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NMR relaxation by paramagnetic impurities in superionic conductors is treated in a manner
which is valid over a wide range of temperatures, encompassing regions where Wv, &) 1 and

WY, &( 1, as well as the intermediate case W~, —1. Here W and ~, are the hopping rate and

paramagnetic-impurity relaxation time, respectively, Recent exper'iments have shown the im-
portance of paramagnetic impurities for relaxing rapidly diffusing nuclei even in nominally
"pure" samples, and they have been carried out over the entire range of W~, values. Both
nearest-neighbor-only and long-range dipolar interactions are treated. The former are handled
by a discrete hopping model, the latter by a classical diffusion equation. This equation is similar
to that solved by others, but is more general in that it is valid for arbitrary Wv, and includes
both particle and spin diffusion. Nuclear dipole-dipole interactions are accounted for by assum-
ing they make an additive contribution to the transverse relaxation function. As examples of
the two models, theory and experiment are compared for linewidth data in PbF2'. Mn and for T~

and T2 data in "pure" Li5A104. Good. agreement is found for the linewidth peak in PbF2,
without any adjustable parameters. The anomalous frequency dependence at low temperature
in a-Li5A104 cin be explained, but only with a r, which is too short to describe

.higher-temperature behavior.

I. INTRODUCTION

Nuclear magnetic resonance (NMR) has proved to
be a useful tool for investigating the motion of rapid-

ly diffusing ions in superionic conductors. " It has
recently been demonstrated' ' that paramagnetic im-

purities have a marked effect on the relaxation
processes because a mobile ion can readily migrate to
the vicinity of an impurity where it is relaxed. A
feature of superionics is that one can go from the re-
gion of slow solidlike diffusion to rapid liguidlike
behavior by varying the temperature typically
between 300 and 700 K.

One set of conditions applies in the slow-diffusion

range, characterized by N ~, && 1, where ~, is the
relaxation time (either longitudinal or transverse
depending on the particular situation) of the
paramagnetic ion and 8'is the diffusive hopping rate.
In this case a nucleus stays in the vicinity of a
paramagnetic ion long enough for its instantaneous
relaxation rate to be described by the quasistatic
value 1/T;(r), where T, (r) [i =1 or 2 depending on
whether one is calculating longitudinal (T|) or
transverse (T2) relaxationl is the relaxation time a
nuclear spin would have if its position were held
fixed a distance r from the impurity. Extensive treat-
ment of this situation exists in the literature.
Abragam's text summarizes the early work where
the additional assumption 8'T~(a) (1 is also implicit
(a is the nearest-neighbor distance). An important
consideration for slow particle diffusion is that at

sufficiently low temperature spin diffusion can be the
more effective means of carrying the unrelaxed spin
magnetization to the vicinity of a paramagnetic ion.
Then not only should W be replaced by the spin-
di6'usion rate, roughly 1/T2, but one must account
for a critical barrier distance b from the impurity.
Spins cannot diffuse by energy-conserving spin flips
to a distance closer than b because of detuning due to
the static local field set up by the impurity.
Rorschach has treated this situation in detail for ar-
bitrary, values of WT~(a).

In the rapid-diffusion region where W~, &) 1, the
effective fluctuation rate of the paramagnetic spin as
viewed by the nucleus becomes 8', and another set
of coriditions applies. The treatments have generally
considered only one regime or the other, whereas
data in superionics can range from 8'v, « 1 to
8'v, && 1. This was demonstrated particularly well
in the recent work on 'Li resonance in Li5A104.
Previous studies have also concentrated on the case
where T~(r) ~ rs, appropriate to classical dipole cou-
pling, and assumed a continuum model. However,
one of the systems of interest' is PbF2'. Mn, where the
dominant F-Mn coupling is a nearest-neighbor
transferred hyperfine interaction. Here a discrete-
lattice hopping model with nearest-neighbor interac-
tions would be more suitable. Another needed
refinement is that a complete description of T2 re-
quires inclusion of broadening by nuclear dipole-
dipole interaction since this mechanism dominates at
low temperatures.
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Comparison of existing data with theory therefore
requires an expression which is valid over a broader
range of variables than is currently available and
which includes strong nearest-neighbor interactions.
The purpose of this paper is to provide such a calcu-
lation. Section II gives the theory for nearest-
neighbor interactions and a discrete-lattice hopping
model, as applicable to the PbF2'. Mn experiments.
Section III extends Rorschach's calculations for di-
pole interactions by assuming the presence of both
particle and spin diffusion, with the latter being res-
tricted to distances from the impurity greater than the
barrier b. In an obvious extension of Sec. II, we in-
corporate an arbitrary value of W~, into the diffusion
equation of Sec. III. The Sec. II results are applied to
PbF2 in Sec. V, while those of Sec. III are applied to
Li5A104 in Sec. VI.

In both models it is assumed that the nuclear
dipole-dipole contribution to 1/Ti can be accounted
for in a simple semiadditive manner described in Sec.
IV. The calculations are restricted to low paramag-
netic-impurity concentration c so that the relaxation
rates are linear in c. In this sense the results are less
general than some refinements ' of the work in
Refs. 6 and '7.

neighbor-to-an-impurity site.
Let the nucleus remain on a site where H' is given

by (1) for a time r and then hop to a site where
H'=0. As derived in Appendix A, the Kubo-Tomita
perturbation technique' and suitable averaging give

(3)

with
r

f (r) = exp —
&

(r —u) G (u) duJo

and G (u) as given by Eqs. (A4) and (AS). The
quantity I (t) is the "rotating frame" value I (t)
= I (t)e 0, where mo is the NMR frequency for an

applied field in the z direction. We further take the z

component Io(t) to refer to the departure of I, from
its thermal equilibrium value in the presence of an
applied field.

In the absence of nuclear dipole-dipole or other
couplings —which will be included later —I is un-

changed between time t + v and the time it next
comes onto a site which-neighbors a paramagnetic
impurity. If there are n "encounters" with an impuri-

ty between 0 and the observing time t, it follows that

II. DISCRETE HOPPING,
NEAREST-NEIGHBOR INTERACTIONS

We assume that the mobile nucleus whose reso-
nance is being studied performs a simple, uncorrelat-
ed random walk governed by standard rate equations.
If it is on a site which is a nearest neighbor of a
paramagnetic impurity, it experiences an interaction
of the general form

where S (t) and Is are components of the electronic
and nuclear spins, respectively. Apart from preces-
sion in the applied field at frequency ao„ time depen-
dence of S (t) comes primarily from interaction with
lattice vibrations at the high temperatures of interest,
and we assume it may be described by a characteristic
relaxation time r, which is the same for longitudinal
and transverse components (Ti = Ti for the electron
spins) in the neglect of spin-spin interactions and for
coupling to high-frequency phonons (Raman pro-
cesses). For an isotropic transferred hyperfine in-
teraction AI S, we have

(S)

where vi is the duration of the ith encounter. The
reasonable assumption is made in Eq. (5) that for low
concentration c the fraction of time spent in vicinity
of an impurity is small so that the ion is not ex-
periencing an encounter at the particular time t.

The relaxation function is given by the average of
Q,",f (r;). Two averages are involved, first with

respect to each 7 i and second with respect to the
number of encounters n. We assume that the proba-
bility of making an encounter with the same impurity
ion twice within an electronic relaxation time v, is
vanishingly small. If v, is not much shorter than v;,
this requires the additional stipulation that there is
negligible probability of the nucleus returning to the
same site after it has jumped away. This is reason-
able for lattices with a large coordination number in
the absence of correlations which make return jumps
more probable. It clearly is totally inapplicable in sit-
uations such as one-dimensional hopping in a dense-
ly filled lattice. With the above restriction the J's are
statistically independent so that

with the other components A &
=0. Here and hence-

forth we use a notation in which 0, =0, +1
corresponds to the components I„I+= I„+iI~ and
S„S+=S„+iS~. For the classical dipole interaction
A & is given by the usual formulas. " The interaction
is taken as zero if the nucleus is not on a nearest-

where the double angular brackets indicate averages
both with respect to ~ and with respect to n. The
inner average is

&f ) = W& dre ~'f (r)
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where W is the hopping rate, since e ' W d v is the
probability of the nucleus remaining at a given site
for a time between 7 and a+de before jumping.

It is shown in Appendix B that the probability of
there being n encounters in time t is f (7) =I rt —r (13)

where the hopping rate is slow compared with elec-
tronic spin fluctuations but fast enough to prevent
complete relaxation during the average time of an en-
counter. Equation (4) then reduces to

P(n lt) = [(Zc)"/n!](Wt) "e (8)
where

where Z is the number of host sites which are
nearest neighbors to a nuclear-spin site and c is the
impurity concentration. Equation (8) is derived on
the assumptions Zc &( 1 and that the random walk
is self-avoiding. The average required in Eq. (6) is
thus

(14)

is the relaxation rate a nucleus would have if it were
not allowed to hop away from the impurity site. Use
of (14) in (7) and (10) then yields

I /T~ 2
= Zc rtp ~ (IS)

-z.w Xe
—Zc Wt

nW n.

—(l —(f ))Zc Wt=e a
f (9)

which can be regarded as the average relaxation rate
for a nucleus which hops through the crystal, i.e., the
rate is q for the fraction Zc of the time it is a neigh-
bor of an impurity and zero otherwise.

- Results of this section are compared with data on
the linewidth in PbF2'. Mn in Sec. V.

from which we obtain the relaxation rates by compar-
ison of (9) with Eqs. (5) and (6),

III. CONTINUUM MODEL, DIPOLAR INTERACTIONS
I/Ti 2

= (I —(fp, i)) Zc W (10)

The quantity (f ) is in general a complicated ex-
pression obtained by the use of Eqs. (A4) and (AS)
in Eq. (4). It produces the expected results' in ap-
propriate limits. If Wr, « I and G (0)r, /W » I
or if Wr, » I and G, (0)/W » I, (f ) « I
which means that on the average the nuclear spin re-
laxes completely during one encounter. In this case
the relaxation time is just the average time required
to hop to the vicinity of a paramagnetic center,
T~ 2=1/ZcW, as given by Eq. (10) for (f ) && 1. If
Wr, » I and G (0)/ W « I, then

I/Ti 2
= ZcGp i/ W (12)

Here the hopping nucleus. must undergo many en-
counters before being relaxed, and therefore the rate
is given by an average square interaction Zc6 nar-
rowed by the hopping rate W, which is the effective
inverse correlation time if I/ W « r, .

Another limit of interest is Wr, &( 1,
G (0) r, /W « 1. This is an intermediate region

(f )=J due "I-— u2I G.(0)
0

r

G (0)
W2

[for this illustration only we are also assuming that
ao„eo0 (& Wso that the secular and nonsecular parts
of G (t) contribute equally; see Eqs. (A4) and (AS)]
and Eq. (10) becomes

Time dependence of the rotating-frame nuclear-
spin vector considered as a function both of position
r and time t is given by

9I (jI+
, relaxation, ~~, hopping'

(16)

Ql =—g.(r)I
J relaxation

(17)

where q (r) is an effective relaxation rate which
describes the average decay of the nuclear spin while
it remains a distance r from the impurity. The fol-
lowing considerations are helpful in arriving at a suit-
able expression for rt (r) The total. decay which
takes place during the time ~ the spin is at rest at r is
given by Eqs. (3) and (4). An obvious extension of
these equations is

The second term on the right-hand side of (16) is the
change brought about by discrete hops of the nucleus
and is approximated by D V'I in a continuum model
where equilibrium spatial properties of the average I
are slowly varying compared to a lattice constant.
The diffusion coeScient is taken as D =

6 a W for a

jump rate Wand a jump distance a. The first term
on the right-hand side of (16) describes the interac-
tion with the perturbation H'(r, t) of Eq. (I), where
now A a=A s(r) varies as r ' for dipolar
electronic-nuclear coupling. To make the equations
manageable we must reduce this term to the form
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t plkt
fa(~t) =exp —

J~ (At —u) G (r, u) du

(18a)

(18b)

g (r) = W(J (r —u) G (r, u) du)
p oo f+ t

dre 'Jl (r —u)G (r, u) du

G (r, r))dre 'G (r, r) = ' ' (19b)
for intermediate times 0 & ht & t, where the interac-
tion G (r, u) is now evaluated at the fixed position r
If the decay is exponential,

f.(At) ~ exp[ —q.(r) b, t]

for all 4t of interest, there is obviously no prob-
lem since Eqs. (17) and (18) would be perfectly com-
patible. However, as is well known, "f (At) is

Gaussian,

f (4t) n exp[ —
z

G (r, 0)6 t']

for times 4t short compared with the correlation time
r, of G (r, u) and becomes exponential only for
b, t » v, . We argue as a reasonable compromise
that g (r) be defined in such a way that the average
amount of decay during the dwell time r be given
correctly. That is,

t

exp[ —q (r) W' ']=(exp —
J (r —u)G (r, u) du )

(19a)

where the average is with respect to the probability
8'e 'dr that the particle remains at r for a time
between r and r + dr. Equation (19a) is sensible as
long as q (r) as so defined satisfies g (r) W ' & 1,
i.e., it requires more than one encounter to relax the
spin so that the full average dwell period 8' ' is the
pertinent time of interest. Suppose, however, that
the right-hand side of (19a) is less than 1/e which oc-
curs, for example, if

i G„(r 0)W &1

for 8'v, »1 or

G (r0)W'r, &1

for 8'7, « 1. Then the relaxation is completed in
less than the mean residence time 8' ' and we must
be concerned with what occurs on a shorter time
scale. A physically acceptable choice is then to define
q (r) as the time, less than W ', required for the
spin to relax to 1/e of its initial value,

for (G (r, r)) ~ W, while if (G (r, r)) & W we use

p $/q
1= ~ (g ' —u)G (r, u) du (20)

as the definition of it (r). [The third equality in
(19b) is the result of partial integration. ] Note that if
Wr, « 1, both Eqs. (19) and (20) reduce to

7t.(r) = J~ G.(r, u) du

which is the form used in previous treatments, ' '
The conditions under which (20) is of practical im-
portance are thus Wr, &1 and G (r, 0)/W' &1. [It
should be remarked that (19b) and (20) do not in
general agree when (G, (r, r)) = W'. This could be
corrected by replacing the left-hand side of Eq. (20)
with a number of the order unity which is determined
self-consistently to give agreement with (19b) when
(G (r, r)) = W~ and becomes unity for
(G (r, r)) » W'. For example if Wr, » 1 so that
G (r, r) = G (r, 0) where the integrand is important,
this number would be 2 when G (r, 0) = W'. In the
opposite extreme of 8'v, « 1 there is no discrepan-
cy, however, as noted above. ]

As long as (19) is used or Wr, « 1, rt (r) is pro-
portional to G (r, 0) and thus varies as r~ for dipolar
interactions. If however, 8'7, » 1 and
G (ap, 0)/W' &1, Eq. (20) gives

g (ap) = [ i G (ap, 0)] &r ap

where ao is the distance of closest approach to an im-
purity. This creates a complicated variation wherein
q (r) varies as r i for r « r, and as r p for r » r,
where r, is a critical radius such that

G(r„0)r2 =1—

In almost all cases of interest r, & ao when 8'7 & 1
and this feature of there being a region where
g (r) ~ r ' is not likely to be important. It will hen-
ceforth be ignored in the main text, but Appendix C
shows, for completeness, how the equations can be
modified to account for it.

Equations (16) and (18) then yield the familiar

=DV2I — I (21)
exp —

J~ (g. ' —u)G. (r, u) du =—
0 e

Since (19a) is to be used only for q (r) W ' ~ 1, we
will not make a serious error in keeping only the first
two terms of an expansion of the exponents on both
sides of the equation, whereby

where the distance dependence is explicitly given as
rt (r) =C /rP Equation (21) i.s identical to that
treated extensively by others ' except for &he
more general definition of C through (19) and (20)
which allows for an arbitrary value of W~, . Their
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results could be carried over immediately if it weren' t
for the combined effects of spin and particle
diffusion. For r & b there is both particle and spin
diffusion, but only particle diffusion can take place
for r & b. Here b is the critical distance below which
spin diffusion cannot occur because the local field of
the paramagnetic impurity changes too rapidly
between sites to allow for energy-conserving spin
flips. 7 An explicit expression for b is given in Ref. 7
and is repeated here in Eq. (43). We thus have an
r-dependent D given by

Dg+Dp, r & b
D'"'='D

~ (b

where Dp =
6

Waz is the particle (hopping) diffusion

coeScient and D~ =
6

a T2p' is the spin-diffusion

coefficient with T30 the rigid lattice (low-temperature,
nonmotionally narrowed) transverse relaxation time.
The assumption that spin and particle diffusion are
simply additive ignores the effect of hopping on the
dynamics of mutual spin flips and is thus likely to be
quite crude in general. However, in the region where
D~ & Dp and spin diffusion is thus important there is
little motional narrowing (T3 = Tzo), at least for
Li5A104 whose relaxation we treat in detail, so that
the above description is deemed adequate.

The following treatment parallels that of
Rorschach. ' A stead-state solution is obtained to Eq.
(21) subject to the condition that I is held at some
nonequilibrium value AI at a large distance R from
the impurity. Under steady-state conditions the rate
at which spins are relaxed within the volume equals
the flow of- spin current across the surface at R, and
thus

impurities per cm .
The steady-state solution to (21) and (22) which

satisfies the boundary condition

lim I (r) = LLI
I' ~oo

is, as in Ref. 7,

1~(r}= Bl~/4
2r

/

/
' ]/4

+/3.1r( ,') ~—
2r

(25)

where 1„(z) is the Bessel function of imaginary argu-
ment and I (z) is the y function. From (25) we have

, 51 (r)
lim r'
f oo Qf

' 1/4

=-48 ~
, 4, r(—,')

and thus

16mN(Dp+Ds) 8(4P )
bl r(') (26)

The constant 8 is determined by the following match-
ing and boundary conditions: (i) I and D (r) 51 /Br
are continuous at the radius b where D (r) changes
from Ds+Dp to Dp. (ii) 51 /Br =0 at r = ao since
there is no diffusion to distances closer than ap, the
nearest-neighbor distance between impurity and
nuclear-spin sites. Since Rorschach treated spin
diffusion only and tacitly assumed b ) ap, his results
correspond to using condition (ii) only with ap = b

In the region ap ( r ( b we have

4rrlrzD(8) = 4rrr dr 1.(r)BI- 1 R

Qf, p a p
(23)

1 /

pl2
pingI (r) =8'Ii/4

3
+8"I i/42f 2r

where the right-hand side of (23) serves as the
definition of T as the relaxation time of the total
spin contained within the sphere of influence of the
impurity. In the limit of R much greater than the
characteristic lengths of the problem ap, b, and

p=—[C /(Ds+Dp)[

the left-hand side of (23) is independent of R, and
the right-hand side is approximately I3.IVO/T, where

Vp =
3

mR' is the volume of the impurity's sphere of
influence. Thus,

41rN (Dp + Ds) 3 51
lim R

aR, ' (24)

where we have assumed that Vp
' = N, the number of

1 r(-,')
=SmNP(Dp+Ds)

a r(—,')

q13/4(5) —I t/4(5)

ql 3/ (5) —It/, (5)
(28)

where P' = (C '/Dp)'/' as oPPosed to

P = [C./(D, + D,)]'/'

Note that C '
in general differs from C since in ap-

plying Eq. (19) the hopping rate %should be
6(Dp+Ds)/a' for r ) b whereas W =6Dp/a' for
r ( b. Equation (25) holds for r ) b Application o.f
conditions (i) and (ii) to Eqs. (25) and (27) is
straightforward, and the resulting expression for the
relaxation rate is
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where 8 =P'/2b' and tion is additive in the following sense. The methods
of Ref. 12 show that

q=P, , 1+ Ds
p'3 Dp k3

(29)
P (t) =exp —J, (t t')—G.(t') dt' (33)

with

1„,(5.)
ki = I i/4(8') — li/4(5')

-3/4 8a

where eb (t) is the relaxation function [for a=0 (Ti)
«4n-+I (T3)] of the net nuclear spin of the sample
and G (r) contains terms which are proportional to

3

4 13/4(5a)

T I (') I 3/4(5, )
= 7 rrli/PDp (30)

which is the same as Eq. (10) of Ref. 7 except for b

replaced by ao. Thus, as expected, in this case the
solution is independent of b and given by that for a
spatially independent D = Dp with diffusion allowed
down to the distance a(].

For rapid particle diff'usion 5, « 1 and Eq. (30)
reduces to

1/T =
3

rrNaort (ao) (31)

which is the same as Eq. (12) apart from a constant
of the order of unity, so there is no fundamental
difference between the continuum and nearest-
neighbor models in this ease. On the other hand, for
very slow spin and particle diffusion S && 1 and since
1„(8) is independent of v for 5 » I, Eq. (28) be-
comes6

1/T =8.5N(Ds+Dp) [Ca/(Ds+Dp)]i/4 (32)

13/4(5, )
k3 = 13/4(8') — I 3/4(5')

-3/4 8a

in which 5' =P'3/2b3, 5, = P'3/2a03. In the limit

Dp « Ds, we find q » 1 and (28) reduces to Eq.
(10) of Ref. 7. If Dp » Ds, then 8 = 5' and P =P',
and (29) simplifies to

(t) y n n(t) @e-n(t-) (35)

where the symbols n-n and e-n stand for the internu-
clear and nucleus-paramagnetic impurity couplings,
respectively. The absence of interference terms in-
volving 0, „'0„„'comes from the fact that such
terms would contain averages of the product of one
electronic spin operator and three nuclear-spin opera-
tors which vanish in the high-temperature limit of in-
terest (high temperature here meaning that there is
negligible spin polarization).

The nucleus-impurity relaxation function is what
has been calculated in the preceding sections,

([H...'(r), 1J [H...'(O), 1 .]),
~here H«, '(r) is the total (nuclear-electronic plus
nuclear-nuclear) perturbation and time dependence
includes hopping motion by making the interaction

'

parameters experienced by the nucleus functions of
time [i.e., in Eq. (I) A p(r) 2 /3(r) via r=r(r)].
One need only observe that there are no interference
terms, so that

([H„,'(r), I ] [H„,'(0),I ])

= ([H. .'(.),I.][H. .'(0),1 .])
+ ([H, „'(r),l ][H, „'(0),I J), (34)

in order to establish

which differs from Eq. (10) for (f ) « 1 by the
[C /(Ds+Dp)]'/4 dependence.

I/TC
—N

y e n(t) e— (36)

IV. INCLUSION OF NUCLEAR
DIPOLE-DIPOLE COUPLING

At low (which often just means room) temperature
the NMR line is not motionally narrowed and the
paramagnetic impurity contribution to I/T3 is masked
by the rigid-lattice rate. Hence a complete descrip-
tion of the observed T2 must include the effect of in-
ternuclear dipole-dipole coupling, which is responsi-
ble for the low-temperature transverse relaxation.
(Nuclear dipole coupling may also influence Ti
strongly at some temperatures but not at others,
depending on the precise conditions as discussed
later. )

VA'thin the framework of the Kubo-Tomita pertur-
bation approach, " the nuclear dipole. -dipole contribu-

where we now use the superscript to indicate that T
previously derived is for the e-n process only.

A simple expression to account for motional nar-
rowing of the n-n process is"

43" "=exp —(Ita') dt'(t —t')e ~'
~0 (37)

1= „+(ben ) Jl dt'(T3 —t')e ~' . (38)

where (LL4a') is the secular second moment and Wis
the hopping rate as before. Nonsecular terms are im-
portant only for sufficiently rapid hopping that
W & coo, and we assume that when this occurs
I/T3 " » I/T3 "so that the n nprocess is ne-gligi-

ble. Equations (35)—(37) suggest that an effective
T2 be defined as the solution to
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As long as ~OT1 z && 1, n-n contributions to T1 and
nonsecular n-n contributions to Tz produce an addi-
tional rate which adds simply to I/Tf 2".

Su5cient conditions for the e-n process to dom-
inate T~ at high temperature and the n-n one to dom-
inate at low temperature are

and

Zc (haP), „»(hate')„„

Zc (( (ho)2) „„/cop

where (5~'), „and (hem') „„measure strengths of
the mean square e-n and n-n couplings, respectively.
The first condition comes from taking

I/Tf "=Zc(haP), „/W,
1 = (h«)2)„„/W
1

at high temperatures where zoo && 8'. The second
one comes from the assumed low-temperature for-
mulae

1/Tf "—ZcW

I/Tf " —((h«P) /cup') W

In the strong-narrowing limit Tt ' (( (hra2)'i2, we
have the additive result

I/T2=1/T2 "+(has')/W .

OO

(f~) =Re ' du e "exp —y —u2 —i

II

~
—AlX

+
x

J

(40)

~here

[4H(T ~0)] =J3 (h«P) 'i2/23i2

is the peak-to-peak width of the absorption derivative
curve and y~ is the '~F gyromagnetic ratio.

The features of note in Fig. 1 are the pronounced
minimum and maximum. These, as observed by
Hogg, Vernon, and Jaccarino are characteristic signa-
tures of the presence of paramagnetic impurities.
The minimum linewidth occurs when the impurity

with y =
3

& S(S + I)/ W', x = ~,/ W. Only the real

part Re is considered since a frequency shift is not of
concern. The linewidth data of Ref. 3 are compared
with Eqs. (10), (38), and (39b) in Fig. I for
c =3 x 10~ (the lowest concentration studied), Z =4
and co, /2m =63 0Hz (corresponding to the NMR fre-
quency of 90 MHz). The hopping time I/W is taken
from tht. work of Boyce, Mikkelsen, and O'Keefe'
who inferred it from conductivity data. The only ad-
justable parameter is (haP) which we choose to give
the observed low-temperature value of

with the former a consequence. of Eq. (10) and the
latter the standard Bloembergen-Purcell-Pound (BPP)
expression' for o)0 &) S.

V. COMPARISON WITH PbFz.Mn 1.0—

The dominant e-n interaction in this system is an
isotropic nearest-neighbor transferred hyper6ne
fA I ~ S with" A =1.5 x 10' sec ', so the treatment of
Sec. II is appropriate. Equations (A4) and (AS)
reduce to

G«(r) =
3

A' S(S+1)cosra, re (39a) 0.1—

G ( (t) =
3
3 S (S + I) (I + e ' )e (39b)

l. 0 1.4 1.8 2. 2 2. 6 3, 0 3, 4

for ~„&&~0, where ~, and coo are the EPR and
NMR frequencies, respectively. It is claimed in Ref.
3 that the electronic relaxation rate I/r, is negligible
over the whole temperature range. In this case
(W7, » 1) use of Eq. (39b) in (4) and (7) gives

10 /T(K )

FIG. 1. Linewidth of Mn-doped PbFz. Curve is theory

with parameters chosen as explained in text. Points are data

of Ref. 3 for Mn concentration c =3 x 10~.
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-U/AT .
rate Zc8'~ e ~ in the slow-motion regime
catches up, as temperature is increased, with the mo-
tionally narrowed dipole contribution

U/k~ T
(t2.uP)/W ~ e s . The linewidth therefore reaches a
local minimum at a temperature T;„given roughly
by

ks T~;„=2 U/In(Zc 2 p/(54p'))

where 2 p and U are the "attempt" frequency (prefac-
tor) and activation energy, respectively, of the hop-
ping rate. The maximum occurs when the effective
fluctuation rate (which is just Was long as
Wr, » 1) matches the perturbation frequency
rl [2 S(S+1)l t . At this point one switches from the

slow-hopping limit (f) « 1 of Eq. (10) to the fast-
hopping regime of Eq. (12). The characteristic tem-
perature T,„ is given by

ks T,„=2U/ln[3Zc/A2S($+1)]

Agreement is seen to be fairly good up to the tem-
perature at which AHpp is a maximum. The theory,
however, underestimates AHpp by about a factor of 7
at the highest temperature. At this temperature the
n-n contribution is negligible and the theoretical value
is the same as the BPP expression

= —A2S(S+1)ZcW ' 1+ 1

T2 1+4p,2/ W2

where here, as opposed to the above qualitative
description of T,„, we have included the nonsecular
contribution involving ao, .

VI. COMPARISON KITH Li5A10g

This is because Eqs. (39) show that Tt/T2 —4p,2/ W'

for co, && W. Thus, we are led to consider classical
e-n dipole coupling, the important terms of which are
those involving S,I, and S,I+ since they do not re-
quire the energetically unfavorable (for cp, » W)

flip of an electron spin. Equations (A4) and (AS)
then give

Gp(t) =
5
S($ +1)y2yt2t tt2r pcosrupt e ' (41a)

G((t) = —,
' S(S+1)y,'yNtt r e

+2[I(l+1)—41] 5| S(S+1)y2yN2t2

-Iosp1 -I/Txr e e (41b)

for an angular average of the dipolar interaction

2 y, y~b' [1 S/r —3(1'r)(S r)/r )

at a distance r from the impurity where y, and yg are
- the electronic and nuclear gyromagnetic ratios. The
factor 2[I(I +1) ——,] is introduced to account for the

enhancement of transverse fluctuations in the T2 pro-

cess when only the
2 —,transition is observed. '

[Such considerations are not needed for nuclei
without a quadrupole moment and were not included

in Eqs. (39) for the study of I =-, '9F.] Note that
l Olpt

for ~p/ W && 1 or tppr, && 1, e and coscppt may
be replaced by unity for times of importance and
then Eqs. (41) give G~(t) = (I + 2)'Gp(t) which

guarantees T~ =4T2 for I = —, in the high-

temperature region.
From Eqs. (19) and (21) we obtain

Follstaedt and Biefeld have recently reported 'Li
T~ and T2 measurements over a broad range of tem-

perature in Li5A104. Although the samples wer nom-

inally "pure, " the observed high-temperature relation
(for 4pp « W) Tt =4T2 is strongly suggestive of re-

laxation via paramagnetic impurities when only the—transition of the quadrupole split levels is
2 2

observed in I -
2

'Li. One ~ould expect" T~ = T2

for I =
2

if the relaxation were via fluctuating electric

field gradients, but

Tt =(I+ 2) T2 4T2

for I =
2

for coupling to electron spins. ' Subsequent

room-temperature EPR measurements5 revealed
about 150 ppm (assuming S = —,) paramagnetic iona

substituted for Al with linewidths narrow enough to
be detected.

For the lowest temperature at which T~ =4T2, we

estimate ~, )& 8'which rules out an isotropic
kA I S interaction as responsible for the relaxation.

Cp =
5 S(S+1)y.~ykt2

1+p2

Ct' [I(I +1) —
4 ]Cp'

+—$(S+1)y2y2 A'2r '

(42a)

(42b)

where the effective rate 7, ' is given by

1/r, " 1/r, + Wand where we have considered only

the real part in C~'. The primes on Cp' and C~' indi-

cate that they are for the region r & b in which only
particle diffusion is considered and W =Dr/6a2. For
Cp and C~, used for r & b, one simply replaces 8'in
Eqs. (42) with W (1/6a') (Dr +Ds).

The barrier-to-spin-diffusion distance b is taken
from Ref. 7,

b - (3 (p,p) /y N gl) 't4a (43)

where (p,r), the eff'ective impurity moment which is
"static" during the spin-diffusion time T2p, is given by
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(yp)'=
3
y2t'S($+I)

2' Tp
& —tan '

~20
10

2

+—'g(/ +1)7,&gzH2/k2T2

(44)
i)A/04

with H the applied field. For reasonable values of v,
and T2O the second term in square brackets of (44) is
negligible at room temperature and above.

%e attempt to fit T1 for the parameters
ao a =2.5 A, S=-, y&-1.04@10 Oe ' -sec ',5

y, -1.76 & 10' Oe ' sec ', T2s =10 sec (see Fig. 5)
appropriate to Li resonance in the o. phase of
Li5A104 with spin 2, g =2 paramagnetic impurities.

I

In the high-temperature region I/Tt is given by Eq.
(31) and its maximum value is at GIOT -1 from Eq.
(42a). We then choose the concentration to give the
observed maximum rate at 21.5 MHz, which yields
Nap =5.9 & 10, equivalent to 350 pprn substitution
for Al. The activation energy is taken to be 0.96 eV
from measurements of conductivity in an argon at-
mosphere. '9 If we assume that 8'v, )&1 at the T1
minimum so that v, ' = 1/ W, the attempt frequency
(prefactor of IV) is 1.6 x 10'3 sec '.

%e then obtain the electronic spin-lattice relaxation
time v, by fitting the data at the lowest temperatures
~here spin diffusion is-dominant. This gives
7, -2.7 x 10 ' sec at room temperature for the 21.5-
MHz data and the barrier given by Eqs. (43) and
(44) .

The results of this fit for 21.5 MHz are shown in
Fig. 2, where we have taken v, ~ T ', as expected for
high-temperature Raman processes, and v, indepen-
dent of temperature T in curves (a) and (b), respec-
tively. Neither of these is very satisfactory since they
produce too slow a decrease of I/T~ on the low-
temperature side of the T~ minimum. The reason is
that this short a ~, plays a significant influence on the
effective correlation time r, "of Eqs. (42a) at tem-
peratures not much below that of the T~ minimum.
This may be seen by noting the good fit for
103/T & 1.6 obtained by setting r, » I/IVand
thereby r, "= I/Wat all temperatures [curve (d) of
Fig. 2]. The situation. is improved somewhat by as-
suming b =a, i.e., neglecting the barrier to diffusion,
instead of the prediction of Eqs. (43) and (44)
b =3.6a. This increases v, to 2.4 & 10 sec in order
to fit the room-temperature, 21.5-MHz data, and the
result of a constant r, of this value is shown as curve
(c). The room-temperature values of r, quoted
above are consistent with the observed ESR width of
6 Oe, which implies v, «10 I sec.

The frequency dependence at the T1 minimum is
shown in Fig. 3 for the three experimental frequen-

10—

I

0.8 1.2

I

1.6
I

2.0 2, 4
I

2.8 3.2

10 IT(K )

FIG. 2. Spin-lattice relaxation rate of e-Li5A104 at 21.5
MHz. Points are data of Ref. 4. Curves are theory for {a)
v., =2.7 x10 ~(300/T) sec, given by Eqs. (43) and (44).
(b) v, =2.7 x 10 ~ sec, b given by Eqs. (43) and {44). (c)
7, =2.4 &10~ sec, b =a (no barrier to spin diffusion). (d)
~, )& 1/W (impurity effectively has infinite spin-lattice re-
laxation time). Further details of parameters are contained
in text.

cies. A BPP T1 ~ ~o dependence is observed in
agreement with the calculation. It may be worthwhile
to note, however, that the dependence is sensitive to
the interaction strength. The result of increasing the
coefficient of r, '/(I+cops, "') in Eq. (42a) by a fac-

10—3

it(i
10

~ot2 n" (MHzl

FIG. 3. Relaxation rate at temperature of T& minimum
vs NMR frequency. Points are data of Ref. 4 for a-Li5A104.
Solid line: interaction strength, as used in curves of Fig. 2,
is classical dipolar at nearest-neighbor distance appropriate to
e-Li5A104. - Dashed line: interaction strength 10 times
greater than for solid line. Concentration is adjusted to give

agreement at 21.5 MHz.
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tor of 10 over its classical dipolar value is shown as
the dashed curve in Fig. 3, which is normalized to
maintain agreement at 21.5 MHz. The weaker fre-
quency dependence arises from the relaxation rate
having a weaker-than-linear dependence on interac-
tion strength for large values of qp(a) as may be
seen by analogy with Eqs. (10) and (11).

The low-temperature frequency dependence can
also be sensitive to the parameters as shown in Fig.
4. The BPP result T1 ~ ~0 is satisfied only if
qp(b) Typ « I so that a spin requires many en-
counters at the barrier distance b to be relaxed. An

dependence results from the opposite extreme
vg(b) Tzp » I and is seen to exist for b =a,
r, =2.4 x 10 p sec [curve (a) of Fig. 4] as used to fit
the room-temperature, 21.5-MHz data in the neglect
of a barrier to spin diffusion. The values used for
curves (a) and (b) in Fig. 2 which utiHze Eqs. (43)
and (44) give an intermediate dependence shown as
curve (b) in Fig. 4. The rather sparse data fall
between these latter two cases.

In regard to frequency dependence it is interesting
to observe the differences between T1 data for the a
and P phases of LiqAI04. The calculation presented
here is independent of details of the lattice structure
and hopping processes and therefore makes no dis-
tinction between the two phases since both have the
same coordination numbers and nearly the same
values of a and ao. The experiments, however, show
a significant difference. In the P phase the minimum

T1 is nearly independent of frequency yet sho~s a
stronger T1 ~ zoo dependence at low temperature.
Within the context of the present model this could be
accounted for by a larger interaction and a longer 7,
than in the 0. phase. The larger interaction would
violate the condition gp(ap) « o)p at the temperature
of the T1 minimum and thereby lead to a ~eaker fre-
quency dependence as depicted in Fig. 3. Converse-
ly, a longer r, could increase the barrier radius b [see
Eq. (44)] and thereby reduce qp(b) Tqp, even though
the interaction at nearest-neighbor distance is larger,
to the point where 'gp(b) Tpp « 1 is satisfied.
Although the differences could in principle be inter-
preted in this manner, it o/viously would be desirable
to see if they were a direct consequence of a more
detailed 'model which took account of, for example,
the fact that there are five inequivalent Li+ positions
in the a phase and only two in the P phase.

Figure 5 presents the predicted Tq at 21.5 MHz for
the same parameters used to Qt T1 in Fig. 2 together
with the data on a-Li5A104. Agreement is found .

only at the highest temperatures. At lower tempera-
tures, T~ is not at all described by the conventional
motional narrowing process. Instead of decreasing

'when WTpo 1, the rate actually shows an initial in-

crease and does not start to fall until O'T~o =10.
The fact that normal motional narrowing does seem
to apply to I =

z
'pF in PbFq.'Mn (Fig. 1) suggests

2.0—

C)
O
DC

1.0—

0.5-

) ]]I
5 10

k

I

20

~0/2 m (MHzl

FIG. 4. Room-temperature relaxation rate vs NMR fre-

quency. Points are data of Ref. 4 for o,-Li5A104. (a)

~, =2.4 x 10~ sec, b =a (no barrier to spin di6'usion). (b)
2.1 X10 sec, b given by Eqs. (43) and (44). Curve la-

beled BPP is Tj ~ ~ result of BPP at low temperatures.

A theory of NMR relaxation in superionic conduc-
tors by paramagnetic impurities has been developed
in a manner which allows for an arbitrary ratio 8'v,
of paramagnetic relaxation time to hopping time.
Thus, the entire temperature range can be treated.
Two types of interactions were considered: nearest-

10—4

I

CIP
Vl

I

I—
&- L])AR04

-10 :
0.8

I

1.2
l

1.6
I

2.0
I

2. 4
I

2. 8
]

3.2

10 IT[K ]

FIG. 5. Transverse relaxation rate T~ of a-Li5A104 at
21.5 MHz. Points are data of Ref. 4. Solid curve has
parameters same as curve (a) of Fig. 2. Dashed curve has
parameters same as curve (d) of Fig. 2.

that the discrepancy may be attributed to quadrupole
effects such as some mixing-in of non — —transi-

2 2

tions which are not accounted for in the present
treatment.

VII. SUMMARY AND CONCLUSIONS
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neighbor only and long-range dipole-dipole. For the
former a discrete hopping modeI was used. In the
latter case a classical diffusion equation was assumed.
Solution of this equation followed the methods of
Rorschach but extended the range of validity by al-

lowing the aforementioned arbitrary value of 8'~,
and both particle and spin diffusion.

An example of the nearest-neighbor-only interac-
tion is likely to be PbF2.Mn where there is a strong
transferred hyper6ne interaction. Good quantitative
agreement was obtained over most of the range for
the temperature-dependent linewidth without any ad-
justable parameters for the lowest concentration stu-
died in Ref. 3. However, the theoretical linewidth is
too small at the highest temperatures.

The classical dipole case was applied to data on
Li5A104. The low-temperature frequency dependence
could be reproduced with reasonable choices of, the
parameters, but the short values of electronic spin-
lattice relaxation time v, interfere with the tempera-
ture dependence below the Ti minimum. A much
better fit of the high-temperature data is obtained if
the rate v, is taken as negligible compared with the
hopping rate. It should then be dificult, however, to
explain the low- (room-) temperature data since, with

such a long v, the paramagnetic impurity mechanisms
would be very weak because the effective correlation
time becomes too much greater than the NMR pre-
cession time and because the barrier distance to spin
diffusion b becomes too large. The possibility exists
that the room temperature Ti is dominated by other
mechanisms such as coupling of the quadruple mo-

ment to phonons, but these should be frequency in-

dependent. A further discrepancy is in the line nar-
rowing which does not occur until a much higher
temperature than predicted and may be indicative of
additional quadrupole effects which complicate T2.

In conclusion, the theory is probably adequate to
describe situations where simple uncorrelated activat-
ed hopping processes occur. [As noted in connection
with Eq. (6) we have treated only the case where
hopping is described by a simple, uncorrelated ran-
dom walk. ] The lack of agreement at high tempera-
ture in PbF2.Mn may, for example, be indicative of a
true difference between the effective hopping time for
a nucleus to jump away from the vicinity of an im-

purity site and that for describing the bulk conduc-
tivity. In this case it might appear that the former
time is longer than the latter in the sublattice-melting
region. If deviations can be so attributed to features
of correlated hopping, ' then the present theory
serves a useful purpose in telling when one can and
cannot say that strong correlations are in evidence.

In situations where the electronic spin-lattice relax-
ation time and spin diffusion are important there may
be difhculties. It would be desirable to have ESR
measurements of v, and an independent measure,
possibly by satellite NMR, of the barrier to spin
diffusion in relevant compounds to assess further the
theory.
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APPENDIX A: PERTURBATION THEORY OF- RELAXATION FUNCTION

For the interaction of Eq. (1), the equation of motion is

dI.(r) =i XA &S (t)[Ia(t),I (t)] —iacool (r)
dt

=i XA sS (r) ks I +s(t)
a'P

(A1)

~here, with a =0, +1 standing for the components E„J+, the commutators give for the nonzero components of
k p'. kt t = k—t ] 2, k~p =—kp~ = ko t =—k t 0 = 1. By iterating (Al) twice we obtain

ht+1 -II (t+r) = i XA &
— S (tt)kir I ~a(t)e dtt

tpt

pfi
dr2S~'(rt)S~" (r2) kirggkir ~+p'I~+a+a'(r)

ip Ofpf i tp klpf2 + o ~ ~ (A2)

to second order in the coupling 3 & ~here

I.(i) =I (t)e

Ultimately we are interested only in the average behavior of the nuclear spin, and this entails a thermal average
over the electron-spin coordinates, and an angular average over the spatial coordinates for the case of an aniso-
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tropic dipolar interaction. We assUme that this averaging can be applied to Eq. (A2) and thereby arrive at

te t+T

I (t + r) = 1.(t) —
g

dt'(r t')—G.(t')dt'l. (t)
t

= I.(t) exp —
J~ dt'(r t') —G.(t') dt'

t

~here
I

Gp(t') = —S(S + I)e '(((Ap) )'),„cosa)pt'+2 ((At)) ),„cos(~,—ppp) t'

+2 ()A t ~(2),„cos(ao, + ~p) t') (A4)

G+)(t') =-,'$(S+1)e '(((Ap)(') e +2((At)( ),„e

+2((A

+2 ([App('), „+8()Apt ('),„cosa),t') (AS)

In arriving at Eqs. (A4) and (AS) we have used

(S)=0

($ (t,)$p(t2)) —,S($+1)(1+~a~)e ' ' 'e ' ' ' 5

appropriate to high temperature and assumed that the

necessary angular averages satisfy

(A-eA-tr)-- (lA-al)')-8-+s. = e ~-
which is true for the dipolar interaction. Here eu, and

v, are the electronic resonance frequency and relaxa-
tion time, respectively. It is through this averaging
that Eq. (A3) results. In general, one would find that
the right-hand side of (A2) also contains terms
I, p+p (t) with P'+P" WO.

The second equality in (A3) is the standard approx-
imation' employed to extrapolate the Arst equality to
an expression valid for longer times. Replacement of
the double integral over dt~ dt2 by a single integral oc-
curs by virtue of the fact that the averaging makes
any quantity which depends on t~ and t2 a function of
the single variable t'- t~ —t2. The reader is referred
to Refs. 12 and 6 for further details and discussion of
the approximations.

The above results assume that all h, m =+1 transi-
tions contribute to the resonance (b nt is the change
in nuclear Zeeman quantum number) so that the to-
tal component of nuclear spin I is observed. If, as

is often the case for resolved quadrupole splittings,

only the —, —
2

transition is observed, one must

restrict the expressions to matrix elements such as

(—,
~ I+~ ——,). One can show" that the effect of this

on G+~ is to multiply the erst three terms on the
right-hand side of (AS) (those which involve
transverse fluctuations) by

(2 (I+I +I I+~ 2) 2[I(1+1)—41

The last two terms, which involve longitudinal fluc-

tuations, are unaNected. The expression for T~ is

unaffected since a common procedure for measuring
longitudinal relaxation is to saturate all quadrupole-
split lines by a pulse sequence, after which the sys-
tem is assumed to relax with a common spin tem-
perature.

APPENDIX B: PROBABILITY OF ENCOUNTERING
IMPURITIES DURING RANDOM %ALK

We derive here Eq. (8) for the probability P(n (t)
that in time t a hopping nucleus lands on n sites
which are neighbors of paramagnetic impurities. This



PETER M. RICHARDS

probability is expressed as

P (n )jr) = X p (n jM) p(M j t)
M n

where

!
p(n jM) =(Zc) "(1—Zc) .

(81)

(82)

P(n~jr) = ' g (1-Zc) -"
nl ~ „(M—n)!

(Wr). Zc)"
X (I Z )~ Wr) -w

n! ~~ M'!

=(Wt)" exp[(1 —Zc) Wr]e ~'„(Zc)"
n!

is the probability that, for a random distribution of
impurities, n sites out of M are neighbors of an im-

purity and p(M ~jr) is the probability that the nucleus
lands on M different sites in time r. In (82) Zc is the
probability that any one site is neighbor to an impuri-
ty since there are Z nearest-neighbor host sites with a
probability c per site of occupation by a paramagnetic
ion and we assume Zc « 1. The probability p(M ~t)
is computed by taking 8'5l as the probability of- a

jump occurring in a short time St. The Poisson distri-
bution

( Wr)n
(Zc)"

e zen—'t

n! (85)

APPENDIX C: NON-r DEPENDENCE OF vt (r)

For small distances q (r) can vary as r under cir-
cumstances described in connection with Eq. (20). A
solution can be obtained in terms of Bessel functions
if we take

—lv ( Wr )M

M!
(83)

p(M)r) =p'(M(r) . (84)

results for the number of successes (jumps) as the
number of "attempts" t/St goes to infinity and the
probability per attempt 8'St goes to zero such as to
keep the average number of successes 8't 6nite.
Equation (83) gives the probability p'( M~ )(of there
being M jumps in time t. We assume that for a
three-dimensional walk with a large number of
nearest-neighbor sites available per jump the fraction
of sites which are reached more than once in a walk

of M steps is small, so that

where

r, = (C./no)'"[2/G(a0, 0)]'"

f'or Wr, »1 and
2

G (a0, 0)/W2 & 1, the limiting

case in which r, & ao is realized. (Obviously only
r, & ao is of concern since ao is the distance of
closest approach. ) The solution to the steady-state
equation is

Use of (84) and (82) in (Bl) leads to DV2I. ~.(r)I. 0, (C3)

A'r '~ Iq[2P /(rr, )' ]+B'r ' K~[2P /(rr, )'~ ], r & p,I ='
Ar ' 2Iv~4(p2/2p ) +IIr '~ I «(p /2p2), p & r,

(C4)

where p =(C /D)'~4 and A', 8', A, 8 are constants
to be determined. Since the conditions at r ~ are
unaltered by (Cl) '.he relaxation rate is still given by
Eq. (26). The boundary conditions are continuity of
I and dI /Br at r, as well as the ones used in Sec IV.
at uo and the spin-diffusion barrier b. There are two
cases to consider. (i) r, & b. Here the change in

behavior of rt (r) occurs where D(r) =Dp. (ii)
r, & b. The change in behavior of g (r) occurs
where D(r) =Dp+Ds. Application of the boundary
conditions leads in either case to four simultaneous
equations whose solutions are straightforward,
though the resulting expressions involving Bessel
functions are lengthy and not repeated here.
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