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Using a molecular-dynamics technique simulating a canonical ensemble with nearly conserved energy, we

studied the occurrence and some properties of second sound in terms of the calculated spectral densities. We
considered two models: model I exhibiting a ferrodistortive phase, where displacement and energy
fluctuations are coupled and third-order anharmonicity is dominant at low temperatures, and model II, where

there is no ordered phase, and quartic anharmonicity is present only. Both models exhibit an optical-phonon

branch only. Our molecular-dynamics technique makes it possible to study second sound and its damping in

terms of a resonance in the appropriate spectral densities. The results confirm the existence of a temperature

window, where mell-defined second sound occurs. They also suggest that second sound might be a rather
usual low-temperature phenomenon, provided the crystal is sufficiently clean.

I. INTRODUCTION AND SUMMARY

The phenomena connected with the transport of
heat in an insulating solid can usually be under-
stood in terms of diffusive heat conduction. An ex-
ceptional type of behavior has been observed, how-

ever, in a few substances in a narrow temperature
mindom: second sound, a wavelike propagation of
heat. Second sound was first observed by Acker-
mann et gl. ' in solid He. Subsequently, further
successful heat-pulse experiments on 'He, NaF,
and Bi were reported. Recently, Pohl and
Irniger' succeeded in probing second sound more
directly by means of forced thermal light scatter-
ing.

The molecular-dynamics technique has also been
applied, aimed at investigating linear and nonlin-
ear" heat-pulse propagation. We used a molecu-
lar-dynamics technique, simulating a canonical
ensemble with nearly conserved energy, so that
second sound led to a resonance in the appropriate
spectral densities. Here, we extend these results
and relate them to theoretical treatments.

In the numerical approach, the system is simply
defined by its Hamiltonian. Accordingly, if not
built in, there are no impurities, dislocations,
which usually suppress the occurrence of second
sound. However, there are also limitations: finite
systems can be treated only, the time interval over
which the dynamics. can be followed is rather lim-
ited, and the results are valid only within the
framework of classical mechanics. The latter lim-
itation is particularly important, as second sound
is a low- temperature phenomenon. Nevertheless,
the numerical results may be related to the theo-
retical treatments because they do have a well-de-
fined classical limit. In view of this, the molecu-
lar-dynamics technique appears to be a valuable
complementary tool to test the validity and limita-
tions of the theoretical treatments on second sound.

As far as the state of the art of the theory is con-
cerned, we refer to the recent reviews of Enzs and

k io

In this paper, we study two model systems.
Common features are that the displacement vector
is a scalar and that the particles can displace only
with respect to a rigid reference lattice. As a con-
sequence, there is an optical phonon branch only.
It belongs to the family of models which has been
used with remarkable success to elucidate the cri-
tical properties associated with ferro and antifer-
rodistortive phase transitions. " Model I does ex-
hibit a ferrodistortive phase at low temperatures
so that displacement and energy fluctuations are
coupled below T,. Owing to this feature, second
sound is expected to appear in both the displace-
ment and energy spectral density. Moreover,
third-order anharmonicity is dominant at low tem-
perature. Model II does not exhibit an ordered
phase, and fourth-order anharmonicity is present
only. Accordingly, displacement and energy fluc-
tuations are not coupled. This choice of the mod-
els allows the study of second sound under quite
different conditions, namely, presence or absence
of a coupling between energy and displacement
fluctuations and third- or fourth-order anharmon-
icity. Without particularly chosen model param-
eters, mell. -defined second sound appears in both
models in a temperature window. This result sug-
gests that second sound might be a rather usual
phenomenon in sufficiently ideal systems.

Section II is devoted to the definition of the mod-
els, the conservation lams, a short sketch of the
resolvent representation of Green's function, the
perturbation treatment of the anharmonic terms,
a four-variable theory treatment of the coupled
dynamic variables, and to a sketch of the hydro-
dynamic approach. These results can, quite quan-
titatively, account for the molecular-dynamics re-
sults presented in Sec. III. Here, me also sketch
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our molecular-dynamics technique, by means of
mhich the displacement and energy spectral densi-
ties have been calcu1ated. In model I, where ener-
gy and displacement fluctuations are coupled, a
mell-defined second- sound resonance appearing in
a temperature window occurs in both the displace-
ment and energy spectral densities. The displace-
ment spectral density is dominated by the photon
resonance, whereas the strength of the second-
sound peak is weak. In the energy spectral densi-
ty, this behavior is reversed. These results agree
quite well with the four-variable theory, which
takes the coupling between displacement and energy
fluctuations into account. Comparison with the
form of the energy spectral density predicted by
the hydrodynamic approach leads to quite good
agreement, and confirms the existence of a tem-
perature window where well-defined second sound
occurs. For the temperature dependence of the re-
laxation times for normal and umklapp processes
eritering the hydrodynamic approach, we invoke the
results obtained from anharmonic perturbation the-
ory. In model I, third-order anharmonicity is
dominant at low temperatures.

In model II, where only fourth-order anharmon-
ieity is present, we also find quite good agreement
between the numerical results and the form of the
spectral density predicted by the hydrodynamic ap-
proach. In this model, well-defined second sound
is again confined to a temperature window. Our
results also' reveal that well-defined second sound
i's not r'estricted to very small wave vectors.

A=3 a=-' C=& M=1.

Here, we have adopted the same units as in Ref.
15. The order parameter at zero temperature (T
=0) is, within the framework of classical mechan-
ics, given by

X, =(12C -A)/B,
provided that

12C-A & 0.

(4)

(5)

For 12C -A & 0, there is no ordered phase at T =0.
More generally, it has been shown'6 that for 12C
-A &0, the system will undergo a second-order
phase transition at some 7 = T, & 0. A ccordingly,
model I [Eq. (2)], which has been studied in Ref.
8, exhibits a ferrodistortive second-order phase
transition, while model II [Eq. (3)] is disordered
at all temperatures.

To describe the static and dynamic properties of
the system, we next consider the following vari-
ables:

x(q) Q X~8(4'Rg (6)

x(q)= ~ +5x,e'4'~, (7)

neighbor interactions only; M, A, 8, and C are the
model parameters chosen as, for model I,

A=-1, B=—', C =, M=1

and for model II,

II. .MODEL SYSTEMS AND THEORETICAL DESCRIPTION 1
X(q) = Q me, e'&'"~, (8)

In this section, we define the model, its contin-
uum limit, the dynamic variables of interest, and
the relevant conservation laws. Moreover, we
shall outline the resolvent representation of
Green's functions" "to describe the excitation
spectrum, including second sound, and will briefly
review the main results as obtained from the
Peierls' equation apd hydrodynamic equations. "'"

A. Model, dynamic variables, and conservation laws

The-Hamiltonian of the ferrodistortive model is

g MX'i A —12Cg a B g 4

x, -x„'. (1)
.2 (g .gl)

I labels the particle with mass M in the Lth unit
cell; MX, and X, are momentum and displacement
with respect to a rigid cubic primitive reference
lattice. The last term in Eq. (1) includes nearest-

where

6x, =x, -(x,&,

6R, '=X, —(R,),
(9)

(10)

3C( = a MX', + 2A x, + 4 BX,—C Q X,X, i . '(11)

X(q) =- Q e'"'R& (A —12C}X,+BX,

+2C X& Xr'

These variables describe momentum, displace-
ment, and energy fluctuations, respectively, of
wave vector q. The vectors H, define the direct
rigid reference lattice.

From Eqs. (6) and (8), we find for the rate of
change of the momentum and energy fluctuations
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X/ (q) = 2C —Q [X(q —q') X(q')
q/

—X(q —q') X(q') ]+(q')

where

+2C(X)[3-Z(q)] X(q), (13)

E(q) = cosq„a+cosq p + cosqp, (14)

g= dXL, (15)

where

L=T- V,

T= 2Mf (X, t),
V = —,

'
(A —12C)f'+ 4 Bf + Ca'(Vf )',

(16)

(17)

(18)

I. being the Lagrangian density of the displacement
field f. The corresponding Lagrange-Euler equa-
tion is

~ being the lattice constant of the rigid cubic prim-
itive reference lattice. X(q =0, t) is seen to vanish,
so that energy is conserved as it should be for a
Hamiltonian system. Momentum is not conserved
in the system considered here because X(q =0, t)
cO. Consequently, among the variables considered
here, energy is the only conserved one. At suf-
ficiently 1.ow temperatures, however, where um-
klapp processes are rare, one expects the quasi-
momentum to become a.n additional, but only nearly
conserved variable. To derive a formal expression
of this nearly conserved quantity, we next consider
the continuum approximation of the model defined
by Hamiltonian (1). The associated Lagrangian
reads

where the field-momentum current is given by

Jo =L +2Ca'(Vf)'. (25)

This section has revealed that energy is an ex-
actly conserved variable, and field momentum a
nearly conserved variable. The field momentum is
nearly conserved only, because its derivation re-
lies on the continuum approximation, where um-
klapp processes are neglected. To illustrate the
importance of conserved variables in a description
of the dynamic properties, we consider the corre-
lation function

(X(-q, t)X(q, 0)) =(X(-q, 0)X(q, 0))

——,
' t2( X(-q, 0)X(q, 0))

+ —,
' t'(X(-q, 0)X(q, 0)) —~ ~ + ~ ~

(26)

Energy conservation [Eq. (13)] implies that in the
limit q-O, the t-dependent terms vanish. . Hence,

limtme(t), e)= lim J ttte ' '(tt(-tt, t}tt(t},0))
q~O q~0

= ( R:(0,0)X(0, 0))6(~), (27)

exhibiting a singularity at zero frequency. In the
present case, where energy is conserved, this
singularity signals the occurrence of a hydrodyna-
mic mode at finite q, namely, heat diffusion, rep-
resenting overdamped second sound. Propagating
second sound can be expected only if the field mo-
mentum is also nearly conserved. The appearance
of these hydrodynamic modes is not restricted to
Green's functions of the conserved variables, but
may occur in those Green's functions where the as-
sociated dynamic variable is coupled to the con-
served ones.

H=T+V,

but also the field-momentum density

Q = Mfvf-
(20)

(21)

are conserved. The corresponding conservation
laws rea,d

Inspection reveals that not only the energy density
8. Green's-function approach

To describe the excitation spectrum, we next
adopt the resolvant representation of the relevant
Green's functions. %ithout going into details of
this representation, we sketch below the structure
of the theory and apply it to the present model.
For details, we refer to Refs. 12 and 13.

We consider the retarded Green's function

=9 ~ J„=2Ca'(v/f sf+sff)
C„'„(t)=-~e(t)([A'(t},A],'.

Using the identity

(28)

where

el „=2Cg'f V'f

is the energy current, and

(23)
-(([A (t), A)) ftte(e' Ai(t)e ™A(=0))-=A/A,

0

(29)

sQ
Bt

+~Jq ——0, (24)
Eq. (28) may be rewritten

G„'„(t)=A(t)/A, t &0, (30)
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or in the classical limit

Gt„(f)=P(A(t)IA), f)O.
Introducing the Liouville operator

(31)
Gee(z) —Ge„(z=0) =S(A, A)z+sL

=PzS„„(z). (42)

A(f}= e"'A(0), (32) A perturbation theory may be obtained by setting

we find' L Lo+L (43)

Gee„(z)=Sf e "(A(()/A)S)

=P —AA+A . A

With the aid of the projection operator

(33)

where

BRG

l l

8+0
Bx, BX, BP,

8 BXg 8

BXl BXl BPl

(44)

(45)

Z= iA) &A~, q=l-p,1
(34)

Pr =MX, .
Using the identity

(46)

(35)

one may rewrite Eq. (33', in the form

G„'„(z}=-P(A/A) [z&A/A)+ (A/A)+Z»(z)] '

& [(A/A)+Z„„(z)],

1 -1 1

A+B A A A+B '

we obtain for S(z) the expansion

(47)

where

Z„„(z)=(Ai q . q)A) . (36)

S„„(z)=(A . A)
—

(A . iL, . A)

(
1 . 1

+ A tL, . iL, A —+'''
z+iLo ' z+iLo ++iLo

The extension of n dynamic variables, where Eq.
(35}is an equation of the n&&n Green's functions, is (48)

Gt(z) =-Pa(za+~+E) '((d+E),

where

(37) which may be used to derive approximate expres-.
sions for the memory function p(z) in the expres-
sion

a, , =(A, /A, ),
~„=(A,/A, ),

(38)

(39)

1G„„(z)=- z'+ ~', +zZ»(z) ' (49)

P =P /A, )(a ')„(A,f, q=1-I .

(40)

(41}

Next we consider model II [Eq. (3)], which does
not exhibit an ordered phase, and linearize the
quartic term in lowest order to define X . Accord-
ing to Eq. (1), BC, and 3C, are then given by

The advantage of considering a matrix of Green's
function stems from the fact that the coupling of
conserved variables may be taken into account
from the outset. The various poles corresponding
to different possible excitations are then obtained
in a direct way without the complicated treatment
of hydrodynamic singularities of other approaches.

C. Perturbation theory

C

P2

(5o)

(51)

In this subsection, we shall work out approxima-
tions for Gxtz(z) and G~tz) by treating the anhar-
monic terms as perturbations. On this basis, it
becomes possible to discuss the damping and fre-
quency shift of the phonons, and also to identify the
hydrodynamic singularities.

To formulate a perturbation theory within the
framework of a one-variable theory, we note that
according to Eq. (33),

M~', =(A —12C)+38(X') +4C[3 —E(q)] (52)

defining according to Eqs. (44) and (45), the de-
composition of the Liouville operator. By evaluat-
ing the trace with respect to Xo and taking the first
three terms of the expansion (48) into account, , we
find for (d2o and the memory function 5 the expres-
sions
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~o(qi)~o(q )"o(q.) &.&
z+~[+&.(q, )*&.(q. ) ~~,(q.)]) '

qzq2~3

The crucial point in this context is, apart from T'
dependence of the self-energy, that no singularity
appears in the limit q-0, z -0. This reveals that
the approximate expression (54) is valid for all z
at sufficiently 1'ow temperature because there is no

coupling between the displacement fluctuations and

energy fluctuations in this model.

The energy Green's function is expected, how-
ever, to exhibit such a singularity. This may be
demonstrated by calculating G~(q, z) in zero or-
der. The result is

where

1 1x I~, q ) —~o(q —q )] l&z+f[~ (qi)+~ (q- qi)] z &[v (q )+N (q q )])

1 1
+ I" &a '"&q 9 I (~+atra, (tT'&-w, (q-q )j z —Cia, tie') —~, (rz —cx')I p~

(55)

x, =(x, )+6x, .
The result is

(56)

which has a singularity at q-0, z -0, expressing
energy conservation and signaling the occurrence
of a hydrodynamic mode, namely, heat diffusion or
second sound in the interacting case. Clearly, this
singularity will appear in all orders, because it
simply expresses conservation of energy. It dem-
onstrates, however, that for GIttc(q, z), aperturba
tion theory breaks down for small q and z, or in
other words, that hydrodynamic modes cannot be
obtained in terms of a perturbation expansion in
powers of the anharmonic terms.

To treat model I [Eq. (2)], exhibiting a,
'

phase
transition, it is useful, at least at low tempera-
tures, to rewrite Hamiltonian (1) in terms of the
order parameter (X, ) and the deviations from this
mean value, where

X —Xp +Kg

pl2

l

where we cited only those terms which enter the
dynamics. The crucial difference, compared with
model II [Eqs. (50) and (51)], is the occurrence of
third-order anharmonicity in the ordered phase, in
addition to the quartic term. Here, we treat the
third-order term only. Evaluating I., and L, ac-
cording to Eqs. (44) and (45), we find for the self-
energy defined by Eqs. (42), (48), and (49),

9(x)'a'a, T ~ 1

~'.(q')~'. (q - q') z+ f[~0(q') - &.(q - q')]+, , +—, , (59)
1 1

*+sita, tie')+~, (q —i')I z —il&, (it')+~, (q-4')I)
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/

This memory function becomes singular in the lim-
it q-0, z -0, the same as the Laplace transform
of the energy correlation [Eq. (55)]. This singular-
ity illustrates the coupling between order param-
eter and energy fluctuation in the ordered phase.
As a consequence, thermal diffusion or second
sound will also appear in the displacement Green's
function for T & T,.

D. Four-variable theory

011 Q12

0

0 0 @33 0

0 0 0 @44

0 0 +» 0

0 0

A@31 0 0 0

0 ~42 0 0

(64)

(65)

=. -ii(zE —(ua ') '(u

with variables

x(q), «q), x(q), Q, (q), Q. (q), Q.(q)

(60)

For small wave vectors q, the expressions for
BC(q) and Q(q) may be simplified by taking the Fou-
rier transform of the corresponding expressions
valid in the continuum approximation. From Eq.
(21), we find

To account for second sound or thermal diffu-
sion, at the outset one has to take into account the
conserved and coupled variables. This is conven-
iently achieved in terms of a many-variable theory,
without the complicated treatment of the singular-
ities appearing in the limit q-0, g -0. In model I
[Eq. (2)], where below T, order parameter and en-
ergy fluctuations couple, it appears appropriate to
consider the order-parameter (displacement) fluc-
tuations X(q), the corresponding momentum X(q),
the energy X(q), and the field momentum Q(q) as
dynamic variables. Energy and field momentum
are conserved variables [Eqs. (22) and (24)] and

X(q), X(q) are needed to describe the phonons.
To simplify the discussion, we ignore the mem-

ory function matrix. Accordingly, we assume that
second sound is a well-defined excitation. In this
case, the Green's-function matrix is [Eq. (3V}]

G (z) =-Pa(za+&o) '&u

where

a„=(x(q) Ix(q)&,

a,.=(X(q) l30(q)&,

a„=(x(q)IK(q)&,

a„=(x(q ) I x(q)& .

&u„=(x(q)Ix(q)& =-&u» =a»,
~., =«(q) IQ, (q)& =-~,.;

a„=&Q,(q) IQ, (q));
(66)

From Eqs. (62) and (63), we find

..=(Q,(e, ) I Q (4' )&
= ' —g e,"&lx(q') I'&, (67)

g I

"24 =«(Vx) I Qi(V, )&

=iq,2ca' —g q,"(x(q') I2&bsT.
q

1

Moreover, g» is given by

a» =(x(q, ) lx(q, )& =I22T/i(f

(68)

(69)

The relevant Green's functions can now be calcu-
lated by matrix algebra. This leads to the follow-
ing expressions:

&11=Gxx

g +/co ~
11 (Z2 + b~2 )(Z 2 + b&2 ) ~2 &2 b2(1 —1/'b

( f0)

G22 = GmC

Q(q) = i Q—q'x(q') x(q —q'),
q

I

and from Eq. (22)

(62)

where

p
z'+ bw,

(z +b~ )(z2+b~ ) —~ ~ b (1 —1jb)

(63)X(q)=-2Ca ~ Qq q'x(q')x(q —q').
q I

Here, we have replaced the field fluctuations f(q)
by the displacement fluctuations X(q). By choosing
q =(q„0,0), there is no longer a coupling between
the first four variables and the second and thir~
components of the field momentum. Consequently,
we have to consider only the first four variables in

Eq. (61). The matrices a and tu are then given by

a„ k~T
M&lx(ei)l'& '

01g+2
~11 22 ~12 21

S
+44%2

The poles are given by

(V2)

(73)
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2z q b((d s + (8 r)
~ [b2(~2 ~2 )2 +4~2 ~2 b2(1 I/b)]1/2

(75)

where z, describes the phonon branch and z sec-
ond sound. The important feature is that second
sound will appear in both Gx~ and G~~z provided the
coupling between order parameter and energy fluc-
tuations, a», does not vanish. In fact, for T &T„
where g» =0 in model I, or in model II, where an
ordered phase does not occur, the Green's func-
tions (Vo) and (71) reduce to

this purpose, we need to estimate the leading q de-
pendence of the terms entering Eq. (75) at low tem-
peratures, where second sound is expected to oc-
cur. Here, v'„is approximately given by Eq. (52).
In addition,

a„=(x(o)ix(o))=k,T'

~, =(&(0) I~(0)) =k,T' =(k,T)'
r

and according to Eqs. (67), (68), and (74),

Gxx

Painter/(Z

+ Vr)

G~=-&+2~s (z'+ ~s)

(76)

(V7)

&&do 1

N Bq' v ( '))

.4=q, Ca —~q, (79)
In this case, the second-sound frequency is simply
given by us [Eq. (74)]. To compare the second
frequencies z and ~~ with other estimates, it is
useful to calculate the associated velocity. For

where the phonon frequency +0 is given by Eq. (52).
Using the above leading q dependence, we find for
the second-sound velocity,

2
~ Z-lcm, =C33

q 0

1 ~, BM

3 . N -, . ail' &'(q'))

2s= b(0) lim
q-0' (80)

b(0) 1 M '(0) (81)

For T —0, the leading temperature dependence of the
order parameter is given by

gl/2
(x) '

ksT (12 )s,2

so that

(82)

In model II, where a» [Eq. (73)] vanishes, b(0) =1.
If an ordered phase is present, however, b(0) is
slightly larger than 1, giving rise to a shift of the
second-sound velocity due to the coupling between
order parameter and energy fluctuations. To esti-
mate this shift, we substitute the relevant expres-
sions (78) into Eq. (73). The result is

For model I [Eq. (2)], where B =-,', 12C-A =3,
and at low T [Eq. (52)] M(@20(0) =6, expression (84)
finally reduces at low temperatures-to

b(O)=(1 ——,
' k,T) '. (85)

Accordingly, the shift of the second-sound velocity
or frequency will be small for k~T «6.

The identification of z or w~ with the second-
sound frequency becomes more convincing by not-
ing that expression (V5) agrees with the formula
derived by Kwok, "using the Peierls-Boltzmann
equation and the conservation of energy and quasi-
momentum. It is interesting to note, however, that
expression (75) for the second-sound frequency al-
so agrees in the continuum appproximation with our
previous estimate, '

dT (12C —A)'i'

and, according to Eq. (81),

9 Bk sTM(u 20(0)

4 (12C —A)' (84)

(se(q, ) li 3c(q, ))
s Q(q )l~(q )) q| + ~ Lal ql ( 2(gp) i ( )

q'

where K(q,) was considered as the fourth dynamic
variable, instead of the field momentum Q.

The Green's functions (70) and (71) have two
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pe, irs of poles, one corresponding to the phonon
branch and the other one representing propagating
second sound. If order-parameter and energy fluc-
tuations are uncoupled, however, the second-sound
pole appears only in Q~~ [Eq. (77)]. Accordingly,
the relative weight of the poles in G33 and G», re-
spectively, will depend on this coupling, measured
by 5 [Eq. (85}]. The weight of the poles is given by
the residue

R„'„=(z —s, )G„'„(z)i. , (87)

From Eqs. (70), (71), and (75), we find for the ra-
tio of the residues

are defined by

E'(r, t) =g tu(q)f (q, r, t),
(92)

Q, (r, t) = g q, f(q. , r, t) .
g

Assuming umklapp processes are negligible, both
energy and quasimomentum are conserved. One
thus obtains the conservation laws

(93)

/R' =(~,/~, )[1—1/&(0)], (88) Q, (r, t)+ &o„(r,t)=o,
8+g

(94)

E. Hydrodynamic approach

In the hydrodynamic approach, it is assumed
that the system can be described by a function

f (q, r, t), being the distribution of phonon wave
packets of wave vector q.and position r. Its time
evolution is governed by the Boltzmann-Peierls
equation

(90)

where

v(q) =-
eq

(91)

denotes the group ve1oeity. The collision operator
describes the scattering l~rocesses between the
phonons. The energy and quasimomentum density

Rg'e3/Rxx = (wz/m~)'[1 —1/b(0)] . (89)

because ~, »~, and 1-1/&«1 [Eq. (85)], the
residue of the second-sound peak is rather weak in

G~~ and vanishes for b =1. Hence, the phonon pole
dominates. This behavior is reversed in G~,

Owing to the neglect of the memory-function ma-
trix in Eq. (60), we assumed that second sound and
the phonons are extremely mell-defined excitations.
According to Sec. IIC, this assumption is certainly
valid for the phonons, provided the temperature is
sufficiently low. Second sound, however, is a more
delicate phenomenon. ,

"0~' because it is expected
to occur only in a temperature window. At the up-
per limit, it becomes overdamped due to umklapp
processes, and goes over to the thermal diffusion
mode. At the lower limit, there are no longer suf-
ficient phonon collisions to maintain local thermal
equilibrium. Consequently, a full discussion of
second sound and heat diffusion would require an
evaluation of the memory-function matrix to esti-
mate the damping. At present, we postpone this
work and rely on the hydrodynamic approach to in-
clude damping on a phenomenological basis.

where

J~,(r, t) = .g &u(q)V, f(q, r, t),
R (95)

f(q, r, t) =f, (q) + m(q)g(q, r, t)

f„E(q,r, t) =f, (q) —m(q)v(q)5tl(r, t)/po (98)

f (q, r, t) =f,(q) —m(q)[&u(q)&p(r, t)/p —U(r, t)q)

with

m(q) = -1/P, ~'(q),

f.(q) =1/P. ~(q)

(99)

(100)

After substitution of Eqs. (96), (97), and (98) into
the Peierls-Boltzmann equation, the equation for

Jo,,(r, t)=gq, V, f(q, r, t), .

q

representing energy current and quasimomentum
flux. To derive hydrodynamic equations for the
conservation laws (18}and (19), one has to solve
the Peierls equations. This is a difficult task. '
Here, we follow Beck'0 and use the mean free time
approximation. The collision operator C [f] '[Eq.
(90)j is replaced by the approximation

C[f] =-(f-f~E)/'w(q)- (f-fLE)/&v(q), (96)

f„Fbeing the drifting-local-equilibrium distribu-
tion function. In the classical limit, it is given by

P(r, t)[~(q) —q U(F, t)] '

P(r, t) =1/n, T(r, t),
U denoting the drift velocity of the phonon gas; f
satisfies C[f j =0; ~„is the relaxation time for
normal, and 7~ for umklapp processes.

The next step is to assume that the d'eviation
5f of f from equilibrium fo is small, allowing for
linearization of the equations involving f. This ex-
cludes the description of nonlinear heat-pulse pro-
gagation. Let us therefore expand
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the unknown g reads

s - s, (u(q} 6ii 1—+Q +7 g=- —+ —U qBt Br T po 7~

with

(101)

Thus g depends on two unknown functions 5P and U.
For a cubic system, U may be eliminated with the
aid of the conservation laws for energy [Eq. (93)]
and quasimomentum [Eq. (104], This leads to a
hydrodynamic equation for 6P, giving the dispersion
law

(102)

Upon Fourier transforming all quantities according
to

where

+gal((TU & +g Cz(T~&) —q Cz=0, (105)

dq, q', ~) ={-i&+iq'~(q}+ [&(q}1 '}
~(q) 5P(q', ~)
&(q)

, , tr(i', ~) q]. (104)

f(j, r, t)=pe' ~ f'dree '"'f(q, j', w), (103)
qI OO

the solution of (101) is for'mally given by

1 /2 /2
q

N lu'( '))

Cs 3 N
q

0 q

(107)

(1
(7„&= 5i-

~&V

t

x 5—
N

1 ~ 84)0

~,(q') q aq',

q ~ Qpo q

The expression (106) for the second-sound velocity,
which was first given in this general form by
Kwok, "agrees with our expression (79), derived
from the Green s-function approach. The suscepti-
bility associated with the dispersion law (105}is
given by

1

&o'+i(o((r '&+q~&2(7„&)-q2&' '

where

2Z '( is), q)cu-2,

[(d —(d z
—(0Z "( i(d, q)] + [&-dP'( i'd, q)]-2

(112)

(X(q) ~ &(q)&

(X(q)}X(q)&
'

so that

(109)

( ~) Xa~q(q, v) 2u s 1 (q) (110)Hz q» ~ ( 0) (~2 ~2 )2++21 2@

where

(u', = q'p'„1(q) = (v. U'& + (o', ( 7 „).
Expression (110) is certainly an approximation be-
cause only the real part of the memory function is
taken into account. In fact, the exact expression
may be obtained from Eq. (86}by considering X(q)
and X(q) as dynamic variables. The result is

Z(q, z =-i~)

= (X(q) Q . Q X(q)& (X(q)~X(q)&.

According to Eq. (86), this expression for &uz

agrees with the Kwok expression (106) in the con-
tinuum limit. Comparing the spectral densities
(110) and (112), it is seen that, in the dynamic ap-
proach, the imaginary part of the memory function
is neglected. Expression (100) of the hydrodyna-
mic approach is obtained from Eqs. (112) and (113)
by assuming Z(z ) =g(z =0) =1".

The solutions of the dispersion law (105) are
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&o(~„)« I,
and umklapp processes should be rare,

(0 ))(T p ) .

(115}

(116)

2 Z/21-
4

~ + ur, (7.~) ——((~„')+ &u', (r„),4 ~s

(114)

revealing that well-defined second sound requires
many normal processes:

(X„X,) are calculated. Assuming the system is
ergodic, estimates for microcanonical ensemble
averages may be obtained in terms of time aver-
ages.

It mould be preferable to have a molecular-dyna-
mics technique, simulating a canonical ensemble,
as most experiments are performed at constant
global temperature. This was achieved by consid-
ering, in place of the Newton's equations, the
coupled set of I angevin equations'

The combination of these two inequalities is the
well-known window condition"

(T~ ) )')(d))(Tp ),

BX
Mx, =- —rMx, +g, (t},ex,

where

(122)

For model II, where only quartic anharmonicity is
present, we find with the aid of Eq. (53),

(&„)=o n/T', (&~') =p„T'. (119)

In both equations, (7~') increases with T, so that
inequality (116}will be reversed at some T,

(d « (T & ) . (120)

In this ease, the solution of the dispersion law
(105) is

t~2 (7 1) 1

p
corresponding to heat diffusion, instead of propa-
gating second sound.

(121)

HI. MOLECULAR-DYNAMICS RESULTS

In this section, we briefly sketch our molecular-
dynamics technique and discuss some of the nu-
merical results.

A. Molecular-dynamics technique

In the conventional molecular-dynamics tech-
nique, "' one solves the set of coupled Newton's
equations associated with a given Hamiltonian ac-
cording to a set of difference equations with a time
increment. This set of difference equations ap-
proximates Newton's equations. Starting from
given initial conditions for the positions and veloc-
ities, the particles a. e then allowed to move, and

the time evolution of their canonical variables

defining the frequencies where second sound is ex-
pected to occur.

An estimate for the temperature dependence of
(7~') and (7 ~' ) may be obtained from the memory
function evaluated by anharmonic perturbation the-
ory .and expressions (99}and (100}. For model I
and sufficiently low temperatures, where the third-
order term dominates, we obtain from Eqs. (59),
(107), and (108),

(118)

(q, (t) q, (t ')) =2Mrk, T6(t- t') 5„,. (123)

Here, it is assumed that the particles suffer colli-
sions with much lighter ones which represent the
heat bath defining the temperature T. The colli-
sions are described by the friction I'MX, and a
random force q, (t). It may be shown that the sta-
tionary solution of the associated Fokker-Planck
equation is the canonical distribution function

P, (X~, . . . , XN, X~, . . . , X~) = exp(-3C/kaT) .
(124)

X,(t), X,(t), X,(t}, etc. (125)

For a detailed description of the algorithm and the
random force generation, we refer to Ref. 8. The
system is then allowed to age or, in other words,
to reach equilibrium. After this interval, the sub-
sequent 10' steps are used to perform time aver-
ages representing canonical ensemble averages.

From the Langevin equations (122), it is obvious
that the dynamic properties will be modified, in
pa.rticular, owing to the damping term. To reduce
this modification, I must be chosen in such a way
that

I/r»7, , (126&

where 7, denotes the characteristic time of the dy-
namics. This guarantees that the excitations do not
become overdamped owing to the friction term.
Another important constraint on I evolves from the
energy conservation of a Hamiltonian system.
Since our system evolves according to the Langevin
equation, it follows that

Starting from initial values for positions and vel-
ocities, the particles are then allowed to move un-
der the influence Of the computer-generated ran-
dom force. The temporal evolution of the variables
are then calculated with a set of difference equa-
tions approximating the Langevin equations (122).
On this basis, one obtains
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dX ~ BX " BX
e~X,

~X' eX X

(127)

cal results as obtained by means of the molecular-
dynamics technique sketched above. To investigate
the excitation spectrum, we calculated the spectral
densities

Consequently, energy is not conserved because the
Hamiltonian system is in contact with the heat bath.
To avoid artifical features due to the random noise
pulses, the mean time between two pulses must be
small compared to T, . In this case, we may aver-
age Eq. (127) over some pulses. This leads to

and

J-

(- )
f „dte""'(X(-q, t)X(q, 0)) (138)(X(-q, 0)X(q, 0))

f„dte' '(X(-q, t)X(q, o))
(X(-q, 0)X(q, 0))

„,=-r[2Z„,„(f)-~u,r] =-5E,(f).

With the ansatz

(128)
where the variables X(q) and X(q) are defined in
Eqs. (7) and (8). The Green's functions introduced
in Sec. II B are related to the spectral densities as
follows:

and

(f) —~e t IT (129) G»(z) = hm G~„(z=-i&+ s) =-&»(~),
a~0+

where in the classical limit,

(138)

dH dP HEI, dH dT d5EI, 2C„d6EI,
dt dM'I, dt dT HEI, dt k~ dt

(130)

we find

r = (C„/&,)(I/I ),
where C„is the specific heat. Accordingly, energy
is nearly conserved within the characteristic time
7„provided that

= (C„/f,)(I/r ) (132)

Moreover, owing to the fact that the system evolves
according to the Langevin equation, the time inter-
val T„.h over which an evolution is followed must be
larger than T so that

X".(~) = sP~S»(~). (139)

Next we present and discuss the numerical re-
sults as obtained for model I [Eq. (2)], exhibiting
a ferrodistortive phase below T = T, =7.1. For T
&T„order-parameter and energy fluctuations are
coupled and second sound is expected to occur in
both Sxx(q, v) and S~(q, +) [see Sec. IID]. At
high frequencies and low temperatures we find, as
expected, that the spectrum of S»(q, u&) is domin-
ated by the phonon resonance of the optic branch.
Figure 1 shows the dispersion law of the optical
branch as determined from the position of the peak
maxima for A~T =0.25. For comparison, we in-
cluded the bare phonon frequency, calculated from
Eq. (52). The excellent agreement reveals that at

T«T h,

Combining inequalities (132) and (133), we finally
obtain

T~h ))Q„/jgsf' )),T (134)

I' =0.005. (135)

B. Numerical results

I.et us now turn to the discussion of the numeri-

From this relation, it becomes evident that energy
can be nearly conserved provided I' and the chain
length Y,h are appropriately chosen. An exception
is very close to T„where the characteristic time
T, becomes very long.

In the calculations presented here, we have con-
sidered systems of 8000 particles defined by Ham-
iltonian (1) and model parameters specified in Eqs.
(2) and (3). The systems were subjected to periodic
boundary conditions. In the time interval, where
time averages have been performed, I was chosen
as

0
0

I

~/2a

FIG. 1. Phonon dispersion law at k~T = 0.125. The
full line represents the bare phonon frequency as ob-
tained from Eq. {52) with (X2) taken from the mole-
cular-dynamics estimate {Table I). The crosses cor-
respond to the positions of the peak maxima in Sxz(q,
co) for q = (qg, 0, o).
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FIG. 2. S~(q, &u) of model I atkzT=0. 125 for q
= (g/10a, 0, 0). Solid line, molecular-dynamics results;
dashed line, fit to Eq. (110).

0.04 0.080

FIG. 4. S 3.~(q, &u) of model I at k Ts= 0.5 for q = (w/
10a, 0, 0). Solid line, molecular-dynamics results;
dashed line, fit to Eq. (110).

sufficiently low temperatures and high frequencies,
perturbation theory works very well.

At low frequencies, this will no longer be the
case due to the singularity expressing energy con-
servation. In fact, here we expect in both S»(q, &u)

and S«(q, &u) an additional low-frequency resonance
corresponding to second sound or heat diffusion.
This expectation is confirmed by the numerical re-
sults shown in Figs. 2-5. Here, we plotted the
low-frequency part of S~q, &u) at q=(w/10a, 0, 0)
for various temperatures, revealing a well-defined
resonance. The damping is seen to increase, how-

ever, for T w T=0.125 indicating the existence of a
window condition. To study this point more quanti-
tatively, we also fitted the expression for SB&(q, cu)

[Eq. (110)]predicted by the hydrodynamic approach
to the molecular-dynamics results. In this fit,
cu2~ =C2aq' has been calculated from Eq. (106), us-

I", = P, T + v'z o. ,/T = (T ~') + u~z(w„) (141)

as obtained from the estimated values for o. , and

[Eq. (140)] is compared in Fig. 6 with the ef-
fective damping constant I',«as determined by the

ing for &u, expression (62), where (X') has been
taken from the molecular-dynamics data (see Ta-
ble I). The parameters o.', and p, in the damping
constant I' [Eqs. (111)and (118)] were determined
by means of a least-square fit to the peak height of
the numerically determined Sz~(q, &u) for keT
=0.125, 0.25, 0.5, and 1, yielding

u, = 1.042 a 0.070, P, = 0.0167 s 0.0007 . (140)

In Figs. 2-5, we compare the resulting spectral
densities with the molecular-dynamics results.
The temperature dependence of the damping con-
stant [Eq. (101)]

200—

3
1 CT

0C

&V)

100

I

I

I

I
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l

l

l

200—
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0
0 0.04 0

0 0.04 0.08

FIG. 5. S~I.(q, e) of model I at keT = 0.25 for q = (w/
10a, 0, 0). Solid line, molecular-dynamics results;
dashed line, fit to Eq. (110).

FIG. 5. Sa&(q, ra) of model I atkeT=1 for q=(a/log,
0, 0). SolM line, molecular-dynamics results; dashed
line, fit to Eq. (110).
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TABLE I. Numerical estimates for w& = C&q [Eq. (106)l,
~Seff I ff, and Fflt [Eq. (141)l for q = (m/10a, 0, 0)

in model I. age ff and I eff are determined by the peak height and

position of the numerical data by assuming Eq. (110).

~Seff Feff Fft

0.125
0.25
0.50
1

1.3
1.6
2

0.036
0.036
0.036
0.036
0.037
0.037
0.037

8.988
8.936
8.869
8.733
8.643
8.552
8.421

0.031
0.029
0.033
0.025
0.024
0.024
0.022

0.013
0.010
0.010
0.021
0.026
0.031
0.039

0.013
0.010
0.011
0.018
0.023
0.028
0.034

peak position and height by assuming Eq. (110).
The resulting ~g ff and I',ff are listed in Table I.
The temperature dependence of I" and I",ff nicely
confirms the existence of the window condition pre-
dicted by the hydrodynamic approach. In fact, I (T)
has a minimum around kBT =0.28 and increases for
T below and above this temperature. From Table
I, it can be seen, however, that I",ff-I" f;, increas-
es with T. This may be understood in terms of the
next higher-order contribution to the relaxation
times giving rise to a T' term for the umklapp
processes. The same effect also partially explains
the mismatch of the peak maxima with increasing
temperature (see Figs. 2-5). Table I reveals,
however, that also the difference between the
"bare" second-sound frequency co~ and the effective
one increases with T. This systematic discrepancy
cannot be attributed to the shift of the phonon fre-
quency (o, entering Eq. (75), due to the cubic and

quartic anharmonicity. In fact, in the temperature
range k~T & 2 deviations between ~„defined by
Eq. (52) and the actual position of the phonon peaks
in Sxx(q, w) are extremely small (see also Fig. 1).
Accordingly, we must conclude the actual second-

sound frequency is overestimated, and does not
treat its temperature dependence correctly, be-
cause the imaginary part of the memory function
is neglected tsee Eq. (112)].

Nevertheless, this comparison reveals that the
agreement between the predictions of the hydrody-
namic approach and the molecular-dynamics re-
sults is quite good. In particular, the most crucial
prediction, namely, that mell-defined second sound
will occur only in a temperature window, is quan-
titatively confirmed, even in a regime where the
validity of hydrodynamics is no longer guaranteed.
Above the temperature where I' reaches its mini-
mum, second sound becomes increasingly damped
and finally goes over to heat diffusion, as illus-
trated in Fig. 7.

An interesting feature of model I, which we have
not yet considered, is the coupling between the or-
der-parameter and energy fluctuations below ABT
= ks T, = 7.1. Owing to this coupling tsee Sec. 0 D ],
second sound and the phonon resonance will appear
in both Sxz(q, (u) and R~(q, &u). According to Eqs.
(88) and (89), the strength of the second-sound
peak in $» and of the phonon resonance in $~+will
be rather smal1. , however. To substantiate this
expectation, we refer to the ratio of the peak
heights for IesT =0.125 in Szr(q, &u),

S (q, &u )/S (q, &u, )=1&10 ', (142)

for q =(v/10a, 0, 0), as obtained from molecular dy-
namics. These results can be compared with the
predictions of the four-variable theory IEqs. (85)
and (88)] yielding for &o~ =0.080, a&, =2.42, feBT
= 0.125,

which is in reasonable agreement with the above
numerical result.

200—

0.04
3

1~

CO

0.02

0
0

l t I I I

1.0 1.5 2.0
8

FIG. 6. Temperature dependence of the damping con-
stant I for model I. Solid line, according to Eqs. (111),
(118), and (140); X, effective damping constant deter-
mined by the peak position and height of the numerical
Seethe Cq, ~).

0
0.04 0.08

FIG. 7. Scree Cq, co) of model I at k&T=2 for q= (v/
10a, 0, 0) as obtained from molecular dynamics.
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fABLE II. Numerical estimates for u& = C&q [Eq. (106)],
&X &, (ug ff I' ff and I'fjt [Eq (145)] for q = (m/10a, 0, 0) in
model II. ugeff and I'eff are determined by the peak position and
height of the numerical data by assuming Eq. (110).

'[00— (X'& jeff jeff

50

0.5
0.75
1

1.5

0.059
0.058
0.057
0.056

0.170
0.250
0.342
0.463

0.043
0.045
0.039
0.033

0.028
0.022
0.022
0.036

0.027
0.019
0.022
0.039

0
0 0.04 0.08 cu

FIG. 8. S~~(q, co) of model II at A~7'. =0.75 for q
= (r/10a, 0, 0). Solid line, molecular-dynamics results;
dashed line, fit to Eq.' (110).

In model II, which does not exhibit an ordered
phase [Eq. (3)], energy and displacement

fluctuat-

ionss are no longer- coupled and only quartic anhar-
monicity is present. As a consequence (see Sec.
IID), second sound occurs only in S~(q, &u). The
interest in this model stems from the fact that the
relaxation times for umklapp and normal proces-
ses will have, at low temperature, . a quadratic
temperature dependence [Eq. (119)]. Moreover,
due to the absence of a coupling between energy and

displacement fluctuations, second sound or heat
diffusion will occur only in S,+q, ~). Accordingly,
two variable theories should be sufficient to de-
scribe the excitation spectrum. In particular, X(q)
and the field momentum density Q(q) are sufficient
to describe the low-frequency and small wave-vec- o!„=1.63 + 0.19, P,, = 0.0094 + 0.0039 . (144)

The temperature dependence of the damping con-

ior regime of S~gq, &u). These are essentially the
assumptions of the hydrodynamic approach out-
lined in Sec. II C, where the coupling of energy or
quasimomentum to other variables is not consid-
ered. In principle, therefore, a comparison be-
btreen the molecular-dynamics results for model II
and the predictions of the hydrodynamic approach
is not affected by the coupling to the order-param-
eter -fluctuations.

Figures S and 9 show the calculated frequency de-
pendence of S~(q, &u) at keT =0.75 and 1, respec-
tively, for model II. For comparison, we also
fitted the expression for B~z(q, &u) [Eq. (110)], pre-
dicted by the hydrodynamic approach to the molec-
ula, r-dynamics results. In this fit, m2~=C2~q' was
calculated from Eq. (106), using for (uo expression
(52), invoking the numerical value for (I'), listed
in Table II. The parameters o. «and P» in the
damping constant I' [Eqs. (111)and (118)] were de-
termined by means of a least-square fit to the peak
height of the numerically determined ~(q, ~) for
kBT=0.5, 0.75, and 1, yielding

3
1 cT

((f)

0.08

100

0.04—

50

0-
0

I

2 kBT

0
0 0.04 0.08

FIG. 9. S3:&(q,cu) of model II at kaT= I for q = (w/10a,
0, 0). Solid line, molecular-dynami. cs results; dashed
line, fit to Eq. (110).

FIG. 10. Temperature dependence of the damping con-
stant I for model II. Solid line, according to Eqs. (111),
(119), and (144); X, effective damping constant deter-
mined by the peak position and height of the numerical
S3 3 (q, a) ) .
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stant [Eq. (113)],
I't =~«& + ~ s ~«~~ =(~«) + ~ s(T~) (145)

with the above values for o. » and P «and the ~~
listed in Table II is shown in Fig. 10. For compar-
ison, we included the effective damping constant

ff as determined by the peak po sition and he ight

by assuming Eq. (110). The resulting (u~,«and I',«
are given in Table II. The temperature dependence
of I' and 1,«(Fig. 10) again confirms nicely the ex-
istence of the window condition predicted by the
hydrodynamic approach. This is also illustrated
by the well-defined second-sound peaks in Figs. 8
and 9. In contrast to model I, there is no system-
atic discrepancy between I";;, and I,«. Table II re-
veals, however, that as in model I &os given by
Eqs. (106) and (111)overestimates the actual sec-

ond-sound frequency s ff and does not account for
the temperature dependence. This discrepancy
must again be attributed to neglect of the imaginary
part of the memory function [see Eq. (112)] in the
hydrodynamic approach. Nevertheless, the over-
all agreement between the molecular-dynamics re-
sults and the predictions of the hydrodynamic treat-
ment is again quite good.

It should be emphasized that the values of the
model parameters in models I and II [Eqs. (2) and

(3)) do not represent a particular choice in the
sense that the occurrence of second sound is more
likely. Apart fr'om the sign of A, we have chosen
them more or less at random. %'his then demon-
strates that mell-defined second sound should be a
rather usual low-temperature phenomenon pro-
vided the system is sufficiently clean.
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