad and flat. Such a
feature is easily lost in the experimental back-

ground. This is the case in the disordered phase
of CD4 at high temperature. With decreasing
temperature, one approaches the orientational
phase transitior~ and the central peak emerges
from the background as a consequence of critical
slowing down. ' On the other hand, in the dis-
ordered phase of ND, Cl, the orientational relaxa-
tion is very slow, the corresponding central peak
has a width smaller than the experimental re-
s olution. '

In many systems, as for instance also in ND, Cl,
the coupling between orientational and translation-
al degrees of freedom is relevant. Then, for
given experimental conditions, the relative mag-
nitude of typical phonon frequencies co, with re-
spect to the orientational relaxation frequency A.

is relevant. For the case of a two states orien-
tational system like ND, Cl, we refer to Ref. 8.
A general microscopic study of the coupled dynam-
ics of orientations and translations is given in
Ref. 9. In discussing the resonances of the dy-
namic displacement- displacement correlation
function, one distinguishes two extreme cases:
(a) fast orientationai relaxation, 1& ur„ the in-
elastic scattering law exhibits a soft-mode Bril-
louin doublet structure, there is no central peak;
(b) slow orientationai relaxation, v, &A., in ad-
dition to a nonsoft Brillouin doublet there a.ppears
a well-defined central mode due to collective
orientational relaxation. In KCN one has the for-
tunate situation, that both regimes are acces-
sible to experiment. In fact ultrasonic methods, "*"
Brillouin scattering, ""and neutron scattering
at small wave vectors' '' measure case (a). On
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the other hand, by increasing the momentum trans-
fer in neutron scattering, " one is also able to
reach case (b).

Since A. should decrease with decreasing tem-
perature, the question arises whether it should
be possible to reach case (b) by decreasing the
temperature. In pure KCN, this is prevented by
the occurrence of the (first-order) phase transition
near 168 K before A. becomes sufficiently small.
It is therefore of interest to lower the transition
temperature by adding spherical symmetric im-
purities. These impurities are inert in the sense
that they have no orientational degrees of freedom
as is the case for the CN molecular ion. One
therefore considers (KCN), (KX), , mixtures where
X stands for a spherical Br or Cl atom. The low-
ering of the phase transition temperature with in-
creasing Cl concentration is confirmed by experi-
ment. """From our theoretical discussion, it
is obvious that a study of dynamic properties in
(KCN), (KX'), , mixtures will be most instructive.
This statement is supported by recent inelastic
neutron- scattering". and Brillouin-scattering ex-
periments. " In mixtures with CN concentration
c ~ 0.7, one finds"" that the soft-mode f requency
decreases with decreasing temperature, reaches
a finite minimum value and then increases with
decreasing temperature. In addition, the shape
of the neutron-scattering" spectra at small wave
vectors changes as a function of decreasing tem-
perature from the two peak structure which char-
acterizes the fast relaxation regime to the three
peak structure which characterizes the slow rela-
xation regime.

The purpose of the present paper is to give a
theoretical description of these features in the
framework of a microscopic dynamic theory. In
Sec. II, we recall some basic concepts of a Ham-
iltonian with translational and orientational de-
grees of freedom. In Sec. III we recall the dy-
namic equations which allow us to calculate the
inelastic neutron and Brillouin- scattering laws.
In particular, we give a detailed description of the
dynamic displacement-displacement correlation
function (Sec. fV). The resonances of this cor-
relation function are studied in Sec. V, both for
the case of pure crystals and for mixtures. Final-
ly, a qualitative comparison with experiment is
given in Sec. VI.

II. MODEL

To describe the interaction between transla-
tions and rotations, one has to start from a po-
tential which contains both degrees of freedom.
As is common in lattice dynamics, one expands
the potential in terms of deviations from well-de-
fin'ed equilibrium positions. This is meaningful
for the translational coordinates in a periodic
crystal. For the orientational coordinates, gener-
ally specified in terms of Euler angles, such an
expansion is only allowed in the case where the
amplitudes of orientational oscillations (librations)
are very small. It becomes very questionable in
the case of large amplitude orientational oscilla-
tions and it breaks down for the case of orienta-
tionally disordered phases. ' For the same reason,
the use of so-called tunneling models"'" which
select a restricted number of molecular orien-
tations"'" is relevant only at low temperatures.
In order to overcome these fundamental difficul-
ties, one should use symmetry adapted functions, "
i.e. , adequate combinations of spherical harmonics
or of Wigner's D functions as dynamic variables.
These functions are adequate to describe the dy-
namics of orientational phase transitions. '

Starting from a repulsive overlap force model
which describes the motion of a. linear (dumbbell)
molecule or molecular ion in an octahedral en-
vironment, we have recently derived a Hamilton-
ian which contains both translational and rotation-
al degrees of freedom. " The result of that deriva-
tion reads

~ —II~+0&+g» (2.1)

Here H~ describes the pure translational part

~k kH =Q —'lVlgg(klS((k)Sq(k)). (2.2)
2m

s, (k) denotes the Fourier transformed center of
mass displacement of the unit cell, p&(k) is the
conjugate momentum, and m is the total mass per
unit cell; i =x, y, z labels Cartesian coordinate
axes. The coupling factor M, &

accounts for the
harmonic part of the translational interaction po-
tential. Since we are on1.y interested in long-wave-
length phenomena (elastic properties, for in-
stance) we need only consider the translational
center of mass motion. Wave vectors are denoted
by k.

The pure rotational part of the Hamiltonian is
taken to be of the form

(2.3)

In this section, we recall some basic features
of a model Hamiltonian for a pure crystal with
translational and rotational degrees of freedom. "
As a concrete example, we refer to KCN in the
orientationally disordered cubic phase above 168 K.

(2.4)

Here the kinetic energy of rotation is given by

~ Lt(k)L, (k)K-~, a — 1,2,
where L denotes the angular momentum (1, 2 di-



K. H. MICHEL J. NAUD'f S., AND B. DE RAEDY 18

rection of principal axes of the dumbbell) and I
is the moment of inertia. The orientational po-
tential is to be taken of the form

has been inferred by I uty et al." and by Rehwald
et al." from experiments.

V" = V'(k= 0), (2.5)
III DYN.V4IC EQUATIONS

where V' is a single-pq, rticle orientational poten-
tial. It describes the motion of a simple mole-
cule in a rigid octahedral environment. " Expand-
ing this potential in terms of cubic harmonics, we

obtain as a first term in this expansion the so
called Devonshire potential which is proportional
to K, (8„, p„). The orientation of the nth dumbbell
is specified by the polar angl. es 8, y,

The translation-rotation interaction Hamiltonian
Hr" is found to be (up to first order in transla-
tions)

= ——[X~s (&) —
Xgs (0)], (3.1)

Using the Hamiltonian described in Sec. II, we
have previously derived coupled dyna, mie equa-
tions for the translational and rotational dynamic
response functions. We recall that Kubo's re-
laxation function" for two operators A. , B is given
by

e~ {z)= {f-dte"'e„{t)
0

H~~= jg &kY~ ks& (2.6)
where }t„rr(z) is the Laplace transform of the re-
tarded Green's function"

The orientational motion is described in terms of
five symmetry adapted functions Y (8„,y„), rr.

= 1-5. Two of these functions have E symmetry,
the remaining three have T„symmetry. The im-
portance of these functions for the interpretation
of Raman scattering experiment has been stressed
in Ref. 29. An explicit derivation of the interac-
tion (2.6) ss given in Ref. 22. Here, we recall that

8,(k) is a 5&& 3 matrix. All elements of this ma-
trix are completely specified in terms of the mi-
croscopic overlap potential.

Here and in the following, Fourier transforms
are defined according to

A(n) = QA(k) e'"'"'" (2 'I)

(2.6a)

C ( )k=8 r{fVf ')rrrrsr. {2.6b)

The elements C ~ have been given in Ref. 22. In
the long-wavelength limit C ~(k) depends only on
k/k. This corresponds to aft ' dependence in
real space, R being the distance between the CN
molecular ions. Consequently, Eq. (2.8a} cor-
responds to an elastic dipole interaction between
CN ellispsoids. The relevance of this interaction

where n labels the unit cells and when N is the
total number of unit cells.

We remark that we have not taken into a,ceount
explicitly a direct interaction among rotating dumb-
bells. As we have shown previously, " the bilinear
interaction (2.6) among translation and rotation
gives rise already to an effective orientational in-
teraction of the form

(Iz' -D}e„(z) iPRe „(z)= z—D-', -

(Iz+z~)C-„(z) + r~Pe „(z)= fP'D '.
(3.5a)

(3.5b)

Here we have used a tilde to indicate the matrix
character. The first set of Eqs. (3.5a) describes
essentially the translational motion with coupling
to the rotations. The second set of Eqs. (3.5b) ac-
acounts for the dynamics of rotations with coupling
to the translations. Instead of Y (k), we have used
the orthogonalized orientational variables Y de-
fined by

Y (k) = Y (k) —sr(k)Dr&(k)(s&(k), Y (k)). (3.6)

Static susceptibilities are defined by brackets

(A, &)=X (~ =o),

[compare Eq. (3.2)] and the quantities P and D
entering Eqs. (3.5a) and (3.5b) are defined by

, D(k)r=(s(k), s(k)),~r,

C (k) =(Y.(k), &p, (k)).

(3 6)

(3.9)

In Eq. (3.9) p' stands for the transposed element

X~a(&) = -&&A'; &}},= f d«"'&[A'(f), &(0)]). (3 2)
0

Here & ) denotes the equilibrium thermal aver-
age. We define 4)"(v) by writing (z = {{)aia, a -0):

4r„"s((o) = {1/ i2)[C„s( {d+ia) —C„s((o—ic)]. (3.3)

Yhis quantity is related to the dynamic correla-
tion function by"

S„s(u)) = -(o[l —exp(- {d/T)] ' 4„"rr({d). (3.4)

Therefore, 4)" ({{))is the relevant quantity for the
interpretation of inelastic neutron or Brillouin-
scattering experiments. In Ref. 9 we have derived
a coupled set of matrix equations
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X,~(k, ie) = A „(k, ieger ~(k),

where

A „(k,is) = -(21', (ie —QR ) 'Z 1'„),

(3.10)

(3.11a,)

X z(k) =(Y'(k), I'(k)) ~z. (3.lib)

The operator Q in Eq. (3.11a) selects the non-
secular motion. " In Eq. (3.5a), R stands for the
single- particle susceptibility

R, = (Tr e-"' 'I",I;)/Tr e-"", (3.12)

where the potential V' is given by Eq. (2.5) and
where the trace Tr stands for an integration over
the polar angles 8, q.

By eliminating 4-„, from Eqs. (3.5a) and (3.5b),
we obtain a closed equation for 4„.
[lz' —D —zi3X(1 z+6 )-'P ']@„(z)

=[lz PX(lz-+it) 'P']D '. (3.13)

Here the orientational relaxation leads to reson-
ances at 1z = -iA..

IV. DYNAMIC DISPLACEMENTS CORRELATION
FUNCTION

Since the relevant quantities entering Eq. (3.13)
are functions of temperature, we should be able
to study the scattering law as a function of tern-
perature. As we have shown previously, ' Eq.
(3.13) becomes diagonal for k = (0, 0, k). One ob-
tains

[z' —0', —zo, (z)]C,",(z) = [z —o, (z)]A,',
with

(4.1)

and 8 denotes the Liouville operator.
The relaxation of orientational correlations is ac-

counted for in Eq. (3.51) by the transport coef-
ficient'

uP, = (V,/m)k'c~», (4.7b)

where c«, c» are the elastic constants (Voigt's
notation) in the presence of orientational interac-
tion while c,„cyy are the bare elastic constants
in absence of orientational interaction. " In Eq.
(4.6) V, denotes the volume of the unit cell. The
orientational relaxation matrix (3.10) is given by

1 2 4&«t

3»» ~

(4.8a)

(4.8b)

where, according to Eqs. (3.11a) and (3.111), A,~

and X44 are defined with functions E'4 of T, sym-
metry while A» and &yy are defined with functions
1', of E~ symmetry (see Sec. III).

In Ref. 22 we have shown that c«and c» are
given by

c„=c'44(1 —y 6/T ),
c„=c'„(1-xy/T).

(4.9a)

(4.91)

X„=y&o,'/(&o,' —0', ) = T/x,

X« = 5(d~/(QP~ —0)) = T/p .

(4.10a)

(4.101)

From Eqs. (4.4) and (4.6a)-(4.71), (4.9a), and
(4.91) we find

0", = 0,"= ~',y 5/T,

P,"= ur,'xy/T,

and similarly

(4.11a)

(4.lib)

Here 5 and y are constants related to the eigen-
values of the effective interaction matrix C defined
by Eq. (2.8b). The quantities y and x are elements
of the single-particle susceptibility matrix Eq.
(3.12), y =R«and x =R» which correspond to T,
and E symmetry, respectively. The temperature-
dependent functions x and y are calculated by nu-
merical integration. " Using Eqs. (B9) and (B10)
of Ref. 9, we can write

n', =D„, z= &, 2, 3 (4.2)
O', = Q', = uP, (1 y6/T ), —

Q,'= (u', (1-xy/T).
(4.12a)

(4.12b)

o, (z) = 0,"/(z+iZ, ),
where

with

(d] = Mg] ~

We note that

O', = A', = (V,/m)k'c«,

0,' = (V,/m)k'c„,

(4.3)

(4 4)

(4.5)

(4.6a)

(4.6b)

As we have noted previously, 5y&yx and at T,
= y (T,)6, 0', = 0 and equivalently c« = 0.

As a final point, we consider the temperature
dependence of A44 and A». A detailed microscopic
calculation of this quantity according to Eq. (3.11a).
is out of the scope of this work. In describing
critical dynamics, one sometimes assumes that
A is almost constant, the main temperature de-
pendence of A. arising from the susceptibility. "
Here we will assume that A„(and also A„) has
a characteristic temperature dependence in three
different regimes

&u', = u),
' = (V,/m)k'cf, , (4.7a) (a) A=A„ for T&100 K, (4.13a)
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(b) A=A„In(2'5T)(in4) ' for 25&T~ 100 K

(c) A=A, =O for T&25 K.

(4.13b)

(4.13c)

V. RESONANCES

A. Pure crystals

The resonances of the dynamic scattering law
a.re determined from the study of 4 "(v) as a func-
tion of frequency. The function C,",(z) is deter-
mined from Eq. (4.1). Applying Eq. (3.3) we im-
mediately find

In fact this is a typical temperature behavior
which is also exhibited within a good approxima-
tion by the single rotator susceptibilities such as
x and y. It has its origin in the crystal-field po-
tential V of Eq. (2.5). Two energy ba.rriers are
important: the energy of about 3.5 meV, "which
is required for a CN rotator to reorient between
the potential minima in [ill] directions in passing
across [110]directions, and the energy difference
between the potential maxima and minima ([100]
direction and [111]directions). The latter energy
is not well known. It is estimated to lie between
15 and 30 meV.

The three temperature regions therefore cor-
respond to (i) almost free rotation, (ii) hindered
reorientations, and (iii) librations. From experi-
ment we estimate SX, =3 meV for T =300 K. Using
Eqs. (4.8a) and (4.10b) with y = 0.1 (see evaluation
in Ref. 22), we arrive at A„=10 ' meV/K. From
experiment we also arrive at hen, = 0.9 meV for a
wave vector k restricted to ~10 of the Brillouin-
zone distance in [001] direction. These values of
co, and &~ are used when we calculate the inelastic
scattering law as a function of temperature.

(4.9b) one sees that Q, shows soft-mode behavior.
On the other hand, there is no central peak. In
pure KCN crystals (pure in contradistinction to
mixtures), this is the experimental situation" at
small wavevectors. " (b) Slow relaxation, A, & ~&.
Now Eq. (5.1) has three resonances: a Brillouin
doublet

(5.4a)

and a central mode

(5.4b)

where n', = 0", /&u', In .pure KCN this situation can
only be reached at large wave vectors k such that
m&(k)&A&. This is also confirmed by experiment. "
We note that in this case, the Brillouin doublet
frequency co& is larger than 0&.

From the experimental situation we conclude
that in pure KCN, the situation described in case
(a) holds for small wave vectors for all tempera, —

tures in the orientationally disordered cubic phase
down to the phase transition at 168 K.

We now consider in more detail the temperature
dependence of A. defined by Eq. (4.8a). This quan-
tity is relevant for the study of the transverse
acoustic mode. Since y increases with decreas-
ing temperature, it follows from Eq. (4.10b) that

X4, decreases with decreasing temperature. Ac-
cording to Eq. (4.13b), also A«decreases with de-
creasing temperature. Consequently, A. decreases
with decreasing temperature. In theory it should
be possible to start from a temperature where
case (a), X, & sr, is realized and to reach case (b),
A.

&
«u& by lowering the temperature (the bare phon-

on frequency co, is practically constant as a func-
tion of T) In practic. e, however, X, is so large
that the phase transition occurs at T, befor'e the
case (b) can be reached. Therefore, one is al-
ways in case (a), A, & to, (k) for k being in the acous-
tical region.

(5.1)

where

f( ((d) = X)/((d + 1)) . (5.2)

(d) = +Qg - XPg /2X( . (5.3)

Comparing Eqs. (4.6a) and (4.6b) and (4.9a) and

In Ref. 9 we have shown that Eq. (5.1) leads to
a three peak structure. In practice one can easily
distinguish two extreme cases, depending on
whether the orientational relaxation X& is fast or
slow in comparison with a typical phonon frequency

(a) Fast relaxation, X&& or&. There are two
resonances off center (Brillouin doublet) with fre-
quency

B. Mixtures

The situation just described would be changed
if we could dispose of a mechanism which allows
to lower T,. Such a mechanism is known to exist
in A. -8 components mixtures. Suppose that in a
pure A system (concentration c„=1)the interaction
among A molecules leads to a second-order phase
transition at temperature T,. Then the admixture
of inert 8 molecules with concentration c& leads
to a lowering of the transition temperature ac-
cording to T,'= c~T, where c„=1 —c~. Note that
this result is obtained by a simple random (zero-
order or Bragg-Williams) approximation. This
simple treatment is sufficient for our purposes
as long as the degree of dilution is not too large. "
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We will be interested in values 1& c„&0.3.
We now consider (KCN), (KX), mixtures when

cA cB
X stands for Cl or Br ions. There the spherical
X ions play the role of orientationally inert par-
ticles in substitution for the CN ions. The lower-
ing of 7.", is confirmed by experiment. "'"'" A

theoretical treatment of the elastic constants of
mixtures in the framework of a tunneling model
for CN molecules with ferroelastic interaction has
been given in Ref. 25. Here we wiH. show how the
dynamic equations and the corresponding reson-
ances are modified by considering mixtures. In

fact most experiments are done at nonzero fre-
quency and the dynamic theory should be relevant.

The admixture of the inert component leads to
a lowering of T, by a factor c„&1. We can equi-
valently consider this lowering of T, as being due
to a decrease of the effective collective intera, c-
tion among CN ions by a factor c„. This amounts
in replacing everywhere in Eqs. (4.9a), (4.9b),
and (4.11a}-(4.12b} the effective interaction eigen-
vat. ue 6 by 6' =c„5. Being interested in the be-
havior of the transverse acoustical modes as a
function of frequency and temperature, we have
considered the relaxation function 4,","(&u) given by
Eq. (5.1) with

0', = uP„(l —c„y5/T),

x, =AT/y,

(5.5)

(5.6)

VI. RESULTS

By plotting C,","(&u) —= C "(&u) as a function of &u, we
. obtain as a typical spectrum a Brillouin doublet
and eventually [see case (b) of Sec. V] a central
peak. For a given concentration c~, we have fol-
lowed the evolution of the position ~ =+~, of the

with A given by Eqs. (4.13a)-(4.13c), &u, =0.9
meU/h, 5 = 1355, 6 K. The function y(T) was taken
from Ref. 22. It increases continuously with de-
creasing temperature. We have been interested
in the temperature interval 7.' =350-54 K, with j
varying, respectively, between 0.101 and 0.124.
The phase transition was assumed to be of second
order with T, =5y(T, ) =154 K. In reality, the phase
transition is of first order with a discontinuity at
168 K. Since our aim is to give here an overall
qualitative picture of the dynamics, the neglect of
the first-order features of the phase transition
should be allowed.

We have inserted the expressions (5.5)-(5."I)

into Eq. (5.1) and plotted 4,","(&u) as a function of
co for a temperature range of 350& T & 54 K and a
concentration range 1& c„&0.4. The results are
discussed in Sec. Vl.

08—

ioo t zoo 300

FIG. 3.. Transverse acoustical-phonon frequency a+
as determined by the dynaxnic scattering law (theory)
for different concentrations as function of temperature.
Also the static soft mode 0 in pure KCN is shown.
Fixed wave vector of order &p Brillouin-zone distance.

Brillouin peaks as a function of temperature. This
is shown in Fig. 1. For comparison, we have also
plotted the evolution of the soft-mode frequency 0
calculated by the static theory for pure KCN. The
resonances of 4 "(ur) are given by the solution of

&u' —[Q', + uPP, '/(uP + X', )]+i~x, P", /(~'+ A. ', ) = 0.
(6.1a)

By using Eq. (4.4), this expression can be rewrit-
ten as

CO —[(d~ —XqPq /((d + X~)]+ 'f(dkqP~ /((d + X~) = 0.
(6.1b)

Consequently, we find that for a given value of
7.
' and c„,or, is in the range 0- co, co,. If for a,

given value of c„, we start from high temperatures
such that A I (8

1
the evolution of ~, with dec reas-

ing temperature is mainly governed by the de-
creasing value of 0', while at the same time [see
Eqs. (4.4) and (4.12a)], P", and thus the coupling
to the orientational mode increases. This coupling
[see second term within brackets on the left-hand
side of Eq. (6.1a)] tends to slow down the decrease
of &, and to counterba, lance the influence of de-
creasing Qy In pure KCN, the phase transition
occurs before the coupling to orientational relaxa-
tion becomes dominant and tends to increase ~,.
In mixtures, the decrease of ~, is retarded in
comparison with pure systems. Therefore, the
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TABLE I. Calculated values of relevant parameters a.
function of concentration and temperature. Units of
(meV/@) for & and P', meV/& for A, , and K for T.

Cz-—1

T =350
T =200

Cz= 0.6

T =350
T =200
T =154
T =106
T = 54

0,317
0.598

p12

0.190
0.359
0.486
0.733
1.5

0.493
0.212

0.620
0.451
0,324
0.07

-0.69

3.47
1.83

3.47
1.83
1.36
0.89
0 .246

second term within brackets on the left-hand side
in Eq. (6.1a) becomes of increasing importance.
Note that the denominator of this term decreases
since Aj decreases with decreasing T. Therefore,
we are able to reach the slow relaxation case (b)
described in Sec. VI: Xj- wj. Now it is more
adequate to discuss the soft-mode resonances by
considering Eq. (6.1b). We remind that ur, is the
bare phonon frequency in the absence of any orien-
tational interaction, i.e. , c„=0. With decreasing
T and further decrease of X„ the second term
within brackets on the left-hand side of Eq. (6.1b)
becomes less and less important such that co,

finally approaches co, which is independent of con-
centration c„. This picture is confirmed by Fig.
1 where we have shown the variation of &o,(T) for
different concentrations. Note that the slowing
down of ur, (T) by leaving the high-temperature re-
gion is retarded with decreasing concentration c„.
Note also that the minimum is displaced to lower
temperatures with lower values of e„. This is ex-
perimentally confirmed by Brillouin-scattering
measurements. " To illustrate our reasoning, we
have quoted, in Table I

~ Pj A.j and 0 for differ-
ent temperatures and different concentrations.

Note that neutron-scattering results" are most
important to confirm our present interpretation
in the framework of a dynamical theory. Indeed,
experimentally one finds that for c„=0.4, one is in
the fa, st relaxation regime [case (a)], with a soft-
mode doublet in the high-temperature region above
150 K, while in the low-temperature region below
100 K, one reaches the slow relaxation regime
[case (b)] where in addition to a speeding up Bril-
louin doublet, there appears a central peak. The
present theory confirms this picture as is illus-
trated in Fig. 2 for c„=0.4. A similar picture
holds also for c~ = 0.6. As is apparent from Fig.
1, we were not able to localize the phonon peaks
in the region around T= 100 K for e„=0.6. The
spectrum has there the shape of a large central
peak with broad shoulders which extend to values

3
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FIG. 2. Inelastic scattering law at cz ——0.4 for differ-
ent temperatures. Wave-vector && Brillouin-zone dis-
tance. The figure is symmetric to negative u side.

of cob in the range of 0.6-0.7 meV. These phonons
are overdamped. Around T = 50 K, the central
peak has again sufficiently sharpened and there is
a distinct phonon peak at &u, =0.8 me V/h. We re-
mark that for T =40 K, the values of ~, at c~ = 0.4
and c„=0.6 are almost equal and very close to
&u, =0.9 meV/I. We already mentioned this feature
in discussing Eqs. (6.1a) and (6.1b).

At CN concentrations larger than 0.8, the in-
elastic spectrum is very similar to the case of
pure KCN, the soft modes move to co=0 with de-
creasing temperature. Around 150 K the soft-
mode doublet has condensed into a central peak
which becomes very narrow (0.04 meV) at 130
K. In a real crystal, this should correspond to a
structural phase transition. This is observed ex-
perimentall. y."" On the other hand, the shape of
the inelastic spectrum at c„(0.8 (see Fig. 2) in-
di.cates that the spherical ions are sufficiently
effective to maintain the stability of the cubic
crystal at lower temperatures. Experimentally,
no phase transition is found for sufficiently high
Cl concentration. ""

We summarize our discussion by stating that the
calculated soft-mode behavior is in agreement with
both neutron" and Brillouin" experiments. In ad-
dition, the shape of the observed spectra in neu-
tron-scattering experiments" fully supports the
dynamical interpretation given by the present theory.

Finally, we would like to mention that the be-
havior of soft sound waves which interact with
molecular reorientations as described in the pres-
ent paper, has close analogies with sound pro-
pagation in liquids. " There the interaction of a
sound wave with some irreversible process char-
acterized by a relaxation time v' = 1/X leads to the
well-known phenomenon of second viscosity. '
The qualitative shape of sound velocity curves in
the critical region of argon" is the same as shown
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for (KCN), (KBr), in Fig. 1 of the present paper.Cg Cg
The analogy is even more close with binary mix-
tures near the liquid-vapor critical line. "'"
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