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Ultra-low-temperature anomalies in heat capacities of metals caused by charge-density waves
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A new fruitful area for low-temperature research is discussed. The contribution of phase excitations of
incommensurate charge-density waves to the low-temperature heat capacities of metals is calculated, and the
characteristic signature of phasons in calorimetric measurements is illustrated. The importance of anisotropy

in the phason dispersion relation to the magnitude of the phason heat capacity and to the temperature at
t

which the signature of the phasons can be seen is emphasized, Unless measurements are done at sufBciently

low temperatures to freeze-out the phasons, it is possible to make significant errors in determining the

electronic heat capacity. In particular the possibility of detecting phasons in potassium is discussed.

I. INTRODUCTION

The e]ectronic ground state of a metal need not
be the mere occupation of the, Ã lowest-energy
Bloch states. Exchange interactions and electron-
electron correlations can cause a modulated,
collective deformation of the electronic charge
density to have a lower total energy. ' For such
a charge-density-wave (CDW) ground state the
conduction-electron density is

p= p, [1+pcos(Q ~ r+y)],
where p, is the average density and p is the
fractional modulation. The CDW wave vector Q
is very nearly equal to the diameter 2k~ of the
Fermi surface. The phase y will be discussed at
length below.

A CDW instability can occur only if the elec-
tronic charge density is locally neutralized by an

accompanying lattice distortion. ' Each positive
ion will be displaced from its equilibrium lattice
site T by

u(L) = X sin(g L+ y) . (2)

Since Q is controlled by Fermi surface dimen-
sions, the wavelength of a CDW will generally be
unrelated to 1.attice periodicities, i.e. , the CDW
is incommensurate with the lattice. In this case,
the resulting structure is multiply periodic, no
two ions are equivalent, and the crystal no longer
has a translation group. Such a loss in symmetry
means that the energy of the system is independent
of phase y. It then follows that there will be low-
frequency collective excitations corresponding to

y varying slowly in space and time. These ele-
mentary excitations are called phasons" and
have important consequences for experiments
that try to detect a CDW with diffraction' or
through Knight-shift or hyperfine-field effects. '

The purpose of this paper is to discuss the con-
tribution of phasons to the low-temperature heat
capacity of metals containing incommensurate

CDW's. We illustrate the type of anomalies which
occur in plots of C/T vs T', where Q is the total
heat capacity. Such anomalies have recently been
seen by Sawada and Satoh and led to the identifi-
cation of CDW's in La-Ge systems. It is expected
that the more isotropic the metal, the more aniso-
tropic the phason dispersion relation. ' We demon-
strate that this anisotropy can have profound ef-
fects on the size of the phason anomaly and on the
temperature at which the anomaly is observed. As
an example we discuss the possibility of a phason
contribution to the. heat capacity of potassium in
particular. The search for this type of anomaly in
metals provides a new area for ultra-low-tem-
perature research.

II. PHASON HEAT CAPACITY

Consider an incommensurate CDW described by
Eqs. (1) and (2). Since the energy of the system
is independent of phase y, it follows that there
will be low-frequency collective excitations cor-
responding to y varying slowly in space and
time."We express y(K, t) by an expansion in
running waves

y(L, t) = Qy- sin(q ~ L —(o-t ) . (3)

This approach is analogous to treating lattice
dynamics in the continuum approximation. The
wave vectors (iP are assumed small compared to
the Brillouin zone, and fqy-} are the amplitudes of
the phasons. If $&Q the local direction of the
CDW vector is slightly rotated. If g ~~ Q the local
magnitude of g is periodically modulated.

The dynamics of these modes have been studied
in the small-q limit, assuming negligible
damping. " The phason frequencies vary linearly
with q. The frequency spectrum is plotted
schematically in Fig. 1. Phasons are a type of
lattice vibration and are linear combinations of
old phonons (in a crystal with no CDW) having
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city parallel to Q, i.e. ,

ee—= 8c,qs/ks ~

where k~ is Boltzmann's constant. Thug the free
parameters are q„&„and q.

The total energy E of the phasons is evaluated
by summing the contributions gg~- of each normal
mode weighted by the Bose-Einstein occupation
factor. For a sample with volume Q,

g 2'p (e@-qg ) ~2 2 Z/2

d
(2 )' fdic ,j ddf, dq

wave vectors near Q and -Q. That the phason
frequency goes to zero at +Q is a consequence of
the incommensurate nature of the CDW. Since
there can be only a given number of vibrational
normal modes, phasons and phonons must share
the spectral density in the regions near +Q as
is indicated by the dashed region of the phonon
dispersion curve in Fig. 1.

It is expected that & vs fi will be highly aniso-
tropic because a local rotation of Q requires less
energy than a change in its magnitude. Con-
sequently, the surfaces of constant frequency for
the phasons will be flat (pancake-shaped) ellip-
soids. Taking Q in the z direction and letting q,
and q, = (q„'+q,')'~' be components of Q parallel
and perpendicular to Q, respectively, we can
write

2 2 2 2q = &zqz+ t-"~@~. (4)

The ratio of e, to g, may be as high as 100 to 1,
especially if the Fermi surface is nearly spheri-
cal. (For the ideal metal "jellium, " which has no
preferred direction, the ratio would be ~.) For
more anisotropic materials the ratio of g, to c~
may be much smaller.

Since phasons are (a special type of) lattice vi-
brations and their frequency varies linearly with

q, it is natural to evaluate the phason heat capa-
city using a Debye model. For phasons the
parameters of this model are the radius q~ of
the phason ("Debye") sphere in k space, the
speed e, of phasons with g ~~ Q, the anisotropy
factor g=c~/e, . Because of the anisotropy,
definition of the phason Debye temperature is
somewhat arbitrary. We choose to define the
phason Debye temperature in terms of the velo-

FIG. l. Schematic illustration of the vibrational modes
of a metal having an incommensurate CD% structure.
The frequency of the phason branch goes to zero at + Q,
the location of CDW satellite reflections in 0 space.
Such a diagram has only approximate meaning since an
incommensurate. CD% structure does not have a Bril-
louin Zone.

where y =-g +p and

x[(e"-1)(e "—1)] ', (7)

p = ri(es/T) [1 —(Tz/e~)']'~'. (6)

It is interesting to evaluate (7) in the high- and
low-temperature limits. For high temperatures
es/T «1, and (since p, z, r«1) we can expand
the exponentials to lowest order in ~. Elementary
integrations yield the high temperature Dulong-
Petit result Q~=pf~k~, where N~ is the number of
phason modes contained by the phason "Debye"
sphere, i..e. , Ns=Oq~/6w'.

To evaluate the phason heat capacity in the T- 0
limit it is convenient to express Eq. (6) in
ellipsoidal coordinates: q, = (r/&, ) cos &; q„
= (r/c~) sinecosy', q„= (r/e, ) sinesinp. A change
to dimensionless variables then obtains (in the
limit T- 0) the usual integral which arises in the
Debye theory. It follows that in the low-tempera-
ture limit

c,= (4m'N, k,/6q')(T/e, )*. (9)

It is important to note the presence of g2 in the
denominator. This factor is not surprising since
through e~ three powers of the phason velocity
appear in the denominator of C~. Thus, C~
—c, g~'. The anisotropy of the phason velocity
and the magnitude of the velocity have a strong
effect on the size of Cc, at low temperatures. In
Sec. III we discuss the additional and profound

xq~ K&u~(e" T|"s —1) '. (6)

In Eq. (6) a choice of cylindrical coordinates was
made.

Note that for phasons there is only one "branch"
with the angle between Q and Q varying continuous-
ly from 0' to 180'. Thus the factor of 3 present
for phonons is absent for phasons.

Changing the variables of integration to dimen-
sionless units, the phason heat capacity at con-
stant volume Cs= (eE/ST)„ is given by

Qq g T C'~ ~max

Cg, = 2 3 2 Ck dPPF'
m cog o 0
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effect of g on the temperature at which the pre-
sence of phasons can be identified in measure-
ments of the total heat capacity. Both these ef-
fects of the phason anisotropy are extremely im-
portant to the question of whether phasons can be
identified in low-temperature calorimetric mea-
surements on a metal with an incommensurate
CDW ground state.

III. TOTAL HEAT CAPACITY

In this section we discuss the "signature" of
the phasons in a measurement of the total heat
capacity. The effects we describe have been
seen recently by Sawada and Satoh in a study of
heat capacity anomalies in La-Ge systems and
analyzed by them in terms of phasons. In their
analysis, Sawada and Satoh took the phason velo-
city to be isotropic. Although in an anisotropic
metal the phason dispersion relation is expected
to be more isotropic than in an isotropic metal,
it is likely that their fit to the experimental data
could be made even better with this additional
parameter.

For our discussion, however, we shall deal
with the possibility of detecting the presence of
the proposed CDW in potassium' by measure-
ments of the low-temperature heat. capacity. In
this case, phason anisotropy has crucial signifi-
cance, as will be shown below. The CDW hypo-
thesis has been successful in quantitatively ex-
plaining the anomalous optical absorption, ' the
anisotropic conduction-electron g factor, ' and
the anisotropic residual resistivity' of potassj, um.
Although these results and many others" pre-
sent convincing evidence that potassium has a
CDW structure, a persistent question is: Where
are the CDW diffraction satellites' Actually, a
careful search for them has never been reported.
It is likely, however, that the phason Debye-Wai-
ler factor reduces the satellite intensity to a point
where the satellites would be extremely difficult
to find."Total intensity is not lost, but is
transferred into a pancake-shaped phason cloud.
Special techniques that integrate over the diffuse
pancake may be required to detect CDW's in
potassium in diffraction experiments. The exis-
tence of phasons also offers an explanation of the
"null" result of attempts to detect a CDW in
potassium with Knight shift and hyperfine-field
effects. ' Consequently, it is of great interest to
investigate whether or not phasons might make
their presence known in calorimetric measure-
ments.

To estimate the phason specific heat it is neces-
sary to make reasonable guesses for the three
parameter s mentioned previously: the anisotropy

C =yT+AT (10)

where yT is the electronic contribution and A&3

is the lattice heat capacity. A plot of p/T vs T'
is a straight line. The intercept at T =0 gives y
and the thermal effective mass m,* defined by
m,*/ma =y/yo, where m0 is the free-electron mass
and y, is the free-electron value. The slope of
the straight line determines the Debye tempera-
ture. A CDW leads' to a 5%—10% enhancement in

y, which cannot be distinguished experimentally

factor g; the phason-sphere ("Debye") radius q~,
and the velocity c, of phasons with Q parallel to
Q. To illustrate the importance of q, we shall
use the two values g=0.1 and g=0.01 in our cal-
culations. That is, we discuss phasons with Q

perpendicular to Q 10 and 100 times softer than
those with fr parallel to Q.

Because the number of phason modes N~ and,
therefore, the magnitude of the phason contribution
varies with q~, the size of this parameter is of
crucial importance. For our discussion we guess
the radius q~ of the phason sphere to be approxi-
mately 5% of the phonon Debye radius. The value
of Q suggested for potassium is very close in k

space to the [110]reciprocal-iattice vector.
Taking half the difference between Q and the [110]
reciprocal lattice vector gives the above estimate
for q~-4.6x10 cm . The ratio of the volume of
phason and phonon Debye spheres is 1.3 x10,4:

with this estimate. ' This compares with the . .

Sawada and Satoh experimental result of 8x10 '
in La-Ge.

The phason velocity c, (for g parallel to Q) also
appears with the third power in the expression for
the low-temperature phason heat capacity. Since
phasons are a special type of lattice vibration,
it might be guessed that phason-vibration velo-
cities are of the same order as phonon velocities.

It is possible to arrive at a rough lower limit
for &, given the choices of q@ and g above. As
will be discussed in detail below, heat-capacity
measurements at temperatures above the low-
tempera. ture limit for the phasons can lead to
errors in the experimentally determined thermal
effective mass of the electrons, By requiring
that this error be less than, say, 30% of the true
thermal effective mass for g=0.01, a lower limit
on the phason velocity of c, =—2.7x10' cm/sec is
obtained. To illustrate the effect of phason velo-
city we shall compute the phason heat capacity
using c, =2.7x10' cm/sec and twice this value.

Neglecting phasons for the moment, at low
temperatures the heat capacity of a metal is the
sum of electronic and lattice contributions. The
heat capacity is given by
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from band-structure, phonon-interaction, or
many-body effects.

The heat capacity of potassium has been mea-
sured between 0.26 and 4.2'K by Lien and
Philli s.'0'p . They found the heat-capacity was well
fit by the expression

C=2.08 7+2.57 7'3

with units of mZ/(mol K).
If phasons are present, the total heat capacity

Cr is given by the sum of (7) and (10)less Cz,

Cg=yT+AT +C@,-C~ ~ (12)

Here C~ I.s an "Einstein" specific heat subtracted
from the phonon specific heat to keep the total
number of normal modes equal to 3N. These
phonons correspond to the dashed region of Fi .

the phonons have lost spectral den 'ty
eglon 0 lg.

Einstein temperature of these phonons is -20 K
and the contribution of CE is negligible in the tem-
perature range of interest in this work.

The most convenient way to illustrate the
"signature" of phasons in the total heat capacity

FIG. 4. Low-ow-temperature range of Fig. 2.

a ~ agrees withis to adjust y and A in (12) so that C
ured heat capacI. ty say from T 0 27

o 0.4~~ . The curves of C /T vs T' ' F'
ave been plotted in this way. It should be

noted that for g=0.01 the value of A (or, equi-
valently, the Debye temperature) needed to fit
the measured data differs insignificantly from

I.ps. or g =0.1the value found by Lien and Philli . F
the change in the Debye temperature needed to
fit the experimental data is ~2%. Thus, phasons
have little effect on the slope of the line in this
region. As will be discussed in detail below it
was necessary to change y significantly from the
value found by Lien and Phillips.

Plots of Cr/T vs T' are shown in Fig. 2 for c,
=2.7x10' cm/sec and g=0.1,0.01. The dashed
vertical line indicates the lowest t tes emperatures,
T = 0.26'K, measured by Lien and Phillips. - The
signature of the phasons is the departure of the
curve from a straight line as T decreases. ~~ For
the lowest temperatures, the curve is once again
a straight line with a slope determined by the
sum of the h nphonon and phason contributions. The
curve with g=0.1 can be seen to d tepar sI.gnifi-
cantly from a straight line by T'=0.07'K'. For
smaller q~ this departure would be less). The
curve for g =0.01 does not depart significantl
from a straight line until T' =.005 K' or T
=70 mK.
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Similar results for c, = 5.4x10' cn--, 'sec are
shown in Fig. 3. Note that although the curve for
g=0.1 does fall below the straight line, the
curvature is much less than for the curves in
Fig. 2 since the phason Debye temperature is
greater. Such a curve could be difficult to dis-
tinguish experimentally from a straight line.

Figures 4 and 5 are expanded plots of the low

temperature parts of Figs. 2 and 3, respectively.
In Fig. 4 the curve for g =0.01 indicates that the
heat capacity of the phasons does not reach T'
behavior until T ~ 20mK in this case. Comparison
of the straight-line portions for g=0.01 and

g =0.1 clearly indicates the effect of phason
anisotropy on the slope of the line, i.e., the mag-
nitude of the phason contribution to the low-tem-
perature heat capacity. It is also evident that
phason anisotropy is extremely important in
determining where the C/T vs T' curve departs
from the higher temperature straight-line be-
havior. Where this "turn down" occurs is
extremely important. Although the Dulong-Petit
contribution of the phasons is small and would

be easily missed in comparison with the electron
and phonon contributions at higher temperatures,
the anisotropy of the phasons allows the soft
phasons to fill up at much lower temperatures
where C~ is sizeable in comparison to the other
contributions. Thus, for c, = 2.7 x 10' cm/sec and

g=0.01, at 7.'=0.07'K the phason heat capacity is
-25% of the total, whereas for c, = 5.4x10' cm/sec
and g =0.1, the phason contribution might be
missed entirely. This point is crucial for ex-
perimental measurements of the phason heat
capacity.

The dashed line in Figs. 4 and 5 is the extra-
polation of the measurements of Lien and
Phillips. The intercept at zero temperatures
givesy =2.08 mJ/(mol K'). It is evident from the
curves in Figs. 4 and 5 that the presence of
phasons can lead to a significant error in the
determination of y. Unless calorimetric mea-
surements are pe rfor med at temperature s suf-
ficiently low so that the phason heat capacity is
in the T' regime, extrapolation of the C/T vs T'
curve to zero temperature can lead to a fictitious
and erroneous apparent contribution to y. In
other words, it is necessary to freeze-out the
phasons before the electronic heat capacity can
be identified with certainty. As discussed above
in arriving at a rough lower limit to the phason-
velocity, for 7l =0.01 and c, = 2.7 x10' cm/sec the
error in y is -30%. Equivalently, for this case
the thermal effective electron mass m,* would be
-30% too large From th.e rest of the curves it
can be seen how the "fictitious" y varies with
phason anisotropy and speed.

The possibility that the existence of phasons
can lead to an erroneously large thermal effec-
tive mass is very interesting in light of the
controversy surrounding the theoretical value of

m,*. It is convenient theoretically to write ~,* in
terms of the free electron mass pg, and various
correction terms so that

m,*=m,(1+5,+5„+5„+5„+6,), (13)

IV. CONCLUSION

We have discussed the phason contribution to
the low-temperature heat capacity of metals con-

where 5, arises from energy-band effects, (in-
cluding that of the CDW), 6,&

is the enhancement
due to electron-phonon interaction, g, ~ is the
analogous (and as yet undetermined) enhancement
arising from electron-phason interactions, g,,
arises from electron-electron interactions, and

5f is the "fictitious" contribution from the pha-
sons discussed above. Of course, if the phasons
are observed in the 7' regime it is possible to
extrapolate correctly to zero temperature and

Qf = 0. Unless the phasons are frozen out, pf g 0.
The contribution to nz,* subject to the most dis-

agreement is 5„. For an ideal electron gas the
deviation of the density-of-states effective mass
m* at the Fermi surface from gg is not large, but
this is caused by a cancellation of inherently
much larger effects. " Unfortunately, there is
disagreement even as to the sign of 5„. Rice
has shown that Hubbard's theory'4 leads to ypg*

&m by about 10% for typical metallic densities.
In contrast, several other calculations" find
m*&nz by a few percent. Clearly, for meaningful
comparison between experimental and theoretical
values of ppg,*, it is essential that the fictitious
phason contribution be known to be zero.

Heat capacity measurements of incommensurate
CDW systems at ultralow temperature are,
therefore, important for two reasons. First, such
measurements can yield important evidence of
the existence and properties of phasons. Second,
by freezing-out the phasons the true electronic
contribution to the heat capacity can be measured.

In this study we have assumed that the phason
spectrum is that of a pure metal. It is possible
for phason distortions of a CDW to be pinned at
impurities, and this could alter slightly the pha-
son frequency spectrum. This effect is unlikely
for the case of potassium, since the root-mean-
square phase fluctuation is estimated to be
several radians, even at very low temperatures. '
A pinned CDW would lead to broadening of the
nuclear magnetic resonance, and this has been
found to be absent in potassium. '6
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taining incommensurate CD%'s and illustrated
the characteristic signature of phasons in mea-
surements of the total heat capacity. By way of
example, .we have discussed the possible con-
tribution of phasons to the heat capacity of potas-
sium. It is important to note that the parameters
used for the phasons were guessed. Anisotropy
of the phasons is extremely important in deter-
mining both the magnitude of the low-temperature
phason heat capacity and the. temperature at which
a plot of C/T ys T' departs significantly from a
straight line. If heat-capacity measurements are
not done at sufficiently low temperatureS so that
the phasons are frozen out, the electronic heat
capacity can be significantly overestimated.

It is likely that a search for phasons in potas-
sium must be performed at temperatures signifi-
cantly below 0.1'K. These measurements would
be difficult, doe to the small value of the heat

capacity at these temperatures.
Throughout the calculation preserited above

daiaping of the phasons has been neglected. This
damping has recently been calculated. " For
potassium phasons with g parallel to g are
strongly attenuated and nearly critically damped.
However, phasons with fi perpendicular to Q
are only very weakly attenuated. The effects of
damping on phason heat capacity have been in-
vestigated. The differences between the finite-
damping case and the zero-damping case dis-
cussed above are not substantial enough to
warrant a separate discu8sion at this time.
Since the characteristic signature of phasons is
primarily determined by those phasons with fi

nearly perpendicular to Q and these phasons are
only very slightly damped, it is reasonable that
the effects of phason damping on the heat capacity
should be relatively small.
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